xref: /openbmc/linux/mm/nommu.c (revision 96de2506)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 	return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244 
245 void *vmalloc_user(unsigned long size)
246 {
247 	void *ret;
248 
249 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 	if (ret) {
251 		struct vm_area_struct *vma;
252 
253 		down_write(&current->mm->mmap_sem);
254 		vma = find_vma(current->mm, (unsigned long)ret);
255 		if (vma)
256 			vma->vm_flags |= VM_USERMAP;
257 		up_write(&current->mm->mmap_sem);
258 	}
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263 
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 	return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269 
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 	return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275 
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 	/* Don't allow overflow */
279 	if ((unsigned long) buf + count < count)
280 		count = -(unsigned long) buf;
281 
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return count;
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually contiguous memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into contiguous kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into contiguous kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 /**
368  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
369  *	@size:		allocation size
370  *
371  *	Kernel-internal function to allocate enough pages to cover @size
372  *	the page level allocator and map them into contiguous and
373  *	executable kernel virtual space.
374  *
375  *	For tight control over page level allocator and protection flags
376  *	use __vmalloc() instead.
377  */
378 
379 void *vmalloc_exec(unsigned long size)
380 {
381 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383 
384 /**
385  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386  *	@size:		allocation size
387  *
388  *	Allocate enough 32bit PA addressable pages to cover @size from the
389  *	page level allocator and map them into contiguous kernel virtual space.
390  */
391 void *vmalloc_32(unsigned long size)
392 {
393 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396 
397 /**
398  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399  *	@size:		allocation size
400  *
401  * The resulting memory area is 32bit addressable and zeroed so it can be
402  * mapped to userspace without leaking data.
403  *
404  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405  * remap_vmalloc_range() are permissible.
406  */
407 void *vmalloc_32_user(unsigned long size)
408 {
409 	/*
410 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411 	 * but for now this can simply use vmalloc_user() directly.
412 	 */
413 	return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416 
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419 	BUG();
420 	return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423 
424 void vunmap(const void *addr)
425 {
426 	BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429 
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432 	BUG();
433 	return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436 
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439 	BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442 
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447 
448 /*
449  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450  * have one.
451  */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455 
456 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
457 {
458 	BUG();
459 	return NULL;
460 }
461 EXPORT_SYMBOL_GPL(alloc_vm_area);
462 
463 void free_vm_area(struct vm_struct *area)
464 {
465 	BUG();
466 }
467 EXPORT_SYMBOL_GPL(free_vm_area);
468 
469 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
470 		   struct page *page)
471 {
472 	return -EINVAL;
473 }
474 EXPORT_SYMBOL(vm_insert_page);
475 
476 /*
477  *  sys_brk() for the most part doesn't need the global kernel
478  *  lock, except when an application is doing something nasty
479  *  like trying to un-brk an area that has already been mapped
480  *  to a regular file.  in this case, the unmapping will need
481  *  to invoke file system routines that need the global lock.
482  */
483 SYSCALL_DEFINE1(brk, unsigned long, brk)
484 {
485 	struct mm_struct *mm = current->mm;
486 
487 	if (brk < mm->start_brk || brk > mm->context.end_brk)
488 		return mm->brk;
489 
490 	if (mm->brk == brk)
491 		return mm->brk;
492 
493 	/*
494 	 * Always allow shrinking brk
495 	 */
496 	if (brk <= mm->brk) {
497 		mm->brk = brk;
498 		return brk;
499 	}
500 
501 	/*
502 	 * Ok, looks good - let it rip.
503 	 */
504 	flush_icache_range(mm->brk, brk);
505 	return mm->brk = brk;
506 }
507 
508 /*
509  * initialise the percpu counter for VM and region record slabs
510  */
511 void __init mmap_init(void)
512 {
513 	int ret;
514 
515 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
516 	VM_BUG_ON(ret);
517 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
518 }
519 
520 /*
521  * validate the region tree
522  * - the caller must hold the region lock
523  */
524 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
525 static noinline void validate_nommu_regions(void)
526 {
527 	struct vm_region *region, *last;
528 	struct rb_node *p, *lastp;
529 
530 	lastp = rb_first(&nommu_region_tree);
531 	if (!lastp)
532 		return;
533 
534 	last = rb_entry(lastp, struct vm_region, vm_rb);
535 	BUG_ON(last->vm_end <= last->vm_start);
536 	BUG_ON(last->vm_top < last->vm_end);
537 
538 	while ((p = rb_next(lastp))) {
539 		region = rb_entry(p, struct vm_region, vm_rb);
540 		last = rb_entry(lastp, struct vm_region, vm_rb);
541 
542 		BUG_ON(region->vm_end <= region->vm_start);
543 		BUG_ON(region->vm_top < region->vm_end);
