1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 587 if (vma_iter_prealloc(&vmi, vma)) { 588 pr_warn("Allocation of vma tree for process %d failed\n", 589 current->pid); 590 return -ENOMEM; 591 } 592 cleanup_vma_from_mm(vma); 593 594 /* remove from the MM's tree and list */ 595 vma_iter_clear(&vmi); 596 return 0; 597 } 598 /* 599 * destroy a VMA record 600 */ 601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 602 { 603 if (vma->vm_ops && vma->vm_ops->close) 604 vma->vm_ops->close(vma); 605 if (vma->vm_file) 606 fput(vma->vm_file); 607 put_nommu_region(vma->vm_region); 608 vm_area_free(vma); 609 } 610 611 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 612 unsigned long start_addr, 613 unsigned long end_addr) 614 { 615 unsigned long index = start_addr; 616 617 mmap_assert_locked(mm); 618 return mt_find(&mm->mm_mt, &index, end_addr - 1); 619 } 620 EXPORT_SYMBOL(find_vma_intersection); 621 622 /* 623 * look up the first VMA in which addr resides, NULL if none 624 * - should be called with mm->mmap_lock at least held readlocked 625 */ 626 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 627 { 628 VMA_ITERATOR(vmi, mm, addr); 629 630 return vma_iter_load(&vmi); 631 } 632 EXPORT_SYMBOL(find_vma); 633 634 /* 635 * At least xtensa ends up having protection faults even with no 636 * MMU.. No stack expansion, at least. 637 */ 638 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 639 unsigned long addr, struct pt_regs *regs) 640 { 641 struct vm_area_struct *vma; 642 643 mmap_read_lock(mm); 644 vma = vma_lookup(mm, addr); 645 if (!vma) 646 mmap_read_unlock(mm); 647 return vma; 648 } 649 650 /* 651 * expand a stack to a given address 652 * - not supported under NOMMU conditions 653 */ 654 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 655 { 656 return -ENOMEM; 657 } 658 659 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 660 { 661 mmap_read_unlock(mm); 662 return NULL; 663 } 664 665 /* 666 * look up the first VMA exactly that exactly matches addr 667 * - should be called with mm->mmap_lock at least held readlocked 668 */ 669 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 670 unsigned long addr, 671 unsigned long len) 672 { 673 struct vm_area_struct *vma; 674 unsigned long end = addr + len; 675 VMA_ITERATOR(vmi, mm, addr); 676 677 vma = vma_iter_load(&vmi); 678 if (!vma) 679 return NULL; 680 if (vma->vm_start != addr) 681 return NULL; 682 if (vma->vm_end != end) 683 return NULL; 684 685 return vma; 686 } 687 688 /* 689 * determine whether a mapping should be permitted and, if so, what sort of 690 * mapping we're capable of supporting 691 */ 692 static int validate_mmap_request(struct file *file, 693 unsigned long addr, 694 unsigned long len, 695 unsigned long prot, 696 unsigned long flags, 697 unsigned long pgoff, 698 unsigned long *_capabilities) 699 { 700 unsigned long capabilities, rlen; 701 int ret; 702 703 /* do the simple checks first */ 704 if (flags & MAP_FIXED) 705 return -EINVAL; 706 707 if ((flags & MAP_TYPE) != MAP_PRIVATE && 708 (flags & MAP_TYPE) != MAP_SHARED) 709 return -EINVAL; 710 711 if (!len) 712 return -EINVAL; 713 714 /* Careful about overflows.. */ 715 rlen = PAGE_ALIGN(len); 716 if (!rlen || rlen > TASK_SIZE) 717 return -ENOMEM; 718 719 /* offset overflow? */ 720 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 721 return -EOVERFLOW; 722 723 if (file) { 724 /* files must support mmap */ 725 if (!file->f_op->mmap) 726 return -ENODEV; 727 728 /* work out if what we've got could possibly be shared 729 * - we support chardevs that provide their own "memory" 730 * - we support files/blockdevs that are memory backed 731 */ 732 if (file->f_op->mmap_capabilities) { 733 capabilities = file->f_op->mmap_capabilities(file); 734 } else { 735 /* no explicit capabilities set, so assume some 736 * defaults */ 737 switch (file_inode(file)->i_mode & S_IFMT) { 738 case S_IFREG: 739 case S_IFBLK: 740 capabilities = NOMMU_MAP_COPY; 741 break; 742 743 case S_IFCHR: 744 capabilities = 745 NOMMU_MAP_DIRECT | 746 NOMMU_MAP_READ | 747 NOMMU_MAP_WRITE; 748 break; 749 750 default: 751 return -EINVAL; 752 } 753 } 754 755 /* eliminate any capabilities that we can't support on this 756 * device */ 757 if (!file->f_op->get_unmapped_area) 758 capabilities &= ~NOMMU_MAP_DIRECT; 759 if (!