xref: /openbmc/linux/mm/nommu.c (revision 93d90ad7)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 #if 0
46 #define kenter(FMT, ...) \
47 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60 
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 unsigned long sysctl_overcommit_kbytes __read_mostly;
69 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
70 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
71 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
72 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
73 int heap_stack_gap = 0;
74 
75 atomic_long_t mmap_pages_allocated;
76 
77 /*
78  * The global memory commitment made in the system can be a metric
79  * that can be used to drive ballooning decisions when Linux is hosted
80  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
81  * balancing memory across competing virtual machines that are hosted.
82  * Several metrics drive this policy engine including the guest reported
83  * memory commitment.
84  */
85 unsigned long vm_memory_committed(void)
86 {
87 	return percpu_counter_read_positive(&vm_committed_as);
88 }
89 
90 EXPORT_SYMBOL_GPL(vm_memory_committed);
91 
92 EXPORT_SYMBOL(mem_map);
93 
94 /* list of mapped, potentially shareable regions */
95 static struct kmem_cache *vm_region_jar;
96 struct rb_root nommu_region_tree = RB_ROOT;
97 DECLARE_RWSEM(nommu_region_sem);
98 
99 const struct vm_operations_struct generic_file_vm_ops = {
100 };
101 
102 /*
103  * Return the total memory allocated for this pointer, not
104  * just what the caller asked for.
105  *
106  * Doesn't have to be accurate, i.e. may have races.
107  */
108 unsigned int kobjsize(const void *objp)
109 {
110 	struct page *page;
111 
112 	/*
113 	 * If the object we have should not have ksize performed on it,
114 	 * return size of 0
115 	 */
116 	if (!objp || !virt_addr_valid(objp))
117 		return 0;
118 
119 	page = virt_to_head_page(objp);
120 
121 	/*
122 	 * If the allocator sets PageSlab, we know the pointer came from
123 	 * kmalloc().
124 	 */
125 	if (PageSlab(page))
126 		return ksize(objp);
127 
128 	/*
129 	 * If it's not a compound page, see if we have a matching VMA
130 	 * region. This test is intentionally done in reverse order,
131 	 * so if there's no VMA, we still fall through and hand back
132 	 * PAGE_SIZE for 0-order pages.
133 	 */
134 	if (!PageCompound(page)) {
135 		struct vm_area_struct *vma;
136 
137 		vma = find_vma(current->mm, (unsigned long)objp);
138 		if (vma)
139 			return vma->vm_end - vma->vm_start;
140 	}
141 
142 	/*
143 	 * The ksize() function is only guaranteed to work for pointers
144 	 * returned by kmalloc(). So handle arbitrary pointers here.
145 	 */
146 	return PAGE_SIZE << compound_order(page);
147 }
148 
149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
150 		      unsigned long start, unsigned long nr_pages,
151 		      unsigned int foll_flags, struct page **pages,
152 		      struct vm_area_struct **vmas, int *nonblocking)
153 {
154 	struct vm_area_struct *vma;
155 	unsigned long vm_flags;
156 	int i;
157 
158 	/* calculate required read or write permissions.
159 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
160 	 */
161 	vm_flags  = (foll_flags & FOLL_WRITE) ?
162 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
163 	vm_flags &= (foll_flags & FOLL_FORCE) ?
164 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
165 
166 	for (i = 0; i < nr_pages; i++) {
167 		vma = find_vma(mm, start);
168 		if (!vma)
169 			goto finish_or_fault;
170 
171 		/* protect what we can, including chardevs */
172 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
173 		    !(vm_flags & vma->vm_flags))
174 			goto finish_or_fault;
175 
176 		if (pages) {
177 			pages[i] = virt_to_page(start);
178 			if (pages[i])
179 				page_cache_get(pages[i]);
180 		}
181 		if (vmas)
182 			vmas[i] = vma;
183 		start = (start + PAGE_SIZE) & PAGE_MASK;
184 	}
185 
186 	return i;
187 
188 finish_or_fault:
189 	return i ? : -EFAULT;
190 }
191 
192 /*
193  * get a list of pages in an address range belonging to the specified process
194  * and indicate the VMA that covers each page
195  * - this is potentially dodgy as we may end incrementing the page count of a
196  *   slab page or a secondary page from a compound page
197  * - don't permit access to VMAs that don't support it, such as I/O mappings
198  */
199 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
200 		    unsigned long start, unsigned long nr_pages,
201 		    int write, int force, struct page **pages,
202 		    struct vm_area_struct **vmas)
203 {
204 	int flags = 0;
205 
206 	if (write)
207 		flags |= FOLL_WRITE;
208 	if (force)
209 		flags |= FOLL_FORCE;
210 
211 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
212 				NULL);
213 }
214 EXPORT_SYMBOL(get_user_pages);
215 
216 /**
217  * follow_pfn - look up PFN at a user virtual address
218  * @vma: memory mapping
219  * @address: user virtual address
220  * @pfn: location to store found PFN
221  *
222  * Only IO mappings and raw PFN mappings are allowed.
223  *
224  * Returns zero and the pfn at @pfn on success, -ve otherwise.
225  */
226 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
227 	unsigned long *pfn)
228 {
229 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
230 		return -EINVAL;
231 
232 	*pfn = address >> PAGE_SHIFT;
233 	return 0;
234 }
235 EXPORT_SYMBOL(follow_pfn);
236 
237 LIST_HEAD(vmap_area_list);
238 
239 void vfree(const void *addr)
240 {
241 	kfree(addr);
242 }
243 EXPORT_SYMBOL(vfree);
244 
245 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
246 {
247 	/*
248 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
249 	 * returns only a logical address.
250 	 */
251 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
252 }
253 EXPORT_SYMBOL(__vmalloc);
254 
255 void *vmalloc_user(unsigned long size)
256 {
257 	void *ret;
258 
259 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
260 			PAGE_KERNEL);
261 	if (ret) {
262 		struct vm_area_struct *vma;
263 
264 		down_write(&current->mm->mmap_sem);
265 		vma = find_vma(current->mm, (unsigned long)ret);
266 		if (vma)
267 			vma->vm_flags |= VM_USERMAP;
268 		up_write(&current->mm->mmap_sem);
269 	}
270 
271 	return ret;
272 }
273 EXPORT_SYMBOL(vmalloc_user);
274 
275 struct page *vmalloc_to_page(const void *addr)
276 {
277 	return virt_to_page(addr);
278 }
279 EXPORT_SYMBOL(vmalloc_to_page);
280 
281 unsigned long vmalloc_to_pfn(const void *addr)
282 {
283 	return page_to_pfn(virt_to_page(addr));
284 }
285 EXPORT_SYMBOL(vmalloc_to_pfn);
286 
287 long vread(char *buf, char *addr, unsigned long count)
288 {
289 	/* Don't allow overflow */
290 	if ((unsigned long) buf + count < count)
291 		count = -(unsigned long) buf;
292 
293 	memcpy(buf, addr, count);
294 	return count;
295 }
296 
297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 	/* Don't allow overflow */
300 	if ((unsigned long) addr + count < count)
301 		count = -(unsigned long) addr;
302 
303 	memcpy(addr, buf, count);
304 	return count;
305 }
306 
307 /*
308  *	vmalloc  -  allocate virtually continguos memory
309  *
310  *	@size:		allocation size
311  *
312  *	Allocate enough pages to cover @size from the page level
313  *	allocator and map them into continguos kernel virtual space.
314  *
315  *	For tight control over page level allocator and protection flags
316  *	use __vmalloc() instead.
317  */
318 void *vmalloc(unsigned long size)
319 {
320        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323 
324 /*
325  *	vzalloc - allocate virtually continguos memory with zero fill
326  *
327  *	@size:		allocation size
328  *
329  *	Allocate enough pages to cover @size from the page level
330  *	allocator and map them into continguos kernel virtual space.
331  *	The memory allocated is set to zero.