544 		BUG_ON(region->vm_start < last->vm_top);
545 
546 		lastp = p;
547 	}
548 }
549 #else
550 static void validate_nommu_regions(void)
551 {
552 }
553 #endif
554 
555 /*
556  * add a region into the global tree
557  */
558 static void add_nommu_region(struct vm_region *region)
559 {
560 	struct vm_region *pregion;
561 	struct rb_node **p, *parent;
562 
563 	validate_nommu_regions();
564 
565 	parent = NULL;
566 	p = &nommu_region_tree.rb_node;
567 	while (*p) {
568 		parent = *p;
569 		pregion = rb_entry(parent, struct vm_region, vm_rb);
570 		if (region->vm_start < pregion->vm_start)
571 			p = &(*p)->rb_left;
572 		else if (region->vm_start > pregion->vm_start)
573 			p = &(*p)->rb_right;
574 		else if (pregion == region)
575 			return;
576 		else
577 			BUG();
578 	}
579 
580 	rb_link_node(&region->vm_rb, parent, p);
581 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
582 
583 	validate_nommu_regions();
584 }
585 
586 /*
587  * delete a region from the global tree
588  */
589 static void delete_nommu_region(struct vm_region *region)
590 {
591 	BUG_ON(!nommu_region_tree.rb_node);
592 
593 	validate_nommu_regions();
594 	rb_erase(&region->vm_rb, &nommu_region_tree);
595 	validate_nommu_regions();
596 }
597 
598 /*
599  * free a contiguous series of pages
600  */
601 static void free_page_series(unsigned long from, unsigned long to)
602 {
603 	for (; from < to; from += PAGE_SIZE) {
604 		struct page *page = virt_to_page(from);
605 
606 		atomic_long_dec(&mmap_pages_allocated);
607 		put_page(page);
608 	}
609 }
610 
611 /*
612  * release a reference to a region
613  * - the caller must hold the region semaphore for writing, which this releases
614  * - the region may not have been added to the tree yet, in which case vm_top
615  *   will equal vm_start
616  */
617 static void __put_nommu_region(struct vm_region *region)
618 	__releases(nommu_region_sem)
619 {
620 	BUG_ON(!nommu_region_tree.rb_node);
621 
622 	if (--region->vm_usage == 0) {
623 		if (region->vm_top > region->vm_start)
624 			delete_nommu_region(region);
625 		up_write(&nommu_region_sem);
626 
627 		if (region->vm_file)
628 			fput(region->vm_file);
629 
630 		/* IO memory and memory shared directly out of the pagecache
631 		 * from ramfs/tmpfs mustn't be released here */
632 		if (region->vm_flags & VM_MAPPED_COPY)
633 			free_page_series(region->vm_start, region->vm_top);
634 		kmem_cache_free(vm_region_jar, region);
635 	} else {
636 		up_write(&nommu_region_sem);
637 	}
638 }
639 
640 /*
641  * release a reference to a region
642  */
643 static void put_nommu_region(struct vm_region *region)
644 {
645 	down_write(&nommu_region_sem);
646 	__put_nommu_region(region);
647 }
648 
649 /*
650  * add a VMA into a process's mm_struct in the appropriate place in the list
651  * and tree and add to the address space's page tree also if not an anonymous
652  * page
653  * - should be called with mm->mmap_sem held writelocked
654  */
655 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
656 {
657 	struct vm_area_struct *pvma, *prev;
658 	struct address_space *mapping;
659 	struct rb_node **p, *parent, *rb_prev;
660 
661 	BUG_ON(!vma->vm_region);
662 
663 	mm->map_count++;
664 	vma->vm_mm = mm;
665 
666 	/* add the VMA to the mapping */
667 	if (vma->vm_file) {
668 		mapping = vma->vm_file->f_mapping;
669 
670 		i_mmap_lock_write(mapping);
671 		flush_dcache_mmap_lock(mapping);
672 		vma_interval_tree_insert(vma, &mapping->i_mmap);
673 		flush_dcache_mmap_unlock(mapping);
674 		i_mmap_unlock_write(mapping);
675 	}
676 
677 	/* add the VMA to the tree */
678 	parent = rb_prev = NULL;
679 	p = &mm->mm_rb.rb_node;
680 	while (*p) {
681 		parent = *p;
682 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
683 
684 		/* sort by: start addr, end addr, VMA struct addr in that order
685 		 * (the latter is necessary as we may get identical VMAs) */
686 		if (vma->vm_start < pvma->vm_start)
687 			p = &(*p)->rb_left;
688 		else if (vma->vm_start > pvma->vm_start) {
689 			rb_prev = parent;
690 			p = &(*p)->rb_right;
691 		} else if (vma->vm_end < pvma->vm_end)
692 			p = &(*p)->rb_left;
693 		else if (vma->vm_end > pvma->vm_end) {
694 			rb_prev = parent;
695 			p = &(*p)->rb_right;
696 		} else if (vma < pvma)
697 			p = &(*p)->rb_left;
698 		else if (vma > pvma) {
699 			rb_prev = parent;
700 			p = &(*p)->rb_right;
701 		} else
702 			BUG();
703 	}
704 
705 	rb_link_node(&vma->vm_rb, parent, p);
706 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
707 
708 	/* add VMA to the VMA list also */
709 	prev = NULL;
710 	if (rb_prev)
711 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
712 
713 	__vma_link_list(mm, vma, prev, parent);
714 }
715 
716 /*
717  * delete a VMA from its owning mm_struct and address space
718  */
719 static void delete_vma_from_mm(struct vm_area_struct *vma)
720 {
721 	int i;
722 	struct address_space *mapping;
723 	struct mm_struct *mm = vma->vm_mm;
724 	struct task_struct *curr = current;
725 
726 	mm->map_count--;
727 	for (i = 0; i < VMACACHE_SIZE; i++) {
728 		/* if the vma is cached, invalidate the entire cache */
729 		if (curr->vmacache.vmas[i] == vma) {
730 			vmacache_invalidate(mm);
731 			break;
732 		}
733 	}
734 
735 	/* remove the VMA from the mapping */
736 	if (vma->vm_file) {
737 		mapping = vma->vm_file->f_mapping;
738 
739 		i_mmap_lock_write(mapping);
740 		flush_dcache_mmap_lock(mapping);
741 		vma_interval_tree_remove(vma, &mapping->i_mmap);
742 		flush_dcache_mmap_unlock(mapping);
743 		i_mmap_unlock_write(mapping);
744 	}
745 
746 	/* remove from the MM's tree and list */
747 	rb_erase(&vma->vm_rb, &mm->mm_rb);
748 
749 	if (vma->vm_prev)
750 		vma->vm_prev->vm_next = vma->vm_next;
751 	else
752 		mm->mmap = vma->vm_next;
753 
754 	if (vma->vm_next)
755 		vma->vm_next->vm_prev = vma->vm_prev;
756 }
757 
758 /*
759  * destroy a VMA record