(file->f_mode & FMODE_CAN_READ)) 760 capabilities &= ~NOMMU_MAP_COPY; 761 762 /* The file shall have been opened with read permission. */ 763 if (!(file->f_mode & FMODE_READ)) 764 return -EACCES; 765 766 if (flags & MAP_SHARED) { 767 /* do checks for writing, appending and locking */ 768 if ((prot & PROT_WRITE) && 769 !(file->f_mode & FMODE_WRITE)) 770 return -EACCES; 771 772 if (IS_APPEND(file_inode(file)) && 773 (file->f_mode & FMODE_WRITE)) 774 return -EACCES; 775 776 if (!(capabilities & NOMMU_MAP_DIRECT)) 777 return -ENODEV; 778 779 /* we mustn't privatise shared mappings */ 780 capabilities &= ~NOMMU_MAP_COPY; 781 } else { 782 /* we're going to read the file into private memory we 783 * allocate */ 784 if (!(capabilities & NOMMU_MAP_COPY)) 785 return -ENODEV; 786 787 /* we don't permit a private writable mapping to be 788 * shared with the backing device */ 789 if (prot & PROT_WRITE) 790 capabilities &= ~NOMMU_MAP_DIRECT; 791 } 792 793 if (capabilities & NOMMU_MAP_DIRECT) { 794 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 795 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 796 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 797 ) { 798 capabilities &= ~NOMMU_MAP_DIRECT; 799 if (flags & MAP_SHARED) { 800 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 801 return -EINVAL; 802 } 803 } 804 } 805 806 /* handle executable mappings and implied executable 807 * mappings */ 808 if (path_noexec(&file->f_path)) { 809 if (prot & PROT_EXEC) 810 return -EPERM; 811 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 812 /* handle implication of PROT_EXEC by PROT_READ */ 813 if (current->personality & READ_IMPLIES_EXEC) { 814 if (capabilities & NOMMU_MAP_EXEC) 815 prot |= PROT_EXEC; 816 } 817 } else if ((prot & PROT_READ) && 818 (prot & PROT_EXEC) && 819 !(capabilities & NOMMU_MAP_EXEC) 820 ) { 821 /* backing file is not executable, try to copy */ 822 capabilities &= ~NOMMU_MAP_DIRECT; 823 } 824 } else { 825 /* anonymous mappings are always memory backed and can be 826 * privately mapped 827 */ 828 capabilities = NOMMU_MAP_COPY; 829 830 /* handle PROT_EXEC implication by PROT_READ */ 831 if ((prot & PROT_READ) && 832 (current->personality & READ_IMPLIES_EXEC)) 833 prot |= PROT_EXEC; 834 } 835 836 /* allow the security API to have its say */ 837 ret = security_mmap_addr(addr); 838 if (ret < 0) 839 return ret; 840 841 /* looks okay */ 842 *_capabilities = capabilities; 843 return 0; 844 } 845 846 /* 847 * we've determined that we can make the mapping, now translate what we 848 * now know into VMA flags 849 */ 850 static unsigned long determine_vm_flags(struct file *file, 851 unsigned long prot, 852 unsigned long flags, 853 unsigned long capabilities) 854 { 855 unsigned long vm_flags; 856 857 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 858 859 if (!file) { 860 /* 861 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 862 * there is no fork(). 863 */ 864 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 865 } else if (flags & MAP_PRIVATE) { 866 /* MAP_PRIVATE file mapping */ 867 if (capabilities & NOMMU_MAP_DIRECT) 868 vm_flags |= (capabilities & NOMMU_VMFLAGS); 869 else 870 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 871 872 if (!(prot & PROT_WRITE) && !current->ptrace) 873 /* 874 * R/O private file mapping which cannot be used to 875 * modify memory, especially also not via active ptrace 876 * (e.g., set breakpoints) or later by upgrading 877 * permissions (no mprotect()). We can try overlaying 878 * the file mapping, which will work e.g., on chardevs, 879 * ramfs/tmpfs/shmfs and romfs/cramf. 880 */ 881 vm_flags |= VM_MAYOVERLAY; 882 } else { 883 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 884 vm_flags |= VM_SHARED | VM_MAYSHARE | 885 (capabilities & NOMMU_VMFLAGS); 886 } 887 888 return vm_flags; 889 } 890 891 /* 892 * set up a shared mapping on a file (the driver or filesystem provides and 893 * pins the storage) 894 */ 895 static int do_mmap_shared_file(struct vm_area_struct *vma) 896 { 897 int ret; 898 899 ret = call_mmap(vma->vm_file, vma); 900 if (ret == 0) { 901 vma->vm_region->vm_top = vma->vm_region->vm_end; 902 return 0; 903 } 904 if (ret != -ENOSYS) 905 return ret; 906 907 /* getting -ENOSYS indicates that direct mmap isn't possible (as 908 * opposed to tried