332  *
333  *	For tight control over page level allocator and protection flags
334  *	use __vmalloc() instead.
335  */
336 void *vzalloc(unsigned long size)
337 {
338 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
339 			PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vzalloc);
342 
343 /**
344  * vmalloc_node - allocate memory on a specific node
345  * @size:	allocation size
346  * @node:	numa node
347  *
348  * Allocate enough pages to cover @size from the page level
349  * allocator and map them into contiguous kernel virtual space.
350  *
351  * For tight control over page level allocator and protection flags
352  * use __vmalloc() instead.
353  */
354 void *vmalloc_node(unsigned long size, int node)
355 {
356 	return vmalloc(size);
357 }
358 EXPORT_SYMBOL(vmalloc_node);
359 
360 /**
361  * vzalloc_node - allocate memory on a specific node with zero fill
362  * @size:	allocation size
363  * @node:	numa node
364  *
365  * Allocate enough pages to cover @size from the page level
366  * allocator and map them into contiguous kernel virtual space.
367  * The memory allocated is set to zero.
368  *
369  * For tight control over page level allocator and protection flags
370  * use __vmalloc() instead.
371  */
372 void *vzalloc_node(unsigned long size, int node)
373 {
374 	return vzalloc(size);
375 }
376 EXPORT_SYMBOL(vzalloc_node);
377 
378 #ifndef PAGE_KERNEL_EXEC
379 # define PAGE_KERNEL_EXEC PAGE_KERNEL
380 #endif
381 
382 /**
383  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
384  *	@size:		allocation size
385  *
386  *	Kernel-internal function to allocate enough pages to cover @size
387  *	the page level allocator and map them into contiguous and
388  *	executable kernel virtual space.
389  *
390  *	For tight control over page level allocator and protection flags
391  *	use __vmalloc() instead.
392  */
393 
394 void *vmalloc_exec(unsigned long size)
395 {
396 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
397 }
398 
399 /**
400  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
401  *	@size:		allocation size
402  *
403  *	Allocate enough 32bit PA addressable pages to cover @size from the
404  *	page level allocator and map them into continguos kernel virtual space.
405  */
406 void *vmalloc_32(unsigned long size)
407 {
408 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
409 }
410 EXPORT_SYMBOL(vmalloc_32);
411 
412 /**
413  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
414  *	@size:		allocation size
415  *
416  * The resulting memory area is 32bit addressable and zeroed so it can be
417  * mapped to userspace without leaking data.
418  *
419  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
420  * remap_vmalloc_range() are permissible.
421  */
422 void *vmalloc_32_user(unsigned long size)
423 {
424 	/*
425 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
426 	 * but for now this can simply use vmalloc_user() directly.
427 	 */
428 	return vmalloc_user(size);
429 }
430 EXPORT_SYMBOL(vmalloc_32_user);
431 
432 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
433 {
434 	BUG();
435 	return NULL;
436 }
437 EXPORT_SYMBOL(vmap);
438 
439 void vunmap(const void *addr)
440 {
441 	BUG();
442 }
443 EXPORT_SYMBOL(vunmap);
444 
445 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
446 {
447 	BUG();
448 	return NULL;
449 }
450 EXPORT_SYMBOL(vm_map_ram);
451 
452 void vm_unmap_ram(const void *mem, unsigned int count)
453 {
454 	BUG();
455 }
456 EXPORT_SYMBOL(vm_unmap_ram);
457 
458 void vm_unmap_aliases(void)
459 {
460 }
461 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
462 
463 /*
464  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
465  * have one.
466  */
467 void __weak vmalloc_sync_all(void)
468 {
469 }
470 
471 /**
472  *	alloc_vm_area - allocate a range of kernel address space
473  *	@size:		size of the area
474  *
475  *	Returns:	NULL on failure, vm_struct on success
476  *
477  *	This function reserves a range of kernel address space, and
478  *	allocates pagetables to map that range.  No actual mappings
479  *	are created.  If the kernel address space is not shared
480  *	between processes, it syncs the pagetable across all
481  *	processes.
482  */
483 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
484 {
485 	BUG();
486 	return NULL;
487 }
488 EXPORT_SYMBOL_GPL(alloc_vm_area);
489 
490 void free_vm_area(struct vm_struct *area)
491 {
492 	BUG();
493 }
494 EXPORT_SYMBOL_GPL(free_vm_area);
495 
496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
497 		   struct page *page)
498 {
499 	return -EINVAL;
500 }
501 EXPORT_SYMBOL(vm_insert_page);
502 
503 /*
504  *  sys_brk() for the most part doesn't need the global kernel
505  *  lock, except when an application is doing something nasty
506  *  like trying to un-brk an area that has already been mapped
507  *  to a regular file.  in this case, the unmapping will need
508  *  to invoke file system routines that need the global lock.
509  */
510 SYSCALL_DEFINE1(brk, unsigned long, brk)
511 {
512 	struct mm_struct *mm = current->mm;
513 
514 	if (brk < mm->start_brk || brk > mm->context.end_brk)
515 		return mm->brk;
516 
517 	if (mm->brk == brk)
518 		return mm->brk;
519 
520 	/*
521 	 * Always allow shrinking brk
522 	 */
523 	if (brk <= mm->brk) {
524 		mm->brk = brk;
525 		return brk;
526 	}
527 
528 	/*
529 	 * Ok, looks good - let it rip.
530 	 */
531 	flush_icache_range(mm->brk, brk);
532 	return mm->brk = brk;
533 }
534 
535 /*
536  * initialise the VMA and region record slabs
537  */
538 void __init mmap_init(void)
539 {
540 	int ret;
541 
542 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
543 	VM_BUG_ON(ret);
544 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
545 }
546 
547 /*
548  * validate the region tree
549  * - the caller must hold the region lock
550  */
551 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
552 static noinline void validate_nommu_regions(void)
553 {
554 	struct vm_region *region, *last;
555 	struct rb_node *p, *lastp;
556 
557 	lastp = rb_first(&nommu_region_tree);
558 	if (!lastp)
559 		return;
560 
561 	last = rb_entry(lastp, struct vm_region, vm_rb);
562 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
563 	BUG_ON(unlikely(last->vm_top < last->vm_end));
564 
565 	while ((p = rb_next(lastp))) {
566 		region = rb_entry(p, struct vm_region, vm_rb);
567 		last = rb_entry(lastp, struct vm_region, vm_rb);
568 
569 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
570 		BUG_ON(unlikely(region->vm_top < region->vm_end));
571 		BUG_ON(unlikely(region->vm_start < last->vm_top));
572 
573 		lastp = p;
574 	}
575 }
576 #else
577 static void validate_nommu_regions(void)
578 {
579 }
580 #endif
581 
582 /*
583  * add a region into the global tree
584  */
585 static void add_nommu_region(struct vm_region *region)
586 {
587 	struct vm_region *pregion;
588 	struct rb_node **p, *parent;
589 
590 	validate_nommu_regions();
591 
592 	parent = NULL;
593 	p = &nommu_region_tree.rb_node;
594 	while (*p) {
595 		parent = *p;
596 		pregion = rb_entry(parent, struct vm_region, vm_rb);
597 		if (region->vm_start < pregion->vm_start)
598 			p = &(*p)->rb_left;
599 		else if (region->vm_start > pregion->vm_start)
600 			p = &(*p)->rb_right;
601 		else if (pregion == region)
602 			return;
603 		else
604 			BUG();
605 	}
606 
607 	rb_link_node(&region->vm_rb, parent, p);
608 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