760  */
761 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
762 {
763 	if (vma->vm_ops && vma->vm_ops->close)
764 		vma->vm_ops->close(vma);
765 	if (vma->vm_file)
766 		fput(vma->vm_file);
767 	put_nommu_region(vma->vm_region);
768 	vm_area_free(vma);
769 }
770 
771 /*
772  * look up the first VMA in which addr resides, NULL if none
773  * - should be called with mm->mmap_sem at least held readlocked
774  */
775 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
776 {
777 	struct vm_area_struct *vma;
778 
779 	/* check the cache first */
780 	vma = vmacache_find(mm, addr);
781 	if (likely(vma))
782 		return vma;
783 
784 	/* trawl the list (there may be multiple mappings in which addr
785 	 * resides) */
786 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
787 		if (vma->vm_start > addr)
788 			return NULL;
789 		if (vma->vm_end > addr) {
790 			vmacache_update(addr, vma);
791 			return vma;
792 		}
793 	}
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(find_vma);
798 
799 /*
800  * find a VMA
801  * - we don't extend stack VMAs under NOMMU conditions
802  */
803 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
804 {
805 	return find_vma(mm, addr);
806 }
807 
808 /*
809  * expand a stack to a given address
810  * - not supported under NOMMU conditions
811  */
812 int expand_stack(struct vm_area_struct *vma, unsigned long address)
813 {
814 	return -ENOMEM;
815 }
816 
817 /*
818  * look up the first VMA exactly that exactly matches addr
819  * - should be called with mm->mmap_sem at least held readlocked
820  */
821 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
822 					     unsigned long addr,
823 					     unsigned long len)
824 {
825 	struct vm_area_struct *vma;
826 	unsigned long end = addr + len;
827 
828 	/* check the cache first */
829 	vma = vmacache_find_exact(mm, addr, end);
830 	if (vma)
831 		return vma;
832 
833 	/* trawl the list (there may be multiple mappings in which addr
834 	 * resides) */
835 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
836 		if (vma->vm_start < addr)
837 			continue;
838 		if (vma->vm_start > addr)
839 			return NULL;
840 		if (vma->vm_end == end) {
841 			vmacache_update(addr, vma);
842 			return vma;
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 /*
850  * determine whether a mapping should be permitted and, if so, what sort of
851  * mapping we're capable of supporting
852  */
853 static int validate_mmap_request(struct file *file,
854 				 unsigned long addr,
855 				 unsigned long len,
856 				 unsigned long prot,
857 				 unsigned long flags,
858 				 unsigned long pgoff,
859 				 unsigned long *_capabilities)
860 {
861 	unsigned long capabilities, rlen;
862 	int ret;
863 
864 	/* do the simple checks first */
865 	if (flags & MAP_FIXED)
866 		return -EINVAL;
867 
868 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
869 	    (flags & MAP_TYPE) != MAP_SHARED)
870 		return -EINVAL;
871 
872 	if (!len)
873 		return -EINVAL;
874 
875 	/* Careful about overflows.. */
876 	rlen = PAGE_ALIGN(len);
877 	if (!rlen || rlen > TASK_SIZE)
878 		return -ENOMEM;
879 
880 	/* offset overflow? */
881 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
882 		return -EOVERFLOW;
883 
884 	if (file) {
885 		/* files must support mmap */
886 		if (!file->f_op->mmap)
887 			return -ENODEV;
888 
889 		/* work out if what we've got could possibly be shared
890 		 * - we support chardevs that provide their own "memory"
891 		 * - we support files/blockdevs that are memory backed
892 		 */
893 		if (file->f_op->mmap_capabilities) {
894 			capabilities = file->f_op->mmap_capabilities(file);
895 		} else {
896 			/* no explicit capabilities set, so assume some
897 			 * defaults */
898 			switch (file_inode(file)->i_mode & S_IFMT) {
899 			case S_IFREG:
900 			case S_IFBLK:
901 				capabilities = NOMMU_MAP_COPY;
902 				break;
903 
904 			case S_IFCHR:
905 				capabilities =
906 					NOMMU_MAP_DIRECT |
907 					NOMMU_MAP_READ |
908 					NOMMU_MAP_WRITE;
909 				break;
910 
911 			default:
912 				return -EINVAL;
913 			}
914 		}
915 
916 		/* eliminate any capabilities that we can't support on this
917 		 * device */
918 		if (!file->f_op->get_unmapped_area)
919 			capabilities &= ~NOMMU_MAP_DIRECT;
920 		if (!(file->f_mode & FMODE_CAN_READ))
921 			capabilities &= ~NOMMU_MAP_COPY;
922 
923 		/* The file shall have been opened with read permission. */
924 		if (!(file->f_mode & FMODE_READ))
925 			return -EACCES;
926 
927 		if (flags & MAP_SHARED) {
928 			/* do checks for writing, appending and locking */
929 			if ((prot & PROT_WRITE) &&
930 			    !(file->f_mode & FMODE_WRITE))
931 				return -EACCES;
932 
933 			if (IS_APPEND(file_inode(file)) &&
934 			    (file->f_mode & FMODE_WRITE))
935 				return -EACCES;
936 
937 			if (locks_verify_locked(file))
938 				return -EAGAIN;
939 
940 			if (!(capabilities & NOMMU_MAP_DIRECT))
941 				return -ENODEV;
942 
943 			/* we mustn't privatise shared mappings */
944 			capabilities &= ~NOMMU_MAP_COPY;
945 		} else {
946 			/* we're going to read the file into private memory we
947 			 * allocate */
948 			if (!(capabilities & NOMMU_MAP_COPY))
949 				return -ENODEV;
950 
951 			/* we don't permit a private writable mapping to be
952 			 * shared with the backing device */
953 			if (prot & PROT_WRITE)
954 				capabilities &= ~NOMMU_MAP_DIRECT;
955 		}
956 
957 		if (capabilities & NOMMU_MAP_DIRECT) {
958 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
959 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
960 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
961 			    ) {
962 				capabilities &= ~NOMMU_MAP_DIRECT;
963 				if (flags & MAP_SHARED) {
964 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
965 					return -EINVAL;
966 				}
967 			}
968 		}
969 
970 		/* handle executable mappings and implied executable