but failed) so we can only give a suitable error as 909 * it's not possible to make a private copy if MAP_SHARED was given */ 910 return -ENODEV; 911 } 912 913 /* 914 * set up a private mapping or an anonymous shared mapping 915 */ 916 static int do_mmap_private(struct vm_area_struct *vma, 917 struct vm_region *region, 918 unsigned long len, 919 unsigned long capabilities) 920 { 921 unsigned long total, point; 922 void *base; 923 int ret, order; 924 925 /* 926 * Invoke the file's mapping function so that it can keep track of 927 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 928 * it may attempt to share, which will make is_nommu_shared_mapping() 929 * happy. 930 */ 931 if (capabilities & NOMMU_MAP_DIRECT) { 932 ret = call_mmap(vma->vm_file, vma); 933 /* shouldn't return success if we're not sharing */ 934 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 935 ret = -ENOSYS; 936 if (ret == 0) { 937 vma->vm_region->vm_top = vma->vm_region->vm_end; 938 return 0; 939 } 940 if (ret != -ENOSYS) 941 return ret; 942 943 /* getting an ENOSYS error indicates that direct mmap isn't 944 * possible (as opposed to tried but failed) so we'll try to 945 * make a private copy of the data and map that instead */ 946 } 947 948 949 /* allocate some memory to hold the mapping 950 * - note that this may not return a page-aligned address if the object 951 * we're allocating is smaller than a page 952 */ 953 order = get_order(len); 954 total = 1 << order; 955 point = len >> PAGE_SHIFT; 956 957 /* we don't want to allocate a power-of-2 sized page set */ 958 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 959 total = point; 960 961 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 962 if (!base) 963 goto enomem; 964 965 atomic_long_add(total, &mmap_pages_allocated); 966 967 vm_flags_set(vma, VM_MAPPED_COPY); 968 region->vm_flags = vma->vm_flags; 969 region->vm_start = (unsigned long) base; 970 region->vm_end = region->vm_start + len; 971 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 972 973 vma->vm_start = region->vm_start; 974 vma->vm_end = region->vm_start + len; 975 976 if (vma->vm_file) { 977 /* read the contents of a file into the copy */ 978 loff_t fpos; 979 980 fpos = vma->vm_pgoff; 981 fpos <<= PAGE_SHIFT; 982 983 ret = kernel_read(vma->vm_file, base, len, &fpos); 984 if (ret < 0) 985 goto error_free; 986 987 /* clear the last little bit */ 988 if (ret < len) 989 memset(base + ret, 0, len - ret); 990 991 } else { 992 vma_set_anonymous(vma); 993 } 994 995 return 0; 996 997 error_free: 998 free_page_series(region->vm_start, region->vm_top); 999 region->vm_start = vma->vm_start = 0; 1000 region->vm_end = vma->vm_end = 0; 1001 region->vm_top = 0; 1002 return ret; 1003 1004 enomem: 1005 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1006 len, current->pid, current->comm); 1007 show_mem(); 1008 return -ENOMEM; 1009 } 1010 1011 /* 1012 * handle mapping creation for uClinux 1013 */ 1014 unsigned long do_mmap(struct file *file, 1015 unsigned long addr, 1016 unsigned long len, 1017 unsigned long prot, 1018 unsigned long flags, 1019 vm_flags_t vm_flags, 1020 unsigned long pgoff, 1021 unsigned long *populate, 1022 struct list_head *uf) 1023 { 1024 struct vm_area_struct *vma; 1025 struct vm_region *region; 1026 struct rb_node *rb; 1027 unsigned long capabilities, result; 1028 int ret; 1029 VMA_ITERATOR(vmi, current->mm, 0); 1030 1031 *populate = 0; 1032 1033 /* decide whether we should attempt the mapping, and if so what sort of 1034 * mapping */ 1035 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1036 &capabilities); 1037 if (ret < 0) 1038 return ret; 1039 1040 /* we ignore the address hint */ 1041 addr = 0; 1042 len = PAGE_ALIGN(len); 1043 1044 /* we've determined that we can make the mapping, now translate what we 1045 * now know into VMA flags */ 1046 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1047 1048 1049 /* we're going to need to record the mapping */ 1050 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1051 if (!region) 1052 goto error_getting_region; 1053 1054 vma = vm_area_alloc(current->mm); 1055 if (!vma) 1056 goto error_getting_vma; 1057 1058 region->vm_usage = 1; 1059 region->vm_flags = vm_flags; 1060 region->vm_pgoff = pgoff; 1061 1062 vm_flags_init(vma, vm_flags); 1063 vma->vm_pgoff = pgoff; 1064 1065 if (file) { 1066 region->vm_file = get_file(file); 1067 vma->vm_file = get_file(file); 1068 } 1069 1070 down_write(&nommu_region_sem); 1071 1072 /* if we want to share, we need to check for regions created by other 1073 * mmap() calls that overlap with our proposed mapping 1074 * - we can only share with a superset match on most regular files 1075 * - shared mappings on character devices and memory backed files are 1076 * permitted to overlap inexactly as far as we are concerned for in 1077 * these cases, sharing is handled in the driver or filesystem rather 1078 * than here 1079 */ 1080 if (is_nommu_shared_mapping(vm_flags)) { 1081 struct vm_region *pregion; 1082 unsigned long pglen, rpglen, pgend, rpgend, start; 1083 1084 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1085 pgend = pgoff + pglen; 1086 1087 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1088 pregion = rb_entry(rb, struct vm_region, vm_rb); 1089 1090 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1091 continue; 1092 1093 /* search for overlapping mappings on the same file */ 1094 if (file_inode(pregion->vm_file) != 1095 file_inode(file)) 1096 continue; 1097 1098 if (pregion->vm_pgoff >= pgend) 1099 continue; 1100 1101 rpglen = pregion->vm_end - pregion->vm_start; 1102 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1103 rpgend = pregion->vm_pgoff + rpglen; 1104 if (pgoff >= rpgend) 1105 continue; 1106 1107 /* handle inexactly overlapping matches between 1108 * mappings */ 1109 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1110 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1111 /* new mapping is not a subset of the region */ 1112 if (!(capabilities & NOMMU_MAP_DIRECT)) 1113 goto sharing_violation; 1114 continue; 1115 } 1116 1117 /* we've found a region we can share */ 1118 pregion->vm_usage++; 1119 vma->vm_region = pregion; 1120 start = pregion->vm_start; 1121 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1122 vma->vm_start = start; 1123 vma->vm_end = start + len; 1124 1125 if (pregion->vm_flags & VM_MAPPED_COPY) 1126 vm_flags_set(vma, VM_MAPPED_COPY); 1127 else { 1128 ret = do_mmap_shared_file(vma); 1129 if (ret < 0) { 1130 vma->vm_region = NULL; 1131 vma->vm_start = 0; 1132 vma->vm_end = 0; 1133 pregion->vm_usage--; 1134 pregion = NULL; 1135 goto error_just_free; 1136 } 1137 } 1138 fput(region->vm_file); 1139 kmem_cache_free(vm_region_jar, region); 1140 region = pregion; 1141 result = start; 1142 goto share; 1143 } 1144 1145 /* obtain the address at which to make a shared mapping 1146 * - this is the hook for quasi-memory character devices to 1147 * tell us the location of a shared mapping 1148 */ 1149 if (capabilities & NOMMU_MAP_DIRECT) { 1150 addr = file->f_op->get_unmapped_area(file, addr, len, 1151 pgoff, flags); 1152 if (IS_ERR_VALUE(addr)) { 1153 ret = addr; 1154 if (ret != -ENOSYS) 1155 goto error_just_free; 1156 1157 /* the driver refused to tell us where to site 1158 * the mapping so we'll have to attempt to copy 1159 * it */ 1160 ret = -ENODEV; 1161 if (!(capabilities & NOMMU_MAP_COPY)) 1162 goto error_just_free; 1163 1164 capabilities &= ~NOMMU_MAP_DIRECT; 1165 } else { 1166 vma->vm_start = region->vm_start = addr; 1167 vma->vm_end = region->vm_end = addr + len; 1168 } 1169 } 1170 } 1171 1172 vma->vm_region = region; 1173 1174 /* set up the mapping 1175 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1176 */ 1177 if (file && vma->vm_flags & VM_SHARED) 1178 ret = do_mmap_shared_file(vma); 1179 else 1180 ret = do_mmap_private(vma, region, len, capabilities); 1181 if (ret < 0) 1182 goto error_just_free; 1183 add_nommu_region(region); 1184 1185 /* clear anonymous mappings that don't ask for uninitialized data */ 1186 if (!vma->vm_file && 1187 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1188 !