609 
610 	validate_nommu_regions();
611 }
612 
613 /*
614  * delete a region from the global tree
615  */
616 static void delete_nommu_region(struct vm_region *region)
617 {
618 	BUG_ON(!nommu_region_tree.rb_node);
619 
620 	validate_nommu_regions();
621 	rb_erase(&region->vm_rb, &nommu_region_tree);
622 	validate_nommu_regions();
623 }
624 
625 /*
626  * free a contiguous series of pages
627  */
628 static void free_page_series(unsigned long from, unsigned long to)
629 {
630 	for (; from < to; from += PAGE_SIZE) {
631 		struct page *page = virt_to_page(from);
632 
633 		kdebug("- free %lx", from);
634 		atomic_long_dec(&mmap_pages_allocated);
635 		if (page_count(page) != 1)
636 			kdebug("free page %p: refcount not one: %d",
637 			       page, page_count(page));
638 		put_page(page);
639 	}
640 }
641 
642 /*
643  * release a reference to a region
644  * - the caller must hold the region semaphore for writing, which this releases
645  * - the region may not have been added to the tree yet, in which case vm_top
646  *   will equal vm_start
647  */
648 static void __put_nommu_region(struct vm_region *region)
649 	__releases(nommu_region_sem)
650 {
651 	kenter("%p{%d}", region, region->vm_usage);
652 
653 	BUG_ON(!nommu_region_tree.rb_node);
654 
655 	if (--region->vm_usage == 0) {
656 		if (region->vm_top > region->vm_start)
657 			delete_nommu_region(region);
658 		up_write(&nommu_region_sem);
659 
660 		if (region->vm_file)
661 			fput(region->vm_file);
662 
663 		/* IO memory and memory shared directly out of the pagecache
664 		 * from ramfs/tmpfs mustn't be released here */
665 		if (region->vm_flags & VM_MAPPED_COPY) {
666 			kdebug("free series");
667 			free_page_series(region->vm_start, region->vm_top);
668 		}
669 		kmem_cache_free(vm_region_jar, region);
670 	} else {
671 		up_write(&nommu_region_sem);
672 	}
673 }
674 
675 /*
676  * release a reference to a region
677  */
678 static void put_nommu_region(struct vm_region *region)
679 {
680 	down_write(&nommu_region_sem);
681 	__put_nommu_region(region);
682 }
683 
684 /*
685  * update protection on a vma
686  */
687 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
688 {
689 #ifdef CONFIG_MPU
690 	struct mm_struct *mm = vma->vm_mm;
691 	long start = vma->vm_start & PAGE_MASK;
692 	while (start < vma->vm_end) {
693 		protect_page(mm, start, flags);
694 		start += PAGE_SIZE;
695 	}
696 	update_protections(mm);
697 #endif
698 }
699 
700 /*
701  * add a VMA into a process's mm_struct in the appropriate place in the list
702  * and tree and add to the address space's page tree also if not an anonymous
703  * page
704  * - should be called with mm->mmap_sem held writelocked
705  */
706 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
707 {
708 	struct vm_area_struct *pvma, *prev;
709 	struct address_space *mapping;
710 	struct rb_node **p, *parent, *rb_prev;
711 
712 	kenter(",%p", vma);
713 
714 	BUG_ON(!vma->vm_region);
715 
716 	mm->map_count++;
717 	vma->vm_mm = mm;
718 
719 	protect_vma(vma, vma->vm_flags);
720 
721 	/* add the VMA to the mapping */
722 	if (vma->vm_file) {
723 		mapping = vma->vm_file->f_mapping;
724 
725 		i_mmap_lock_write(mapping);
726 		flush_dcache_mmap_lock(mapping);
727 		vma_interval_tree_insert(vma, &mapping->i_mmap);
728 		flush_dcache_mmap_unlock(mapping);
729 		i_mmap_unlock_write(mapping);
730 	}
731 
732 	/* add the VMA to the tree */
733 	parent = rb_prev = NULL;
734 	p = &mm->mm_rb.rb_node;
735 	while (*p) {
736 		parent = *p;
737 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
738 
739 		/* sort by: start addr, end addr, VMA struct addr in that order
740 		 * (the latter is necessary as we may get identical VMAs) */
741 		if (vma->vm_start < pvma->vm_start)
742 			p = &(*p)->rb_left;
743 		else if (vma->vm_start > pvma->vm_start) {
744 			rb_prev = parent;
745 			p = &(*p)->rb_right;
746 		} else if (vma->vm_end < pvma->vm_end)
747 			p = &(*p)->rb_left;
748 		else if (vma->vm_end > pvma->vm_end) {
749 			rb_prev = parent;
750 			p = &(*p)->rb_right;
751 		} else if (vma < pvma)
752 			p = &(*p)->rb_left;
753 		else if (vma > pvma) {
754 			rb_prev = parent;
755 			p = &(*p)->rb_right;
756 		} else
757 			BUG();
758 	}
759 
760 	rb_link_node(&vma->vm_rb, parent, p);
761 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
762 
763 	/* add VMA to the VMA list also */
764 	prev = NULL;
765 	if (rb_prev)
766 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
767 
768 	__vma_link_list(mm, vma, prev, parent);
769 }
770 
771 /*
772  * delete a VMA from its owning mm_struct and address space
773  */
774 static void delete_vma_from_mm(struct vm_area_struct *vma)
775 {
776 	int i;
777 	struct address_space *mapping;
778 	struct mm_struct *mm = vma->vm_mm;
779 	struct task_struct *curr = current;
780 
781 	kenter("%p", vma);
782 
783 	protect_vma(vma, 0);
784 
785 	mm->map_count--;
786 	for (i = 0; i < VMACACHE_SIZE; i++) {
787 		/* if the vma is cached, invalidate the entire cache */
788 		if (curr->vmacache[i] == vma) {
789 			vmacache_invalidate(mm);
790 			break;
791 		}
792 	}
793 
794 	/* remove the VMA from the mapping */
795 	if (vma->vm_file) {
796 		mapping = vma->vm_file->f_mapping;
797 
798 		i_mmap_lock_write(mapping);
799 		flush_dcache_mmap_lock(mapping);
800 		vma_interval_tree_remove(vma, &mapping->i_mmap);
801 		flush_dcache_mmap_unlock(mapping);
802 		i_mmap_unlock_write(mapping);
803 	}
804 
805 	/* remove from the MM's tree and list */
806 	rb_erase(&vma->vm_rb, &mm->mm_rb);
807 
808 	if (vma->vm_prev)
809 		vma->vm_prev->vm_next = vma->vm_next;
810 	else
811 		mm->mmap = vma->vm_next;
812 
813 	if (vma->vm_next)
814 		vma->vm_next->vm_prev = vma->vm_prev;
815 }
816 
817 /*
818  * destroy a VMA record
819  */
820 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
821 {
822 	kenter("%p", vma);
823 	if (vma->vm_ops && vma->vm_ops->close)
824 		vma->vm_ops->close(vma);
825 	if (vma->vm_file)
826 		fput(vma->vm_file);
827 	put_nommu_region(vma->vm_region);
828 	kmem_cache_free(vm_area_cachep, vma);
829 }
830 
831 /*
832  * look up the first VMA in which addr resides, NULL if none
833  * - should be called with mm->mmap_sem at least held readlocked
834  */
835 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
836 {
837 	struct vm_area_struct *vma;
838 
839 	/* check the cache first */
840 	vma = vmacache_find(mm, addr);
841 	if (likely(vma))
842 		return vma;
843 
844 	/* trawl the list (there may be multiple mappings in which addr
845 	 * resides) */
846 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
847 		if (vma->vm_start > addr)
848 			return NULL;
849 		if (vma->vm_end > addr) {
850 			vmacache_update(addr, vma);
851 			return vma;
852 		}
853 	}
854 
855 	return NULL;
856 }
857 EXPORT_SYMBOL(find_vma);
858 
859 /*
860  * find a VMA
861  * - we don't extend stack VMAs under NOMMU conditions
862  */
863 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
864 {
865 	return find_vma(mm, addr);
866 }
867 
868 /*
869  * expand a stack to a given address
870  * - not supported under NOMMU conditions
871  */
872 int expand_stack(struct vm_area_struct *vma, unsigned long address)
873 {
874 	return -ENOMEM;
875 }
876 
877 /*
878  * look up the first VMA exactly that exactly matches addr
879  * - should be called with mm->mmap_sem at least held readlocked
880  */
881 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
882 					     unsigned long addr,