971 		 * mappings */
972 		if (path_noexec(&file->f_path)) {
973 			if (prot & PROT_EXEC)
974 				return -EPERM;
975 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
976 			/* handle implication of PROT_EXEC by PROT_READ */
977 			if (current->personality & READ_IMPLIES_EXEC) {
978 				if (capabilities & NOMMU_MAP_EXEC)
979 					prot |= PROT_EXEC;
980 			}
981 		} else if ((prot & PROT_READ) &&
982 			 (prot & PROT_EXEC) &&
983 			 !(capabilities & NOMMU_MAP_EXEC)
984 			 ) {
985 			/* backing file is not executable, try to copy */
986 			capabilities &= ~NOMMU_MAP_DIRECT;
987 		}
988 	} else {
989 		/* anonymous mappings are always memory backed and can be
990 		 * privately mapped
991 		 */
992 		capabilities = NOMMU_MAP_COPY;
993 
994 		/* handle PROT_EXEC implication by PROT_READ */
995 		if ((prot & PROT_READ) &&
996 		    (current->personality & READ_IMPLIES_EXEC))
997 			prot |= PROT_EXEC;
998 	}
999 
1000 	/* allow the security API to have its say */
1001 	ret = security_mmap_addr(addr);
1002 	if (ret < 0)
1003 		return ret;
1004 
1005 	/* looks okay */
1006 	*_capabilities = capabilities;
1007 	return 0;
1008 }
1009 
1010 /*
1011  * we've determined that we can make the mapping, now translate what we
1012  * now know into VMA flags
1013  */
1014 static unsigned long determine_vm_flags(struct file *file,
1015 					unsigned long prot,
1016 					unsigned long flags,
1017 					unsigned long capabilities)
1018 {
1019 	unsigned long vm_flags;
1020 
1021 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1022 	/* vm_flags |= mm->def_flags; */
1023 
1024 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1025 		/* attempt to share read-only copies of mapped file chunks */
1026 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1027 		if (file && !(prot & PROT_WRITE))
1028 			vm_flags |= VM_MAYSHARE;
1029 	} else {
1030 		/* overlay a shareable mapping on the backing device or inode
1031 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1032 		 * romfs/cramfs */
1033 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1034 		if (flags & MAP_SHARED)
1035 			vm_flags |= VM_SHARED;
1036 	}
1037 
1038 	/* refuse to let anyone share private mappings with this process if
1039 	 * it's being traced - otherwise breakpoints set in it may interfere
1040 	 * with another untraced process
1041 	 */
1042 	if ((flags & MAP_PRIVATE) && current->ptrace)
1043 		vm_flags &= ~VM_MAYSHARE;
1044 
1045 	return vm_flags;
1046 }
1047 
1048 /*
1049  * set up a shared mapping on a file (the driver or filesystem provides and
1050  * pins the storage)
1051  */
1052 static int do_mmap_shared_file(struct vm_area_struct *vma)
1053 {
1054 	int ret;
1055 
1056 	ret = call_mmap(vma->vm_file, vma);
1057 	if (ret == 0) {
1058 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1059 		return 0;
1060 	}
1061 	if (ret != -ENOSYS)
1062 		return ret;
1063 
1064 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1065 	 * opposed to tried but failed) so we can only give a suitable error as
1066 	 * it's not possible to make a private copy if MAP_SHARED was given */
1067 	return -ENODEV;
1068 }
1069 
1070 /*
1071  * set up a private mapping or an anonymous shared mapping
1072  */
1073 static int do_mmap_private(struct vm_area_struct *vma,
1074 			   struct vm_region *region,
1075 			   unsigned long len,
1076 			   unsigned long capabilities)
1077 {
1078 	unsigned long total, point;
1079 	void *base;
1080 	int ret, order;
1081 
1082 	/* invoke the file's mapping function so that it can keep track of
1083 	 * shared mappings on devices or memory
1084 	 * - VM_MAYSHARE will be set if it may attempt to share
1085 	 */
1086 	if (capabilities & NOMMU_MAP_DIRECT) {
1087 		ret = call_mmap(vma->vm_file, vma);
1088 		if (ret == 0) {
1089 			/* shouldn't return success if we're not sharing */
1090 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1091 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1092 			return 0;
1093 		}
1094 		if (ret != -ENOSYS)
1095 			return ret;
1096 
1097 		/* getting an ENOSYS error indicates that direct mmap isn't
1098 		 * possible (as opposed to tried but failed) so we'll try to
1099 		 * make a private copy of the data and map that instead */
1100 	}
1101 
1102 
1103 	/* allocate some memory to hold the mapping
1104 	 * - note that this may not return a page-aligned address if the object
1105 	 *   we're allocating is smaller than a page
1106 	 */
1107 	order = get_order(len);
1108 	total = 1 << order;
1109 	point = len >> PAGE_SHIFT;
1110 
1111 	/* we don't want to allocate a power-of-2 sized page set */
1112 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1113 		total = point;
1114 
1115 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1116 	if (!base)
1117 		goto enomem;
1118 
1119 	atomic_long_add(total, &mmap_pages_allocated);
1120 
1121 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1122 	region->vm_start = (unsigned long) base;
1123 	region->vm_end   = region->vm_start + len;
1124 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1125 
1126 	vma->vm_start = region->vm_start;
1127 	vma->vm_end   = region->vm_start + len;
1128 
1129 	if (vma->vm_file) {
1130 		/* read the contents of a file into the copy */
1131 		loff_t fpos;
1132 
1133 		fpos = vma->vm_pgoff;
1134 		fpos <<= PAGE_SHIFT;
1135 
1136 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1137 		if (ret < 0)
1138 			goto error_free;
1139 
1140 		/* clear the last little bit */
1141 		if (ret < len)
1142 			memset(base + ret, 0, len - ret);
1143 
1144 	} else {
1145 		vma_set_anonymous(vma);
1146 	}
1147 
1148 	return 0;
1149 
1150 error_free:
1151 	free_page_series(region->vm_start, region->vm_top);
1152 	region->vm_start = vma->vm_start = 0;
1153 	region->vm_end   = vma->vm_end = 0;
1154 	region->vm_top   = 0;
1155 	return ret;
1156 
1157 enomem:
1158 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1159 	       len, current->pid, current->comm);
1160 	show_free_areas(0, NULL);
1161 	return -ENOMEM;
1162 }
1163 
1164 /*
1165  * handle mapping creation for uClinux
1166  */
1167 unsigned long do_mmap(struct file *file,
1168 			unsigned long addr,
1169 			unsigned long len,
1170 			unsigned long prot,
1171 			unsigned long flags,
1172 			vm_flags_t vm_flags,
1173 			unsigned long pgoff,
1174 			unsigned long *populate,
1175 			struct list_head *uf)
1176 {
1177 	struct vm_area_struct *vma;
1178 	struct vm_region *region;
1179 	struct rb_node *rb;
1180 	unsigned long capabilities, result;
1181 	int ret;
1182 
1183 	*populate = 0;
1184 
1185 	/* decide whether we should attempt the mapping, and if so what sort of
1186 	 * mapping */
1187 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1188 				    &capabilities);
1189 	if (ret < 0)
1190 		return ret;
1191 
1192 	/* we ignore the address hint */
1193 	addr = 0;
1194 	len = PAGE_ALIGN(len);
1195 
1196 	/* we've determined that we can make the mapping, now translate what we
1197 	 * now know into VMA flags */
1198 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1199 
1200 	/* we're going to need to record the mapping */
1201 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1202 	if (!region)
1203 		goto error_getting_region;
1204 
1205 	vma = vm_area_alloc(current->mm);
1206 	if (!vma)
1207 		goto error_getting_vma;
1208 
1209 	region->vm_usage = 1;
1210 	region->vm_flags = vm_flags;
1211 	region->vm_pgoff = pgoff;
1212 
1213 	vma->vm_flags = vm_flags;
1214 	vma->vm_pgoff = pgoff;
1215 
1216 	if (file) {
1217 		region->vm_file = get_file(file);
1218 		vma->vm_file = get_file(file);
1219 	}
1220 
1221 	down_write(&nommu_region_sem);
1222 
1223 	/* if we want to share, we need to check for regions created by other
1224 	 * mmap() calls that overlap with our proposed mapping
1225 	 * - we can only share with a superset match on most regular files
1226 	 * - shared mappings on character devices and memory backed files are
1227 	 *   permitted to overlap inexactly as far as we are concerned for in
1228 	 *   these cases, sharing is handled in the driver or filesystem rather
1229 	 *   than here
1230 	 */
1231 	if (vm_flags & VM_MAYSHARE) {
1232 		struct vm_region *pregion;
1233 		unsigned long pglen, rpglen, pgend, rpgend, start;
1234 
1235 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1236 		pgend = pgoff + pglen;
1237 
1238 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1239 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1240 
1241 			if (!(pregion->vm_flags & VM_MAYSHARE))
1242 				continue;
1243 
1244 			/* search for overlapping mappings on the same file */
1245 			if (file_inode(pregion->vm_file) !=
1246 			    file_inode(file))
1247 				continue;
1248 
1249 			if (pregion->vm_pgoff >= pgend)
1250 				continue;
1251 
1252 			rpglen = pregion->vm_end - pregion->vm_start;
1253 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1254 			rpgend = pregion->vm_pgoff + rpglen;
1255 			if (pgoff >= rpgend)
1256 				continue;
1257 
1258 			/* handle inexactly overlapping matches between
1259 			 * mappings */
1260 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1261 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1262 				/* new mapping is not a subset of the region */
1263 				if (!(capabilities & NOMMU_MAP_DIRECT))
1264 					goto sharing_violation;
1265 				continue;
1266 			}
1267 
1268 			/* we've found a region we can share */
1269 			pregion->vm_usage++;
1270 			vma->vm_region = pregion;
1271 			start = pregion->vm_start;
1272 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1273 			vma->vm_start = start;
1274 			vma->vm_end = start + len;
1275 
1276 			if (pregion->vm_flags & VM_MAPPED_COPY)
1277 				vma->vm_flags |= VM_MAPPED_COPY;
1278 			else {
1279 				ret = do_mmap_shared_file(vma);
1280 				if (ret < 0) {
1281 					vma->vm_region = NULL;
1282 					vma->vm_start = 0;
1283 					vma->vm_end = 0;
1284 					pregion->vm_usage--;
1285 					pregion = NULL;
1286 					goto error_just_free;
1287 				}
1288 			}
1289 			fput(region->vm_file);
1290 			kmem_cache_free(vm_region_jar, region);
1291 			region = pregion;
1292 			result = start;
1293 			goto share;
1294 		}
1295 
1296 		/* obtain the address at which to make a shared mapping
1297 		 * - this is the hook for quasi-memory character devices to
1298 		 *   tell us the location of a shared mapping
1299 		 */
1300 		if (capabilities & NOMMU_MAP_DIRECT) {
1301 			addr = file->f_op->get_unmapped_area(file, addr, len,
1302 							     pgoff, flags);
1303 			if (IS_ERR_VALUE(addr)) {
1304 				ret = addr;
1305 				if (ret != -ENOSYS)
1306 					goto error_just_free;
1307 
1308 				/* the driver refused to tell us where to site
1309 				 * the mapping so we'll have to attempt to copy
1310 				 * it */
1311 				ret = -ENODEV;
1312 				if (!(capabilities & NOMMU_MAP_COPY))
1313 					goto error_just_free;
1314 
1315 				capabilities &= ~NOMMU_MAP_DIRECT;
1316 			} else {
1317 				vma->vm_start = region->vm_start = addr;
1318 				vma->vm_end = region->vm_end = addr + len;
1319 			}
1320 		}
1321 	}
1322 
1323 	vma->vm_region = region;
1324 
1325 	/* set up the mapping
1326 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1327 	 */
1328 	if (file && vma->vm_flags & VM_SHARED)
1329 		ret = do_mmap_shared_file(vma);
1330 	else
1331 		ret = do_mmap_private(vma, region, len, capabilities);
1332 	if (ret < 0)
1333 		goto error_just_free;
1334 	add_nommu_region(region);
1335 
1336 	/* clear anonymous mappings that don't ask for uninitialized data */
1337 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1338 		memset((void *)region->vm_start, 0,
1339 		       region->vm_end - region->vm_start);
1340 
1341 	/* okay... we have a mapping; now we have to register it */