(flags & MAP_UNINITIALIZED))) 1189 memset((void *)region->vm_start, 0, 1190 region->vm_end - region->vm_start); 1191 1192 /* okay... we have a mapping; now we have to register it */ 1193 result = vma->vm_start; 1194 1195 current->mm->total_vm += len >> PAGE_SHIFT; 1196 1197 share: 1198 BUG_ON(!vma->vm_region); 1199 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1200 if (vma_iter_prealloc(&vmi, vma)) 1201 goto error_just_free; 1202 1203 setup_vma_to_mm(vma, current->mm); 1204 current->mm->map_count++; 1205 /* add the VMA to the tree */ 1206 vma_iter_store(&vmi, vma); 1207 1208 /* we flush the region from the icache only when the first executable 1209 * mapping of it is made */ 1210 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1211 flush_icache_user_range(region->vm_start, region->vm_end); 1212 region->vm_icache_flushed = true; 1213 } 1214 1215 up_write(&nommu_region_sem); 1216 1217 return result; 1218 1219 error_just_free: 1220 up_write(&nommu_region_sem); 1221 error: 1222 vma_iter_free(&vmi); 1223 if (region->vm_file) 1224 fput(region->vm_file); 1225 kmem_cache_free(vm_region_jar, region); 1226 if (vma->vm_file) 1227 fput(vma->vm_file); 1228 vm_area_free(vma); 1229 return ret; 1230 1231 sharing_violation: 1232 up_write(&nommu_region_sem); 1233 pr_warn("Attempt to share mismatched mappings\n"); 1234 ret = -EINVAL; 1235 goto error; 1236 1237 error_getting_vma: 1238 kmem_cache_free(vm_region_jar, region); 1239 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1240 len, current->pid); 1241 show_mem(); 1242 return -ENOMEM; 1243 1244 error_getting_region: 1245 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1246 len, current->pid); 1247 show_mem(); 1248 return -ENOMEM; 1249 } 1250 1251 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1252 unsigned long prot, unsigned long flags, 1253 unsigned long fd, unsigned long pgoff) 1254 { 1255 struct file *file = NULL; 1256 unsigned long retval = -EBADF; 1257 1258 audit_mmap_fd(fd, flags); 1259 if (!(flags & MAP_ANONYMOUS)) { 1260 file = fget(fd); 1261 if (!file) 1262 goto out; 1263 } 1264 1265 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1266 1267 if (file) 1268 fput(file); 1269 out: 1270 return retval; 1271 } 1272 1273 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1274 unsigned long, prot, unsigned long, flags, 1275 unsigned long, fd, unsigned long, pgoff) 1276 { 1277 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1278 } 1279 1280 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1281 struct mmap_arg_struct { 1282 unsigned long addr; 1283 unsigned long len; 1284 unsigned long prot; 1285 unsigned long flags; 1286 unsigned long fd; 1287 unsigned long offset; 1288 }; 1289 1290 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1291 { 1292 struct mmap_arg_struct a; 1293 1294 if (copy_from_user(&a, arg, sizeof(a))) 1295 return -EFAULT; 1296 if (offset_in_page(a.offset)) 1297 return -EINVAL; 1298 1299 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1300 a.offset >> PAGE_SHIFT); 1301 } 1302 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1303 1304 /* 1305 * split a vma into two pieces at address 'addr', a new vma is allocated either 1306 * for the first part or the tail. 1307 */ 1308 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1309 unsigned long addr, int new_below) 1310 { 1311 struct vm_area_struct *new; 1312 struct vm_region *region; 1313 unsigned long npages; 1314 struct mm_struct *mm; 1315 1316 /* we're only permitted to split anonymous regions (these should have 1317 * only a single usage on the region) */ 1318 if (vma->vm_file) 1319 return -ENOMEM; 1320 1321 mm = vma->vm_mm; 1322 if (mm->map_count >= sysctl_max_map_count) 1323 return -ENOMEM; 1324 1325 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1326 if (!region) 1327 return -ENOMEM; 1328 1329 new = vm_area_dup(vma); 1330 if (!new) 1331 goto err_vma_dup; 1332 1333 /* most fields are the same, copy all, and then fixup */ 1334 *region = *vma->vm_region; 1335 new->vm_region = region; 1336 1337 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1338 1339 if (new_below) { 1340 region->vm_top = region->vm_end = new->vm_end = addr; 1341 } else { 1342 region->vm_start = new->vm_start = addr; 1343 region->vm_pgoff = new->vm_pgoff += npages; 1344 } 1345 1346 vma_iter_config(vmi, new->vm_start, new->vm_end); 1347 if (vma_iter_prealloc(vmi, vma)) { 1348 pr_warn("Allocation of vma tree for process %d failed\n", 1349 current->pid); 1350 goto err_vmi_preallocate; 1351 } 1352 1353 if (new->vm_ops && new->vm_ops->open) 1354 new->vm_ops->open(new); 1355 1356 down_write(&nommu_region_sem); 1357 delete_nommu_region(vma->vm_region); 1358 if (new_below) { 1359 vma->vm_region->vm_start = vma->vm_start = addr; 1360 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1361 } else { 1362 vma->vm_region->vm_end = vma->vm_end = addr; 1363 vma->vm_region->vm_top = addr; 1364 } 1365 add_nommu_region(vma->vm_region); 1366 add_nommu_region(new->vm_region); 1367 up_write(&nommu_region_sem); 1368 1369 setup_vma_to_mm(vma, mm); 1370 setup_vma_to_mm(new, mm); 1371 vma_iter_store(vmi, new); 1372 mm->map_count++; 1373 return 0; 1374 1375 err_vmi_preallocate: 1376 vm_area_free(new); 1377 err_vma_dup: 1378 kmem_cache_free(vm_region_jar, region); 1379 return -ENOMEM; 1380 } 1381 1382 /* 1383 * shrink a VMA by removing the specified chunk from either the beginning or 1384 * the end 1385 */ 1386 static int vmi_shrink_vma(struct vma_iterator *vmi, 1387 struct vm_area_struct *vma, 1388 unsigned long from, unsigned long to) 1389 { 1390 struct vm_region *region; 1391 1392 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1393 * and list */ 1394 if (from > vma->vm_start) { 1395 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1396 return -ENOMEM; 1397 vma->vm_end = from; 1398 } else { 1399 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1400 return -ENOMEM; 1401 vma->vm_start = to; 1402 } 1403 1404 /* cut the backing region down to size */ 1405 region = vma->vm_region; 1406 BUG_ON(region->vm_usage != 1); 1407 1408 down_write(&nommu_region_sem); 1409 delete_nommu_region(region); 1410 if (from > region->vm_start) { 1411 to = region->vm_top; 1412 region->vm_top = region->vm_end = from; 1413 } else { 1414 region->vm_start = to; 1415 } 1416 add_nommu_region(region); 1417 up_write(&nommu_region_sem); 1418 1419 free_page_series(from, to); 1420 return 0; 1421 } 1422 1423 /* 1424 * release a mapping 1425 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1426 * VMA, though it need not cover the whole VMA 1427 */ 1428 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1429 { 1430 VMA_ITERATOR(vmi, mm, start); 1431 struct vm_area_struct *vma; 1432 unsigned long end; 1433 int ret = 0; 1434 1435 len = PAGE_ALIGN(len); 1436 if (len == 0) 1437 return -EINVAL; 1438 1439 end = start + len; 1440 1441 /* find the first potentially overlapping VMA */ 1442 vma = vma_find(&vmi, end); 1443 if (!vma) { 1444 static int limit; 1445 if (limit < 5) { 1446 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1447 current->pid, current->comm, 1448 start, start + len - 1); 1449 limit++; 1450 } 1451 return -EINVAL; 1452 } 1453 1454 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1455 if (vma->vm_file) { 1456 do { 1457 if (start > vma->vm_start) 1458 return -EINVAL; 1459 if (end == vma->vm_end) 1460 goto erase_whole_vma; 1461 vma = vma_find(&vmi, end); 1462 } while (vma); 1463 return -EINVAL; 1464 } else { 1465 /* the chunk must be a subset of the VMA found */ 1466 if (start == vma->vm_start && end == vma->vm_end) 1467 goto erase_whole_vma; 1468 if (start < vma->vm_start || end > vma->vm_end) 1469 return -EINVAL; 1470 if (offset_in_page(start)) 1471 return -EINVAL; 1472 if (end != vma->vm_end && offset_in_page(end)) 1473 return -EINVAL; 1474 if (start != vma->vm_start && end != vma->vm_end) { 1475 ret = split_vma(&vmi, vma, start, 1); 1476 if (ret < 0) 1477 return ret; 1478 } 1479 return vmi_shrink_vma(&vmi, vma, start, end); 1480 } 1481 1482 erase_whole_vma: 1483 if (delete_vma_from_mm(vma)) 1484 ret = -ENOMEM; 1485 else 1486 delete_vma(mm, vma); 1487 return ret; 1488 } 1489 1490 int vm_munmap(unsigned long addr, size_t len) 1491 { 1492 struct mm_struct *mm = current->mm; 1493 int ret; 1494 1495 mmap_write_lock(mm); 1496 ret = do_munmap(mm, addr, len, NULL); 1497 mmap_write_unlock(mm); 1498 return ret; 1499 } 1500 EXPORT_SYMBOL(vm_munmap); 1501 1502 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1503 { 1504 return vm_munmap(addr, len); 1505 } 1506 1507 /* 1508 * release all the mappings made in a process's VM space 1509 */ 1510 void exit_mmap(struct mm_struct *mm) 1511 { 1512 VMA_ITERATOR(vmi, mm, 0); 1513 struct vm_area_struct *vma; 1514 1515 if (!mm) 1516 return; 1517 1518 mm->total_vm = 0; 1519 1520 /* 1521 * Lock the mm to avoid assert complaining even though this is the only 1522 * user of the mm 1523 */ 1524 mmap_write_lock(mm); 1525 for_each_vma(vmi, vma) { 1526 cleanup_vma_from_mm(vma); 1527 delete_vma(mm, vma); 1528 cond_resched(); 1529 } 1530 __mt_destroy(&mm->mm_mt); 1531 