883 					     unsigned long len)
884 {
885 	struct vm_area_struct *vma;
886 	unsigned long end = addr + len;
887 
888 	/* check the cache first */
889 	vma = vmacache_find_exact(mm, addr, end);
890 	if (vma)
891 		return vma;
892 
893 	/* trawl the list (there may be multiple mappings in which addr
894 	 * resides) */
895 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 		if (vma->vm_start < addr)
897 			continue;
898 		if (vma->vm_start > addr)
899 			return NULL;
900 		if (vma->vm_end == end) {
901 			vmacache_update(addr, vma);
902 			return vma;
903 		}
904 	}
905 
906 	return NULL;
907 }
908 
909 /*
910  * determine whether a mapping should be permitted and, if so, what sort of
911  * mapping we're capable of supporting
912  */
913 static int validate_mmap_request(struct file *file,
914 				 unsigned long addr,
915 				 unsigned long len,
916 				 unsigned long prot,
917 				 unsigned long flags,
918 				 unsigned long pgoff,
919 				 unsigned long *_capabilities)
920 {
921 	unsigned long capabilities, rlen;
922 	int ret;
923 
924 	/* do the simple checks first */
925 	if (flags & MAP_FIXED) {
926 		printk(KERN_DEBUG
927 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
928 		       current->pid);
929 		return -EINVAL;
930 	}
931 
932 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
933 	    (flags & MAP_TYPE) != MAP_SHARED)
934 		return -EINVAL;
935 
936 	if (!len)
937 		return -EINVAL;
938 
939 	/* Careful about overflows.. */
940 	rlen = PAGE_ALIGN(len);
941 	if (!rlen || rlen > TASK_SIZE)
942 		return -ENOMEM;
943 
944 	/* offset overflow? */
945 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
946 		return -EOVERFLOW;
947 
948 	if (file) {
949 		/* validate file mapping requests */
950 		struct address_space *mapping;
951 
952 		/* files must support mmap */
953 		if (!file->f_op->mmap)
954 			return -ENODEV;
955 
956 		/* work out if what we've got could possibly be shared
957 		 * - we support chardevs that provide their own "memory"
958 		 * - we support files/blockdevs that are memory backed
959 		 */
960 		mapping = file->f_mapping;
961 		if (!mapping)
962 			mapping = file_inode(file)->i_mapping;
963 
964 		capabilities = 0;
965 		if (mapping && mapping->backing_dev_info)
966 			capabilities = mapping->backing_dev_info->capabilities;
967 
968 		if (!capabilities) {
969 			/* no explicit capabilities set, so assume some
970 			 * defaults */
971 			switch (file_inode(file)->i_mode & S_IFMT) {
972 			case S_IFREG:
973 			case S_IFBLK:
974 				capabilities = BDI_CAP_MAP_COPY;
975 				break;
976 
977 			case S_IFCHR:
978 				capabilities =
979 					BDI_CAP_MAP_DIRECT |
980 					BDI_CAP_READ_MAP |
981 					BDI_CAP_WRITE_MAP;
982 				break;
983 
984 			default:
985 				return -EINVAL;
986 			}
987 		}
988 
989 		/* eliminate any capabilities that we can't support on this
990 		 * device */
991 		if (!file->f_op->get_unmapped_area)
992 			capabilities &= ~BDI_CAP_MAP_DIRECT;
993 		if (!file->f_op->read)
994 			capabilities &= ~BDI_CAP_MAP_COPY;
995 
996 		/* The file shall have been opened with read permission. */
997 		if (!(file->f_mode & FMODE_READ))
998 			return -EACCES;
999 
1000 		if (flags & MAP_SHARED) {
1001 			/* do checks for writing, appending and locking */
1002 			if ((prot & PROT_WRITE) &&
1003 			    !(file->f_mode & FMODE_WRITE))
1004 				return -EACCES;
1005 
1006 			if (IS_APPEND(file_inode(file)) &&
1007 			    (file->f_mode & FMODE_WRITE))
1008 				return -EACCES;
1009 
1010 			if (locks_verify_locked(file))
1011 				return -EAGAIN;
1012 
1013 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
1014 				return -ENODEV;
1015 
1016 			/* we mustn't privatise shared mappings */
1017 			capabilities &= ~BDI_CAP_MAP_COPY;
1018 		} else {
1019 			/* we're going to read the file into private memory we
1020 			 * allocate */
1021 			if (!(capabilities & BDI_CAP_MAP_COPY))
1022 				return -ENODEV;
1023 
1024 			/* we don't permit a private writable mapping to be
1025 			 * shared with the backing device */
1026 			if (prot & PROT_WRITE)
1027 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1028 		}
1029 
1030 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1031 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1032 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1033 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1034 			    ) {
1035 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1036 				if (flags & MAP_SHARED) {
1037 					printk(KERN_WARNING
1038 					       "MAP_SHARED not completely supported on !MMU\n");
1039 					return -EINVAL;
1040 				}
1041 			}
1042 		}
1043 
1044 		/* handle executable mappings and implied executable
1045 		 * mappings */
1046 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1047 			if (prot & PROT_EXEC)
1048 				return -EPERM;
1049 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1050 			/* handle implication of PROT_EXEC by PROT_READ */
1051 			if (current->personality & READ_IMPLIES_EXEC) {
1052 				if (capabilities & BDI_CAP_EXEC_MAP)
1053 					prot |= PROT_EXEC;
1054 			}
1055 		} else if ((prot & PROT_READ) &&
1056 			 (prot & PROT_EXEC) &&
1057 			 !(capabilities & BDI_CAP_EXEC_MAP)
1058 			 ) {
1059 			/* backing file is not executable, try to copy */
1060 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1061 		}
1062 	} else {
1063 		/* anonymous mappings are always memory backed and can be
1064 		 * privately mapped
1065 		 */
1066 		capabilities = BDI_CAP_MAP_COPY;
1067 
1068 		/* handle PROT_EXEC implication by PROT_READ */
1069 		if ((prot & PROT_READ) &&
1070 		    (current->personality & READ_IMPLIES_EXEC))
1071 			prot |= PROT_EXEC;
1072 	}
1073 
1074 	/* allow the security API to have its say */
1075 	ret = security_mmap_addr(addr);
1076 	if (ret < 0)
1077 		return ret;
1078 
1079 	/* looks okay */
1080 	*_capabilities = capabilities;
1081 	return 0;
1082 }
1083 
1084 /*
1085  * we've determined that we can make the mapping, now translate what we
1086  * now know into VMA flags
1087  */
1088 static unsigned long determine_vm_flags(struct file *file,
1089 					unsigned long prot,
1090 					unsigned long flags,
1091 					unsigned long capabilities)
1092 {
1093 	unsigned long vm_flags;
1094 
1095 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1096 	/* vm_flags |= mm->def_flags; */
1097 
1098 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1099 		/* attempt to share read-only copies of mapped file chunks */
1100 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1101 		if (file && !(prot & PROT_WRITE))
1102 			vm_flags |= VM_MAYSHARE;
1103 	} else {
1104 		/* overlay a shareable mapping on the backing device or inode
1105 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106 		 * romfs/cramfs */
1107 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1108 		if (flags & MAP_SHARED)
1109 			vm_flags |= VM_SHARED;
1110 	}
1111 
1112 	/* refuse to let anyone share private mappings with this process if
1113 	 * it's being traced - otherwise breakpoints set in it may interfere
1114 	 * with another untraced process
1115 	 */
1116 	if ((flags & MAP_PRIVATE) && current->ptrace)
1117 		vm_flags &= ~VM_MAYSHARE;
1118 
1119 	return vm_flags;
1120 }
1121 
1122 /*
1123  * set up a shared mapping on a file (the driver or filesystem provides and
1124  * pins the storage)
1125  */
1126 static int do_mmap_shared_file(struct vm_area_struct *vma)
1127 {
1128 	int ret;