1342 	result = vma->vm_start;
1343 
1344 	current->mm->total_vm += len >> PAGE_SHIFT;
1345 
1346 share:
1347 	add_vma_to_mm(current->mm, vma);
1348 
1349 	/* we flush the region from the icache only when the first executable
1350 	 * mapping of it is made  */
1351 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1352 		flush_icache_range(region->vm_start, region->vm_end);
1353 		region->vm_icache_flushed = true;
1354 	}
1355 
1356 	up_write(&nommu_region_sem);
1357 
1358 	return result;
1359 
1360 error_just_free:
1361 	up_write(&nommu_region_sem);
1362 error:
1363 	if (region->vm_file)
1364 		fput(region->vm_file);
1365 	kmem_cache_free(vm_region_jar, region);
1366 	if (vma->vm_file)
1367 		fput(vma->vm_file);
1368 	vm_area_free(vma);
1369 	return ret;
1370 
1371 sharing_violation:
1372 	up_write(&nommu_region_sem);
1373 	pr_warn("Attempt to share mismatched mappings\n");
1374 	ret = -EINVAL;
1375 	goto error;
1376 
1377 error_getting_vma:
1378 	kmem_cache_free(vm_region_jar, region);
1379 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1380 			len, current->pid);
1381 	show_free_areas(0, NULL);
1382 	return -ENOMEM;
1383 
1384 error_getting_region:
1385 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1386 			len, current->pid);
1387 	show_free_areas(0, NULL);
1388 	return -ENOMEM;
1389 }
1390 
1391 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1392 			      unsigned long prot, unsigned long flags,
1393 			      unsigned long fd, unsigned long pgoff)
1394 {
1395 	struct file *file = NULL;
1396 	unsigned long retval = -EBADF;
1397 
1398 	audit_mmap_fd(fd, flags);
1399 	if (!(flags & MAP_ANONYMOUS)) {
1400 		file = fget(fd);
1401 		if (!file)
1402 			goto out;
1403 	}
1404 
1405 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1406 
1407 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1408 
1409 	if (file)
1410 		fput(file);
1411 out:
1412 	return retval;
1413 }
1414 
1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1416 		unsigned long, prot, unsigned long, flags,
1417 		unsigned long, fd, unsigned long, pgoff)
1418 {
1419 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1420 }
1421 
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1424 	unsigned long addr;
1425 	unsigned long len;
1426 	unsigned long prot;
1427 	unsigned long flags;
1428 	unsigned long fd;
1429 	unsigned long offset;
1430 };
1431 
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1433 {
1434 	struct mmap_arg_struct a;
1435 
1436 	if (copy_from_user(&a, arg, sizeof(a)))
1437 		return -EFAULT;
1438 	if (offset_in_page(a.offset))
1439 		return -EINVAL;
1440 
1441 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442 			       a.offset >> PAGE_SHIFT);
1443 }
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1445 
1446 /*
1447  * split a vma into two pieces at address 'addr', a new vma is allocated either
1448  * for the first part or the tail.
1449  */
1450 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1451 	      unsigned long addr, int new_below)
1452 {
1453 	struct vm_area_struct *new;
1454 	struct vm_region *region;
1455 	unsigned long npages;
1456 
1457 	/* we're only permitted to split anonymous regions (these should have
1458 	 * only a single usage on the region) */
1459 	if (vma->vm_file)
1460 		return -ENOMEM;
1461 
1462 	if (mm->map_count >= sysctl_max_map_count)
1463 		return -ENOMEM;
1464 
1465 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1466 	if (!region)
1467 		return -ENOMEM;
1468 
1469 	new = vm_area_dup(vma);
1470 	if (!new) {
1471 		kmem_cache_free(vm_region_jar, region);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	/* most fields are the same, copy all, and then fixup */
1476 	*region = *vma->vm_region;
1477 	new->vm_region = region;
1478 
1479 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1480 
1481 	if (new_below) {
1482 		region->vm_top = region->vm_end = new->vm_end = addr;
1483 	} else {
1484 		region->vm_start = new->vm_start = addr;
1485 		region->vm_pgoff = new->vm_pgoff += npages;
1486 	}
1487 
1488 	if (new->vm_ops && new->vm_ops->open)
1489 		new->vm_ops->open(new);
1490 
1491 	delete_vma_from_mm(vma);
1492 	down_write(&nommu_region_sem);
1493 	delete_nommu_region(vma->vm_region);
1494 	if (new_below) {
1495 		vma->vm_region->vm_start = vma->vm_start = addr;
1496 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1497 	} else {
1498 		vma->vm_region->vm_end = vma->vm_end = addr;
1499 		vma->vm_region->vm_top = addr;
1500 	}
1501 	add_nommu_region(vma->vm_region);
1502 	add_nommu_region(new->vm_region);
1503 	up_write(&nommu_region_sem);
1504 	add_vma_to_mm(mm, vma);
1505 	add_vma_to_mm(mm, new);
1506 	return 0;
1507 }
1508 
1509 /*
1510  * shrink a VMA by removing the specified chunk from either the beginning or
1511  * the end
1512  */
1513 static int shrink_vma(struct mm_struct *mm,
1514 		      struct vm_area_struct *vma,
1515 		      unsigned long from, unsigned long to)
1516 {
1517 	struct vm_region *region;
1518 
1519 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1520 	 * and list */
1521 	delete_vma_from_mm(vma);
1522 	if (from > vma->vm_start)
1523 		vma->vm_end = from;
1524 	else
1525 		vma->vm_start = to;
1526 	add_vma_to_mm(mm, vma);
1527 
1528 	/* cut the backing region down to size */
1529 	region = vma->vm_region;
1530 	BUG_ON(region->vm_usage != 1);
1531 
1532 	down_write(&nommu_region_sem);
1533 	delete_nommu_region(region);
1534 	if (from > region->vm_start) {
1535 		to = region->vm_top;
1536 		region->vm_top = region->vm_end = from;
1537 	} else {
1538 		region->vm_start = to;
1539 	}
1540 	add_nommu_region(region);
1541 	up_write(&nommu_region_sem);
1542 
1543 	free_page_series(from, to);
1544 	return 0;
1545 }
1546 
1547 /*
1548  * release a mapping
1549  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1550  *   VMA, though it need not cover the whole VMA