mmap_write_unlock(mm); 1532 } 1533 1534 int vm_brk(unsigned long addr, unsigned long len) 1535 { 1536 return -ENOMEM; 1537 } 1538 1539 /* 1540 * expand (or shrink) an existing mapping, potentially moving it at the same 1541 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1542 * 1543 * under NOMMU conditions, we only permit changing a mapping's size, and only 1544 * as long as it stays within the region allocated by do_mmap_private() and the 1545 * block is not shareable 1546 * 1547 * MREMAP_FIXED is not supported under NOMMU conditions 1548 */ 1549 static unsigned long do_mremap(unsigned long addr, 1550 unsigned long old_len, unsigned long new_len, 1551 unsigned long flags, unsigned long new_addr) 1552 { 1553 struct vm_area_struct *vma; 1554 1555 /* insanity checks first */ 1556 old_len = PAGE_ALIGN(old_len); 1557 new_len = PAGE_ALIGN(new_len); 1558 if (old_len == 0 || new_len == 0) 1559 return (unsigned long) -EINVAL; 1560 1561 if (offset_in_page(addr)) 1562 return -EINVAL; 1563 1564 if (flags & MREMAP_FIXED && new_addr != addr) 1565 return (unsigned long) -EINVAL; 1566 1567 vma = find_vma_exact(current->mm, addr, old_len); 1568 if (!vma) 1569 return (unsigned long) -EINVAL; 1570 1571 if (vma->vm_end != vma->vm_start + old_len) 1572 return (unsigned long) -EFAULT; 1573 1574 if (is_nommu_shared_mapping(vma->vm_flags)) 1575 return (unsigned long) -EPERM; 1576 1577 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1578 return (unsigned long) -ENOMEM; 1579 1580 /* all checks complete - do it */ 1581 vma->vm_end = vma->vm_start + new_len; 1582 return vma->vm_start; 1583 } 1584 1585 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1586 unsigned long, new_len, unsigned long, flags, 1587 unsigned long, new_addr) 1588 { 1589 unsigned long ret; 1590 1591 mmap_write_lock(current->mm); 1592 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1593 mmap_write_unlock(current->mm); 1594 return ret; 1595 } 1596 1597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1598 unsigned int foll_flags) 1599 { 1600 return NULL; 1601 } 1602 1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1604 unsigned long pfn, unsigned long size, pgprot_t prot) 1605 { 1606 if (addr != (pfn << PAGE_SHIFT)) 1607 return -EINVAL; 1608 1609 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(remap_pfn_range); 1613 1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1615 { 1616 unsigned long pfn = start >> PAGE_SHIFT; 1617 unsigned long vm_len = vma->vm_end - vma->vm_start; 1618 1619 pfn += vma->vm_pgoff; 1620 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1621 } 1622 EXPORT_SYMBOL(vm_iomap_memory); 1623 1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1625 unsigned long pgoff) 1626 { 1627 unsigned int size = vma->vm_end - vma->vm_start; 1628 1629 if (!(vma->vm_flags & VM_USERMAP)) 1630 return -EINVAL; 1631 1632 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1633 vma->vm_end = vma->vm_start + size; 1634 1635 return 0; 1636 } 1637 EXPORT_SYMBOL(remap_vmalloc_range); 1638 1639 vm_fault_t filemap_fault(struct vm_fault *vmf) 1640 { 1641 BUG(); 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(filemap_fault); 1645 1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1647 pgoff_t start_pgoff, pgoff_t end_pgoff) 1648 { 1649 BUG(); 1650 return 0; 1651 } 1652 EXPORT_SYMBOL(filemap_map_pages); 1653 1654 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1655 int len, unsigned int gup_flags) 1656 { 1657 struct vm_area_struct *vma; 1658 int write = gup_flags & FOLL_WRITE; 1659 1660 if (mmap_read_lock_killable(mm)) 1661 return 0; 1662 1663 /* the access must start within one of the target process's mappings */ 1664 vma = find_vma(mm, addr); 1665 if (vma) { 1666 /* don't overrun this mapping */ 1667 if (addr + len >= vma->vm_end) 1668 len = vma->vm_end - addr; 1669 1670 /* only read or write mappings where it is permitted */ 1671 if (write && vma->vm_flags & VM_MAYWRITE) 1672 copy_to_user_page(vma, NULL, addr, 1673 (void *) addr, buf, len); 1674 else if (!write && vma->vm_flags & VM_MAYREAD) 1675 copy_from_user_page(vma, NULL, addr, 1676 buf, (void *) addr, len); 1677 else 1678 len = 0; 1679 } else { 1680 len = 0; 1681 } 1682 1683 mmap_read_unlock(mm); 1684 1685 return len; 1686 } 1687 1688 /** 1689 * access_remote_vm - access another process' address space 1690 * @mm: the mm_struct of the target address space 1691 * @addr: start address to access 1692 * @buf: source or destination buffer 1693 * @len: number of bytes to transfer 1694 * @gup_flags: flags modifying lookup behaviour 1695 * 1696 * The caller must hold a reference on @mm. 1697 */ 1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1699 void *buf, int len, unsigned int gup_flags) 1700 { 1701 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1702 } 1703 1704 /* 1705 * Access another process' address space. 