1129 
1130 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131 	if (ret == 0) {
1132 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 		return 0;
1134 	}
1135 	if (ret != -ENOSYS)
1136 		return ret;
1137 
1138 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1139 	 * opposed to tried but failed) so we can only give a suitable error as
1140 	 * it's not possible to make a private copy if MAP_SHARED was given */
1141 	return -ENODEV;
1142 }
1143 
1144 /*
1145  * set up a private mapping or an anonymous shared mapping
1146  */
1147 static int do_mmap_private(struct vm_area_struct *vma,
1148 			   struct vm_region *region,
1149 			   unsigned long len,
1150 			   unsigned long capabilities)
1151 {
1152 	unsigned long total, point;
1153 	void *base;
1154 	int ret, order;
1155 
1156 	/* invoke the file's mapping function so that it can keep track of
1157 	 * shared mappings on devices or memory
1158 	 * - VM_MAYSHARE will be set if it may attempt to share
1159 	 */
1160 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1161 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1162 		if (ret == 0) {
1163 			/* shouldn't return success if we're not sharing */
1164 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1165 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1166 			return 0;
1167 		}
1168 		if (ret != -ENOSYS)
1169 			return ret;
1170 
1171 		/* getting an ENOSYS error indicates that direct mmap isn't
1172 		 * possible (as opposed to tried but failed) so we'll try to
1173 		 * make a private copy of the data and map that instead */
1174 	}
1175 
1176 
1177 	/* allocate some memory to hold the mapping
1178 	 * - note that this may not return a page-aligned address if the object
1179 	 *   we're allocating is smaller than a page
1180 	 */
1181 	order = get_order(len);
1182 	kdebug("alloc order %d for %lx", order, len);
1183 
1184 	total = 1 << order;
1185 	point = len >> PAGE_SHIFT;
1186 
1187 	/* we don't want to allocate a power-of-2 sized page set */
1188 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1189 		total = point;
1190 		kdebug("try to alloc exact %lu pages", total);
1191 		base = alloc_pages_exact(len, GFP_KERNEL);
1192 	} else {
1193 		base = (void *)__get_free_pages(GFP_KERNEL, order);
1194 	}
1195 
1196 	if (!base)
1197 		goto enomem;
1198 
1199 	atomic_long_add(total, &mmap_pages_allocated);
1200 
1201 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1202 	region->vm_start = (unsigned long) base;
1203 	region->vm_end   = region->vm_start + len;
1204 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1205 
1206 	vma->vm_start = region->vm_start;
1207 	vma->vm_end   = region->vm_start + len;
1208 
1209 	if (vma->vm_file) {
1210 		/* read the contents of a file into the copy */
1211 		mm_segment_t old_fs;
1212 		loff_t fpos;
1213 
1214 		fpos = vma->vm_pgoff;
1215 		fpos <<= PAGE_SHIFT;
1216 
1217 		old_fs = get_fs();
1218 		set_fs(KERNEL_DS);
1219 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1220 		set_fs(old_fs);
1221 
1222 		if (ret < 0)
1223 			goto error_free;
1224 
1225 		/* clear the last little bit */
1226 		if (ret < len)
1227 			memset(base + ret, 0, len - ret);
1228 
1229 	}
1230 
1231 	return 0;
1232 
1233 error_free:
1234 	free_page_series(region->vm_start, region->vm_top);
1235 	region->vm_start = vma->vm_start = 0;
1236 	region->vm_end   = vma->vm_end = 0;
1237 	region->vm_top   = 0;
1238 	return ret;
1239 
1240 enomem:
1241 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1242 	       len, current->pid, current->comm);
1243 	show_free_areas(0);
1244 	return -ENOMEM;
1245 }
1246 
1247 /*
1248  * handle mapping creation for uClinux
1249  */
1250 unsigned long do_mmap_pgoff(struct file *file,
1251 			    unsigned long addr,
1252 			    unsigned long len,
1253 			    unsigned long prot,
1254 			    unsigned long flags,
1255 			    unsigned long pgoff,
1256 			    unsigned long *populate)
1257 {
1258 	struct vm_area_struct *vma;
1259 	struct vm_region *region;
1260 	struct rb_node *rb;
1261 	unsigned long capabilities, vm_flags, result;
1262 	int ret;
1263 
1264 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1265 
1266 	*populate = 0;
1267 
1268 	/* decide whether we should attempt the mapping, and if so what sort of
1269 	 * mapping */
1270 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1271 				    &capabilities);
1272 	if (ret < 0) {
1273 		kleave(" = %d [val]", ret);
1274 		return ret;
1275 	}
1276 
1277 	/* we ignore the address hint */
1278 	addr = 0;
1279 	len = PAGE_ALIGN(len);
1280 
1281 	/* we've determined that we can make the mapping, now translate what we
1282 	 * now know into VMA flags */
1283 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1284 
1285 	/* we're going to need to record the mapping */
1286 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1287 	if (!region)
1288 		goto error_getting_region;
1289 
1290 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1291 	if (!vma)
1292 		goto error_getting_vma;
1293 
1294 	region->vm_usage = 1;
1295 	region->vm_flags = vm_flags;
1296 	region->vm_pgoff = pgoff;
1297 
1298 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1299 	vma->vm_flags = vm_flags;
1300 	vma->vm_pgoff = pgoff;
1301 
1302 	if (file) {
1303 		region->vm_file = get_file(file);
1304 		vma->vm_file = get_file(file);
1305 	}
1306 
1307 	down_write(&nommu_region_sem);
1308 
1309 	/* if we want to share, we need to check for regions created by other
1310 	 * mmap() calls that overlap with our proposed mapping
1311 	 * - we can only share with a superset match on most regular files
1312 	 * - shared mappings on character devices and memory backed files are
1313 	 *   permitted to overlap inexactly as far as we are concerned for in
1314 	 *   these cases, sharing is handled in the driver or filesystem rather
1315 	 *   than here
1316 	 */
1317 	if (vm_flags & VM_MAYSHARE) {
1318 		struct vm_region *pregion;
1319 		unsigned long pglen, rpglen, pgend, rpgend, start;
1320 
1321 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322 		pgend = pgoff + pglen;
1323 
1324 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1325 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1326 
1327 			if (!(pregion->vm_flags & VM_MAYSHARE))
1328 				continue;
1329 
1330 			/* search for overlapping mappings on the same file */
1331 			if (file_inode(pregion->vm_file) !=
1332 			    file_inode(file))
1333 				continue;
1334 
1335 			if (pregion->vm_pgoff >= pgend)
1336 				continue;
1337 
1338 			rpglen = pregion->vm_end - pregion->vm_start;
1339 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1340 			rpgend = pregion->vm_pgoff + rpglen;
1341 			if (pgoff >= rpgend)
1342 				continue;
1343 
1344 			/* handle inexactly overlapping matches between
1345 			 * mappings */
1346 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1347 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1348 				/* new mapping is not a subset of the region */
1349 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1350 					goto sharing_violation;
1351 				continue;
1352 			}
1353 
1354 			/* we've found a region we can share */
1355 			pregion->vm_usage++;
1356 			vma->vm_region = pregion;
1357 			start = pregion->vm_start;
1358 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1359 			vma->vm_start = start;
1360 			vma->vm_end = start + len;
1361 