1551  */
1552 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1553 {
1554 	struct vm_area_struct *vma;
1555 	unsigned long end;
1556 	int ret;
1557 
1558 	len = PAGE_ALIGN(len);
1559 	if (len == 0)
1560 		return -EINVAL;
1561 
1562 	end = start + len;
1563 
1564 	/* find the first potentially overlapping VMA */
1565 	vma = find_vma(mm, start);
1566 	if (!vma) {
1567 		static int limit;
1568 		if (limit < 5) {
1569 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1570 					current->pid, current->comm,
1571 					start, start + len - 1);
1572 			limit++;
1573 		}
1574 		return -EINVAL;
1575 	}
1576 
1577 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1578 	if (vma->vm_file) {
1579 		do {
1580 			if (start > vma->vm_start)
1581 				return -EINVAL;
1582 			if (end == vma->vm_end)
1583 				goto erase_whole_vma;
1584 			vma = vma->vm_next;
1585 		} while (vma);
1586 		return -EINVAL;
1587 	} else {
1588 		/* the chunk must be a subset of the VMA found */
1589 		if (start == vma->vm_start && end == vma->vm_end)
1590 			goto erase_whole_vma;
1591 		if (start < vma->vm_start || end > vma->vm_end)
1592 			return -EINVAL;
1593 		if (offset_in_page(start))
1594 			return -EINVAL;
1595 		if (end != vma->vm_end && offset_in_page(end))
1596 			return -EINVAL;
1597 		if (start != vma->vm_start && end != vma->vm_end) {
1598 			ret = split_vma(mm, vma, start, 1);
1599 			if (ret < 0)
1600 				return ret;
1601 		}
1602 		return shrink_vma(mm, vma, start, end);
1603 	}
1604 
1605 erase_whole_vma:
1606 	delete_vma_from_mm(vma);
1607 	delete_vma(mm, vma);
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL(do_munmap);
1611 
1612 int vm_munmap(unsigned long addr, size_t len)
1613 {
1614 	struct mm_struct *mm = current->mm;
1615 	int ret;
1616 
1617 	down_write(&mm->mmap_sem);
1618 	ret = do_munmap(mm, addr, len, NULL);
1619 	up_write(&mm->mmap_sem);
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL(vm_munmap);
1623 
1624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1625 {
1626 	return vm_munmap(addr, len);
1627 }
1628 
1629 /*
1630  * release all the mappings made in a process's VM space
1631  */
1632 void exit_mmap(struct mm_struct *mm)
1633 {
1634 	struct vm_area_struct *vma;
1635 
1636 	if (!mm)
1637 		return;
1638 
1639 	mm->total_vm = 0;
1640 
1641 	while ((vma = mm->mmap)) {
1642 		mm->mmap = vma->vm_next;
1643 		delete_vma_from_mm(vma);
1644 		delete_vma(mm, vma);
1645 		cond_resched();
1646 	}
1647 }
1648 
1649 int vm_brk(unsigned long addr, unsigned long len)
1650 {
1651 	return -ENOMEM;
1652 }
1653 
1654 /*
1655  * expand (or shrink) an existing mapping, potentially moving it at the same
1656  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1657  *
1658  * under NOMMU conditions, we only permit changing a mapping's size, and only
1659  * as long as it stays within the region allocated by do_mmap_private() and the
1660  * block is not shareable
1661  *
1662  * MREMAP_FIXED is not supported under NOMMU conditions
1663  */
1664 static unsigned long do_mremap(unsigned long addr,
1665 			unsigned long old_len, unsigned long new_len,
1666 			unsigned long flags, unsigned long new_addr)
1667 {
1668 	struct vm_area_struct *vma;
1669 
1670 	/* insanity checks first */
1671 	old_len = PAGE_ALIGN(old_len);
1672 	new_len = PAGE_ALIGN(new_len);
1673 	if (old_len == 0 || new_len == 0)
1674 		return (unsigned long) -EINVAL;
1675 
1676 	if (offset_in_page(addr))
1677 		return -EINVAL;
1678 
1679 	if (flags & MREMAP_FIXED && new_addr != addr)
1680 		return (unsigned long) -EINVAL;
1681 
1682 	vma = find_vma_exact(current->mm, addr, old_len);
1683 	if (!vma)
1684 		return (unsigned long) -EINVAL;
1685 
1686 	if (vma->vm_end != vma->vm_start + old_len)
1687 		return (unsigned long) -EFAULT;
1688 
1689 	if (vma->vm_flags & VM_MAYSHARE)
1690 		return (unsigned long) -EPERM;
1691 
1692 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1693 		return (unsigned long) -ENOMEM;
1694 
1695 	/* all checks complete - do it */
1696 	vma->vm_end = vma->vm_start + new_len;
1697 	return vma->vm_start;
1698 }
1699 
1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1701 		unsigned long, new_len, unsigned long, flags,
1702 		unsigned long, new_addr)
1703 {
1704 	unsigned long ret;
1705 
1706 	down_write(&current->mm->mmap_sem);
1707 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1708 	up_write(&current->mm->mmap_sem);
1709 	return ret;
1710 }
1711 
1712 struct page *follow_page_mask(struct vm_area_struct *vma,
1713 			      unsigned long address, unsigned int flags,
1714 			      unsigned int *page_mask)
1715 {
1716 	*page_mask = 0;
1717 	return NULL;
1718 }
1719 
1720 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1721 		unsigned long pfn, unsigned long size, pgprot_t prot)
1722 {
1723 	if (addr != (pfn << PAGE_SHIFT))
1724 		return -EINVAL;
1725 
1726 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1727 	return 0;
1728 }
1729 EXPORT_SYMBOL(remap_pfn_range);
1730 
1731 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1732 {
1733 	unsigned long pfn = start >> PAGE_SHIFT;
1734 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1735 
1736 	pfn += vma->vm_pgoff;
1737 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1738 }
1739 EXPORT_SYMBOL(vm_iomap_memory);
1740 
1741 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1742 			unsigned long pgoff)
1743 {
1744 	unsigned int size = vma->vm_end - vma->vm_start;
1745 
1746 	if (!(vma->vm_flags & VM_USERMAP))
1747 		return -EINVAL;
1748 
1749 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1750 	vma->vm_end = vma->vm_start + size;
1751 
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL(remap_vmalloc_range);
1755 
1756 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1757 	unsigned long len, unsigned long pgoff, unsigned long flags)