1706 * - source/target buffer must be kernel space 1707 */ 1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1709 unsigned int gup_flags) 1710 { 1711 struct mm_struct *mm; 1712 1713 if (addr + len < addr) 1714 return 0; 1715 1716 mm = get_task_mm(tsk); 1717 if (!mm) 1718 return 0; 1719 1720 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1721 1722 mmput(mm); 1723 return len; 1724 } 1725 EXPORT_SYMBOL_GPL(access_process_vm); 1726 1727 /** 1728 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1729 * @inode: The inode to check 1730 * @size: The current filesize of the inode 1731 * @newsize: The proposed filesize of the inode 1732 * 1733 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1734 * make sure that any outstanding VMAs aren't broken and then shrink the 1735 * vm_regions that extend beyond so that do_mmap() doesn't 1736 * automatically grant mappings that are too large. 1737 */ 1738 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1739 size_t newsize) 1740 { 1741 struct vm_area_struct *vma; 1742 struct vm_region *region; 1743 pgoff_t low, high; 1744 size_t r_size, r_top; 1745 1746 low = newsize >> PAGE_SHIFT; 1747 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1748 1749 down_write(&nommu_region_sem); 1750 i_mmap_lock_read(inode->i_mapping); 1751 1752 /* search for VMAs that fall within the dead zone */ 1753 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1754 /* found one - only interested if it's shared out of the page 1755 * cache */ 1756 if (vma->vm_flags & VM_SHARED) { 1757 i_mmap_unlock_read(inode->i_mapping); 1758 up_write(&nommu_region_sem); 1759 return -ETXTBSY; /* not quite true, but near enough */ 1760 } 1761 } 1762 1763 /* reduce any regions that overlap the dead zone - if in existence, 1764 * these will be pointed to by VMAs that don't overlap the dead zone 1765 * 1766 * we don't check for any regions that start beyond the EOF as there 1767 * shouldn't be any 1768 */ 1769 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1770 if (!(vma->vm_flags & VM_SHARED)) 1771 continue; 1772 1773 region = vma->vm_region; 1774 r_size = region->vm_top - region->vm_start; 1775 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1776 1777 if (r_top > newsize) { 1778 region->vm_top -= r_top - newsize; 1779 if (region->vm_end > region->vm_top) 1780 region->vm_end = region->vm_top; 1781 } 1782 } 1783 1784 i_mmap_unlock_read(inode->i_mapping); 1785 up_write(&nommu_region_sem); 1786 return 0; 1787 } 1788 1789 /* 1790 * Initialise sysctl_user_reserve_kbytes. 1791 * 1792 * This is intended to prevent a user from starting a single memory hogging 1793 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1794 * mode. 1795 * 1796 * The default value is min(3% of free memory, 128MB) 1797 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1798 */ 1799 static int __meminit init_user_reserve(void) 1800 { 1801 unsigned long free_kbytes; 1802 1803 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1804 1805 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1806 return 0; 1807 } 1808 subsys_initcall(init_user_reserve); 1809 1810 /* 1811 * Initialise sysctl_admin_reserve_kbytes. 1812 * 1813 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1814 * to log in and kill a memory hogging process. 1815 * 1816 * Systems with more than 256MB will reserve 8MB, enough to recover 1817 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1818 * only reserve 3% of free pages by default. 1819 */ 1820 static int __meminit init_admin_reserve(void) 1821 { 1822 unsigned long free_kbytes; 1823 1824 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1825 1826 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1827 return 0; 1828 } 1829 subsys_initcall(init_admin_reserve); 1830