1362 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1363 				kdebug("share copy");
1364 				vma->vm_flags |= VM_MAPPED_COPY;
1365 			} else {
1366 				kdebug("share mmap");
1367 				ret = do_mmap_shared_file(vma);
1368 				if (ret < 0) {
1369 					vma->vm_region = NULL;
1370 					vma->vm_start = 0;
1371 					vma->vm_end = 0;
1372 					pregion->vm_usage--;
1373 					pregion = NULL;
1374 					goto error_just_free;
1375 				}
1376 			}
1377 			fput(region->vm_file);
1378 			kmem_cache_free(vm_region_jar, region);
1379 			region = pregion;
1380 			result = start;
1381 			goto share;
1382 		}
1383 
1384 		/* obtain the address at which to make a shared mapping
1385 		 * - this is the hook for quasi-memory character devices to
1386 		 *   tell us the location of a shared mapping
1387 		 */
1388 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1389 			addr = file->f_op->get_unmapped_area(file, addr, len,
1390 							     pgoff, flags);
1391 			if (IS_ERR_VALUE(addr)) {
1392 				ret = addr;
1393 				if (ret != -ENOSYS)
1394 					goto error_just_free;
1395 
1396 				/* the driver refused to tell us where to site
1397 				 * the mapping so we'll have to attempt to copy
1398 				 * it */
1399 				ret = -ENODEV;
1400 				if (!(capabilities & BDI_CAP_MAP_COPY))
1401 					goto error_just_free;
1402 
1403 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1404 			} else {
1405 				vma->vm_start = region->vm_start = addr;
1406 				vma->vm_end = region->vm_end = addr + len;
1407 			}
1408 		}
1409 	}
1410 
1411 	vma->vm_region = region;
1412 
1413 	/* set up the mapping
1414 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1415 	 */
1416 	if (file && vma->vm_flags & VM_SHARED)
1417 		ret = do_mmap_shared_file(vma);
1418 	else
1419 		ret = do_mmap_private(vma, region, len, capabilities);
1420 	if (ret < 0)
1421 		goto error_just_free;
1422 	add_nommu_region(region);
1423 
1424 	/* clear anonymous mappings that don't ask for uninitialized data */
1425 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1426 		memset((void *)region->vm_start, 0,
1427 		       region->vm_end - region->vm_start);
1428 
1429 	/* okay... we have a mapping; now we have to register it */
1430 	result = vma->vm_start;
1431 
1432 	current->mm->total_vm += len >> PAGE_SHIFT;
1433 
1434 share:
1435 	add_vma_to_mm(current->mm, vma);
1436 
1437 	/* we flush the region from the icache only when the first executable
1438 	 * mapping of it is made  */
1439 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1440 		flush_icache_range(region->vm_start, region->vm_end);
1441 		region->vm_icache_flushed = true;
1442 	}
1443 
1444 	up_write(&nommu_region_sem);
1445 
1446 	kleave(" = %lx", result);
1447 	return result;
1448 
1449 error_just_free:
1450 	up_write(&nommu_region_sem);
1451 error:
1452 	if (region->vm_file)
1453 		fput(region->vm_file);
1454 	kmem_cache_free(vm_region_jar, region);
1455 	if (vma->vm_file)
1456 		fput(vma->vm_file);
1457 	kmem_cache_free(vm_area_cachep, vma);
1458 	kleave(" = %d", ret);
1459 	return ret;
1460 
1461 sharing_violation:
1462 	up_write(&nommu_region_sem);
1463 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1464 	ret = -EINVAL;
1465 	goto error;
1466 
1467 error_getting_vma:
1468 	kmem_cache_free(vm_region_jar, region);
1469 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1470 	       " from process %d failed\n",
1471 	       len, current->pid);
1472 	show_free_areas(0);
1473 	return -ENOMEM;
1474 
1475 error_getting_region:
1476 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1477 	       " from process %d failed\n",
1478 	       len, current->pid);
1479 	show_free_areas(0);
1480 	return -ENOMEM;
1481 }
1482 
1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484 		unsigned long, prot, unsigned long, flags,
1485 		unsigned long, fd, unsigned long, pgoff)
1486 {
1487 	struct file *file = NULL;
1488 	unsigned long retval = -EBADF;
1489 
1490 	audit_mmap_fd(fd, flags);
1491 	if (!(flags & MAP_ANONYMOUS)) {
1492 		file = fget(fd);
1493 		if (!file)
1494 			goto out;
1495 	}
1496 
1497 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1498 
1499 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1500 
1501 	if (file)
1502 		fput(file);
1503 out:
1504 	return retval;
1505 }
1506 
1507 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1508 struct mmap_arg_struct {
1509 	unsigned long addr;
1510 	unsigned long len;
1511 	unsigned long prot;
1512 	unsigned long flags;
1513 	unsigned long fd;
1514 	unsigned long offset;
1515 };
1516 
1517 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518 {
1519 	struct mmap_arg_struct a;
1520 
1521 	if (copy_from_user(&a, arg, sizeof(a)))
1522 		return -EFAULT;
1523 	if (a.offset & ~PAGE_MASK)
1524 		return -EINVAL;
1525 
1526 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527 			      a.offset >> PAGE_SHIFT);
1528 }
1529 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530 
1531 /*
1532  * split a vma into two pieces at address 'addr', a new vma is allocated either
1533  * for the first part or the tail.
1534  */
1535 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1536 	      unsigned long addr, int new_below)
1537 {
1538 	struct vm_area_struct *new;
1539 	struct vm_region *region;
1540 	unsigned long npages;
1541 
1542 	kenter("");
1543 
1544 	/* we're only permitted to split anonymous regions (these should have
1545 	 * only a single usage on the region) */
1546 	if (vma->vm_file)
1547 		return -ENOMEM;
1548 
1549 	if (mm->map_count >= sysctl_max_map_count)
1550 		return -ENOMEM;
1551 
1552 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1553 	if (!region)
1554 		return -ENOMEM;
1555 
1556 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1557 	if (!new) {
1558 		kmem_cache_free(vm_region_jar, region);
1559 		return -ENOMEM;
1560 	}
1561 
1562 	/* most fields are the same, copy all, and then fixup */
1563 	*new = *vma;
1564 	*region = *vma->vm_region;
1565 	new->vm_region = region;
1566 
1567 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1568 
1569 	if (new_below) {
1570 		region->vm_top = region->vm_end = new->vm_end = addr;
1571 	} else {
1572 		region->vm_start = new->vm_start = addr;
1573 		region->vm_pgoff = new->vm_pgoff += npages;
1574 	}
1575 
1576 	if (new->vm_ops && new->vm_ops->open)
1577 		new->vm_ops->open(new);
1578 
1579 	delete_vma_from_mm(vma);
1580 	down_write(&nommu_region_sem);
1581 	delete_nommu_region(vma->vm_region);
1582 	if (new_below) {
1583 		vma->vm_region->vm_start = vma->vm_start = addr;
1584 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1585 	} else {
1586 		vma->vm_region->vm_end = vma->vm_end = addr;
1587 		vma->vm_region->vm_top = addr;
1588 	}
1589 	add_nommu_region(vma->vm_region);
1590 	add_nommu_region(new->vm_region);
1591 	up_write(&nommu_region_sem);
1592 	add_vma_to_mm(mm, vma);
1593 	add_vma_to_mm(mm, new);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * shrink a VMA by removing the specified chunk from either the beginning or
1599  * the end
1600  */
1601 static int shrink_vma(struct mm_struct *mm,
1602 		      struct vm_area_struct *vma,
1603 		      unsigned long from, unsigned long to)
1604 {
1605 	struct vm_region *region;
1606 
1607 	kenter("");
1608 
1609 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1610 	 * and list */
1611 	delete_vma_from_mm(vma);
1612 	if (from > vma->vm_start)
1613 		vma->vm_end = from;
1614 	else
1615 		vma->vm_start = to;
1616 	add_vma_to_mm(mm, vma);