1758 {
1759 	return -ENOMEM;
1760 }
1761 
1762 vm_fault_t filemap_fault(struct vm_fault *vmf)
1763 {
1764 	BUG();
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(filemap_fault);
1768 
1769 void filemap_map_pages(struct vm_fault *vmf,
1770 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1771 {
1772 	BUG();
1773 }
1774 EXPORT_SYMBOL(filemap_map_pages);
1775 
1776 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1777 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1778 {
1779 	struct vm_area_struct *vma;
1780 	int write = gup_flags & FOLL_WRITE;
1781 
1782 	down_read(&mm->mmap_sem);
1783 
1784 	/* the access must start within one of the target process's mappings */
1785 	vma = find_vma(mm, addr);
1786 	if (vma) {
1787 		/* don't overrun this mapping */
1788 		if (addr + len >= vma->vm_end)
1789 			len = vma->vm_end - addr;
1790 
1791 		/* only read or write mappings where it is permitted */
1792 		if (write && vma->vm_flags & VM_MAYWRITE)
1793 			copy_to_user_page(vma, NULL, addr,
1794 					 (void *) addr, buf, len);
1795 		else if (!write && vma->vm_flags & VM_MAYREAD)
1796 			copy_from_user_page(vma, NULL, addr,
1797 					    buf, (void *) addr, len);
1798 		else
1799 			len = 0;
1800 	} else {
1801 		len = 0;
1802 	}
1803 
1804 	up_read(&mm->mmap_sem);
1805 
1806 	return len;
1807 }
1808 
1809 /**
1810  * access_remote_vm - access another process' address space
1811  * @mm:		the mm_struct of the target address space
1812  * @addr:	start address to access
1813  * @buf:	source or destination buffer
1814  * @len:	number of bytes to transfer
1815  * @gup_flags:	flags modifying lookup behaviour
1816  *
1817  * The caller must hold a reference on @mm.
1818  */
1819 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1820 		void *buf, int len, unsigned int gup_flags)
1821 {
1822 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1823 }
1824 
1825 /*
1826  * Access another process' address space.
1827  * - source/target buffer must be kernel space
1828  */
1829 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1830 		unsigned int gup_flags)
1831 {
1832 	struct mm_struct *mm;
1833 
1834 	if (addr + len < addr)
1835 		return 0;
1836 
1837 	mm = get_task_mm(tsk);
1838 	if (!mm)
1839 		return 0;
1840 
1841 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1842 
1843 	mmput(mm);
1844 	return len;
1845 }
1846 EXPORT_SYMBOL_GPL(access_process_vm);
1847 
1848 /**
1849  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1850  * @inode: The inode to check
1851  * @size: The current filesize of the inode
1852  * @newsize: The proposed filesize of the inode
1853  *
1854  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1855  * make sure that that any outstanding VMAs aren't broken and then shrink the
1856  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1857  * automatically grant mappings that are too large.
1858  */
1859 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1860 				size_t newsize)
1861 {
1862 	struct vm_area_struct *vma;
1863 	struct vm_region *region;
1864 	pgoff_t low, high;
1865 	size_t r_size, r_top;
1866 
1867 	low = newsize >> PAGE_SHIFT;
1868 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1869 
1870 	down_write(&nommu_region_sem);
1871 	i_mmap_lock_read(inode->i_mapping);
1872 
1873 	/* search for VMAs that fall within the dead zone */
1874 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1875 		/* found one - only interested if it's shared out of the page
1876 		 * cache */
1877 		if (vma->vm_flags & VM_SHARED) {
1878 			i_mmap_unlock_read(inode->i_mapping);
1879 			up_write(&nommu_region_sem);
1880 			return -ETXTBSY; /* not quite true, but near enough */
1881 		}
1882 	}
1883 
1884 	/* reduce any regions that overlap the dead zone - if in existence,
1885 	 * these will be pointed to by VMAs that don't overlap the dead zone
1886 	 *
1887 	 * we don't check for any regions that start beyond the EOF as there
1888 	 * shouldn't be any
1889 	 */
1890 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1891 		if (!(vma->vm_flags & VM_SHARED))
1892 			continue;
1893 
1894 		region = vma->vm_region;
1895 		r_size = region->vm_top - region->vm_start;
1896 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1897 
1898 		if (r_top > newsize) {
1899 			region->vm_top -= r_top - newsize;
1900 			if (region->vm_end > region->vm_top)
1901 				region->vm_end = region->vm_top;
1902 		}
1903 	}
1904 
1905 	i_mmap_unlock_read(inode->i_mapping);
1906 	up_write(&nommu_region_sem);
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Initialise sysctl_user_reserve_kbytes.
1912  *
1913  * This is intended to prevent a user from starting a single memory hogging
1914  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1915  * mode.
1916  *
1917  * The default value is min(3% of free memory, 128MB)
1918  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1919  */
1920 static int __meminit init_user_reserve(void)
1921 {
1922 	unsigned long free_kbytes;
1923 
1924 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1925 
1926 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1927 	return 0;
1928 }
1929 subsys_initcall(init_user_reserve);
1930 
1931 /*
1932  * Initialise sysctl_admin_reserve_kbytes.
1933  *
1934  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1935  * to log in and kill a memory hogging process.
1936  *
1937  * Systems with more than 256MB will reserve 8MB, enough to recover
1938  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1939  * only reserve 3% of free pages by default.
1940  */
1941 static int __meminit init_admin_reserve(void)
1942 {
1943 	unsigned long free_kbytes;
1944 
1945 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1946 
1947 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1948 	return 0;
1949 }
1950 subsys_initcall(init_admin_reserve);
1951