1617 
1618 	/* cut the backing region down to size */
1619 	region = vma->vm_region;
1620 	BUG_ON(region->vm_usage != 1);
1621 
1622 	down_write(&nommu_region_sem);
1623 	delete_nommu_region(region);
1624 	if (from > region->vm_start) {
1625 		to = region->vm_top;
1626 		region->vm_top = region->vm_end = from;
1627 	} else {
1628 		region->vm_start = to;
1629 	}
1630 	add_nommu_region(region);
1631 	up_write(&nommu_region_sem);
1632 
1633 	free_page_series(from, to);
1634 	return 0;
1635 }
1636 
1637 /*
1638  * release a mapping
1639  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1640  *   VMA, though it need not cover the whole VMA
1641  */
1642 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1643 {
1644 	struct vm_area_struct *vma;
1645 	unsigned long end;
1646 	int ret;
1647 
1648 	kenter(",%lx,%zx", start, len);
1649 
1650 	len = PAGE_ALIGN(len);
1651 	if (len == 0)
1652 		return -EINVAL;
1653 
1654 	end = start + len;
1655 
1656 	/* find the first potentially overlapping VMA */
1657 	vma = find_vma(mm, start);
1658 	if (!vma) {
1659 		static int limit;
1660 		if (limit < 5) {
1661 			printk(KERN_WARNING
1662 			       "munmap of memory not mmapped by process %d"
1663 			       " (%s): 0x%lx-0x%lx\n",
1664 			       current->pid, current->comm,
1665 			       start, start + len - 1);
1666 			limit++;
1667 		}
1668 		return -EINVAL;
1669 	}
1670 
1671 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1672 	if (vma->vm_file) {
1673 		do {
1674 			if (start > vma->vm_start) {
1675 				kleave(" = -EINVAL [miss]");
1676 				return -EINVAL;
1677 			}
1678 			if (end == vma->vm_end)
1679 				goto erase_whole_vma;
1680 			vma = vma->vm_next;
1681 		} while (vma);
1682 		kleave(" = -EINVAL [split file]");
1683 		return -EINVAL;
1684 	} else {
1685 		/* the chunk must be a subset of the VMA found */
1686 		if (start == vma->vm_start && end == vma->vm_end)
1687 			goto erase_whole_vma;
1688 		if (start < vma->vm_start || end > vma->vm_end) {
1689 			kleave(" = -EINVAL [superset]");
1690 			return -EINVAL;
1691 		}
1692 		if (start & ~PAGE_MASK) {
1693 			kleave(" = -EINVAL [unaligned start]");
1694 			return -EINVAL;
1695 		}
1696 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1697 			kleave(" = -EINVAL [unaligned split]");
1698 			return -EINVAL;
1699 		}
1700 		if (start != vma->vm_start && end != vma->vm_end) {
1701 			ret = split_vma(mm, vma, start, 1);
1702 			if (ret < 0) {
1703 				kleave(" = %d [split]", ret);
1704 				return ret;
1705 			}
1706 		}
1707 		return shrink_vma(mm, vma, start, end);
1708 	}
1709 
1710 erase_whole_vma:
1711 	delete_vma_from_mm(vma);
1712 	delete_vma(mm, vma);
1713 	kleave(" = 0");
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(do_munmap);
1717 
1718 int vm_munmap(unsigned long addr, size_t len)
1719 {
1720 	struct mm_struct *mm = current->mm;
1721 	int ret;
1722 
1723 	down_write(&mm->mmap_sem);
1724 	ret = do_munmap(mm, addr, len);
1725 	up_write(&mm->mmap_sem);
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL(vm_munmap);
1729 
1730 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1731 {
1732 	return vm_munmap(addr, len);
1733 }
1734 
1735 /*
1736  * release all the mappings made in a process's VM space
1737  */
1738 void exit_mmap(struct mm_struct *mm)
1739 {
1740 	struct vm_area_struct *vma;
1741 
1742 	if (!mm)
1743 		return;
1744 
1745 	kenter("");
1746 
1747 	mm->total_vm = 0;
1748 
1749 	while ((vma = mm->mmap)) {
1750 		mm->mmap = vma->vm_next;
1751 		delete_vma_from_mm(vma);
1752 		delete_vma(mm, vma);
1753 		cond_resched();
1754 	}
1755 
1756 	kleave("");
1757 }
1758 
1759 unsigned long vm_brk(unsigned long addr, unsigned long len)
1760 {
1761 	return -ENOMEM;
1762 }
1763 
1764 /*
1765  * expand (or shrink) an existing mapping, potentially moving it at the same
1766  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1767  *
1768  * under NOMMU conditions, we only permit changing a mapping's size, and only
1769  * as long as it stays within the region allocated by do_mmap_private() and the
1770  * block is not shareable
1771  *
1772  * MREMAP_FIXED is not supported under NOMMU conditions
1773  */
1774 static unsigned long do_mremap(unsigned long addr,
1775 			unsigned long old_len, unsigned long new_len,
1776 			unsigned long flags, unsigned long new_addr)
1777 {
1778 	struct vm_area_struct *vma;
1779 
1780 	/* insanity checks first */
1781 	old_len = PAGE_ALIGN(old_len);
1782 	new_len = PAGE_ALIGN(new_len);
1783 	if (old_len == 0 || new_len == 0)
1784 		return (unsigned long) -EINVAL;
1785 
1786 	if (addr & ~PAGE_MASK)
1787 		return -EINVAL;
1788 
1789 	if (flags & MREMAP_FIXED && new_addr != addr)
1790 		return (unsigned long) -EINVAL;
1791 
1792 	vma = find_vma_exact(current->mm, addr, old_len);
1793 	if (!vma)
1794 		return (unsigned long) -EINVAL;
1795 
1796 	if (vma->vm_end != vma->vm_start + old_len)
1797 		return (unsigned long) -EFAULT;
1798 
1799 	if (vma->vm_flags & VM_MAYSHARE)
1800 		return (unsigned long) -EPERM;
1801 
1802 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1803 		return (unsigned long) -ENOMEM;
1804 
1805 	/* all checks complete - do it */
1806 	vma->vm_end = vma->vm_start + new_len;
1807 	return vma->vm_start;
1808 }
1809 
1810 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1811 		unsigned long, new_len, unsigned long, flags,
1812 		unsigned long, new_addr)
1813 {
1814 	unsigned long ret;
1815 
1816 	down_write(&current->mm->mmap_sem);
1817 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1818 	up_write(&current->mm->mmap_sem);
1819 	return ret;
1820 }
1821 
1822 struct page *follow_page_mask(struct vm_area_struct *vma,
1823 			      unsigned long address, unsigned int flags,
1824 			      unsigned int *page_mask)
1825 {
1826 	*page_mask = 0;
1827 	return NULL;
1828 }
1829 
1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1831 		unsigned long pfn, unsigned long size, pgprot_t prot)
1832 {
1833 	if (addr != (pfn << PAGE_SHIFT))
1834 		return -EINVAL;
1835 
1836 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1837 	return 0;
1838 }
1839 EXPORT_SYMBOL(remap_pfn_range);
1840 
1841 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1842 {
1843 	unsigned long pfn = start >> PAGE_SHIFT;
1844 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1845 
1846 	pfn += vma->vm_pgoff;
1847 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1848 }
1849 EXPORT_SYMBOL(vm_iomap_memory);
1850 
1851 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1852 			unsigned long pgoff)
1853 {
1854 	unsigned int size = vma->vm_end - vma->vm_start;
1855 
1856 	if (!(vma->vm_flags & VM_USERMAP))
1857 		return -EINVAL;
1858 
1859 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1860 	vma->vm_end = vma->vm_start + size;
1861 
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL(remap_vmalloc_range);
1865 
1866 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1867 	unsigned long len, unsigned long pgoff, unsigned long flags)
1868 {
1869 	return -ENOMEM;
1870 }
1871 
1872 void unmap_mapping_range(struct address_space *mapping,
1873 			 loff_t const holebegin, loff_t const holelen,
1874 			 int even_cows)
1875 {
1876 }
1877 EXPORT_SYMBOL(unmap_mapping_range);
1878 
1879 /*
1880  * Check that a process has enough memory to allocate a new virtual
1881  * mapping. 0 means there is enough memory for the allocation to
1882  * succeed and -ENOMEM implies there is not.
1883  *
1884  * We currently support three overcommit policies, which are set via the
1885  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1886  *
1887  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1888  * Additional code 2002 Jul 20 by Robert Love.
1889  *
1890  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1891  *
1892  * Note this is a helper function intended to be used by LSMs which
1893  * wish to use this logic.
1894  */
1895 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1896 {
1897 	unsigned long free, allowed, reserve;
1898 
1899 	vm_acct_memory(pages);
1900 
1901 	/*
1902 	 * Sometimes we want to use more memory than we have
1903 	 */
1904 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1905 		return 0;
1906 
1907 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1908 		free = global_page_state(NR_FREE_PAGES);
1909 		free += global_page_state(NR_FILE_PAGES);
1910 
1911 		/*
1912 		 * shmem pages shouldn't be counted as free in this
1913 		 * case, they can't be purged, only swapped out, and
1914 		 * that won't affect the overall amount of available
1915 		 * memory in the system.
1916 		 */
1917 		free -= global_page_state(NR_SHMEM);
1918 
1919 		free += get_nr_swap_pages();
1920 
1921 		/*
1922 		 * Any slabs which are created with the
1923 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1924 		 * which are reclaimable, under pressure.  The dentry
1925 		 * cache and most inode caches should fall into this
1926 		 */
1927 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1928 
1929 		/*
1930 		 * Leave reserved pages. The pages are not for anonymous pages.
1931 		 */
1932 		if (free <= totalreserve_pages)
1933 			goto error;
1934 		else
1935 			free -= totalreserve_pages;
1936 
1937 		/*
1938 		 * Reserve some for root
1939 		 */
1940 		if (!cap_sys_admin)
1941 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1942 
1943 		if (free > pages)
1944 			return 0;
1945 
1946 		goto error;
1947 	}
1948 
1949 	allowed = vm_commit_limit();
1950 	/*
1951 	 * Reserve some 3% for root
1952 	 */
1953 	if (!cap_sys_admin)
1954 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1955 
1956 	/*
1957 	 * Don't let a single process grow so big a user can't recover
1958 	 */
1959 	if (mm) {
1960 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1961 		allowed -= min(mm->total_vm / 32, reserve);
1962 	}
1963 
1964 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1965 		return 0;
1966 
1967 error:
1968 	vm_unacct_memory(pages);
1969 
1970 	return -ENOMEM;
1971 }
1972 
1973 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1974 {
1975 	BUG();
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL(filemap_fault);
1979 
1980 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982 	BUG();
1983 }
1984 EXPORT_SYMBOL(filemap_map_pages);
1985 
1986 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1987 			     unsigned long size, pgoff_t pgoff)
1988 {
1989 	BUG();
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(generic_file_remap_pages);
1993 
1994 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1995 		unsigned long addr, void *buf, int len, int write)
1996 {
1997 	struct vm_area_struct *vma;
1998 
1999 	down_read(&mm->mmap_sem);
2000 
2001 	/* the access must start within one of the target process's mappings */
2002 	vma = find_vma(mm, addr);
2003 	if (vma) {
2004 		/* don't overrun this mapping */
2005 		if (addr + len >= vma->vm_end)
2006 			len = vma->vm_end - addr;
2007 
2008 		/* only read or write mappings where it is permitted */
2009 		if (write && vma->vm_flags & VM_MAYWRITE)
2010 			copy_to_user_page(vma, NULL, addr,
2011 					 (void *) addr, buf, len);
2012 		else if (!write && vma->vm_flags & VM_MAYREAD)
2013 			copy_from_user_page(vma, NULL, addr,
2014 					    buf, (void *) addr, len);
2015 		else
2016 			len = 0;
2017 	} else {
2018 		len = 0;
2019 	}
2020 
2021 	up_read(&mm->mmap_sem);
2022 
2023 	return len;
2024 }
2025 
2026 /**
2027  * @access_remote_vm - access another process' address space
2028  * @mm:		the mm_struct of the target address space
2029  * @addr:	start address to access
2030  * @buf:	source or destination buffer
2031  * @len:	number of bytes to transfer
2032  * @write:	whether the access is a write
2033  *
2034  * The caller must hold a reference on @mm.
2035  */
2036 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2037 		void *buf, int len, int write)
2038 {
2039 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2040 }
2041 
2042 /*
2043  * Access another process' address space.
2044  * - source/target buffer must be kernel space
2045  */
2046 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2047 {
2048 	struct mm_struct *mm;
2049 
2050 	if (addr + len < addr)
2051 		return 0;
2052 
2053 	mm = get_task_mm(tsk);
2054 	if (!mm)
2055 		return 0;
2056 
2057 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2058 
2059 	mmput(mm);
2060 	return len;
2061 }
2062 
2063 /**
2064  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2065  * @inode: The inode to check
2066  * @size: The current filesize of the inode
2067  * @newsize: The proposed filesize of the inode
2068  *
2069  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2070  * make sure that that any outstanding VMAs aren't broken and then shrink the
2071  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2072  * automatically grant mappings that are too large.
2073  */
2074 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2075 				size_t newsize)
2076 {
2077 	struct vm_area_struct *vma;
2078 	struct vm_region *region;
2079 	pgoff_t low, high;
2080 	size_t r_size, r_top;
2081 
2082 	low = newsize >> PAGE_SHIFT;
2083 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2084 
2085 	down_write(&nommu_region_sem);
2086 	i_mmap_lock_read(inode->i_mapping);
2087 
2088 	/* search for VMAs that fall within the dead zone */
2089 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2090 		/* found one - only interested if it's shared out of the page
2091 		 * cache */
2092 		if (vma->vm_flags & VM_SHARED) {
2093 			i_mmap_unlock_read(inode->i_mapping);
2094 			up_write(&nommu_region_sem);
2095 			return -ETXTBSY; /* not quite true, but near enough */
2096 		}
2097 	}
2098 
2099 	/* reduce any regions that overlap the dead zone - if in existence,
2100 	 * these will be pointed to by VMAs that don't overlap the dead zone
2101 	 *
2102 	 * we don't check for any regions that start beyond the EOF as there
2103 	 * shouldn't be any
2104 	 */
2105 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2106 		if (!(vma->vm_flags & VM_SHARED))
2107 			continue;
2108 
2109 		region = vma->vm_region;
2110 		r_size = region->vm_top - region->vm_start;
2111 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2112 
2113 		if (r_top > newsize) {
2114 			region->vm_top -= r_top - newsize;
2115 			if (region->vm_end > region->vm_top)
2116 				region->vm_end = region->vm_top;
2117 		}
2118 	}
2119 
2120 	i_mmap_unlock_read(inode->i_mapping);
2121 	up_write(&nommu_region_sem);
2122 	return 0;
2123 }
2124 
2125 /*
2126  * Initialise sysctl_user_reserve_kbytes.
2127  *
2128  * This is intended to prevent a user from starting a single memory hogging
2129  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2130  * mode.
2131  *
2132  * The default value is min(3% of free memory, 128MB)
2133  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2134  */
2135 static int __meminit init_user_reserve(void)
2136 {
2137 	unsigned long free_kbytes;
2138 
2139 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2140 
2141 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2142 	return 0;
2143 }
2144 module_init(init_user_reserve)
2145 
2146 /*
2147  * Initialise sysctl_admin_reserve_kbytes.
2148  *
2149  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2150  * to log in and kill a memory hogging process.
2151  *
2152  * Systems with more than 256MB will reserve 8MB, enough to recover
2153  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2154  * only reserve 3% of free pages by default.
2155  */
2156 static int __meminit init_admin_reserve(void)
2157 {
2158 	unsigned long free_kbytes;
2159 
2160 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2161 
2162 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2163 	return 0;
2164 }
2165 module_init(init_admin_reserve)
2166