1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/sched/sysctl.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlb.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mmu_context.h> 38 #include "internal.h" 39 40 #if 0 41 #define kenter(FMT, ...) \ 42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 43 #define kleave(FMT, ...) \ 44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 45 #define kdebug(FMT, ...) \ 46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 47 #else 48 #define kenter(FMT, ...) \ 49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 50 #define kleave(FMT, ...) \ 51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 52 #define kdebug(FMT, ...) \ 53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 54 #endif 55 56 void *high_memory; 57 struct page *mem_map; 58 unsigned long max_mapnr; 59 unsigned long highest_memmap_pfn; 60 struct percpu_counter vm_committed_as; 61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 62 int sysctl_overcommit_ratio = 50; /* default is 50% */ 63 unsigned long sysctl_overcommit_kbytes __read_mostly; 64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 66 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 67 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 68 int heap_stack_gap = 0; 69 70 atomic_long_t mmap_pages_allocated; 71 72 /* 73 * The global memory commitment made in the system can be a metric 74 * that can be used to drive ballooning decisions when Linux is hosted 75 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 76 * balancing memory across competing virtual machines that are hosted. 77 * Several metrics drive this policy engine including the guest reported 78 * memory commitment. 79 */ 80 unsigned long vm_memory_committed(void) 81 { 82 return percpu_counter_read_positive(&vm_committed_as); 83 } 84 85 EXPORT_SYMBOL_GPL(vm_memory_committed); 86 87 EXPORT_SYMBOL(mem_map); 88 89 /* list of mapped, potentially shareable regions */ 90 static struct kmem_cache *vm_region_jar; 91 struct rb_root nommu_region_tree = RB_ROOT; 92 DECLARE_RWSEM(nommu_region_sem); 93 94 const struct vm_operations_struct generic_file_vm_ops = { 95 }; 96 97 /* 98 * Return the total memory allocated for this pointer, not 99 * just what the caller asked for. 100 * 101 * Doesn't have to be accurate, i.e. may have races. 102 */ 103 unsigned int kobjsize(const void *objp) 104 { 105 struct page *page; 106 107 /* 108 * If the object we have should not have ksize performed on it, 109 * return size of 0 110 */ 111 if (!objp || !virt_addr_valid(objp)) 112 return 0; 113 114 page = virt_to_head_page(objp); 115 116 /* 117 * If the allocator sets PageSlab, we know the pointer came from 118 * kmalloc(). 119 */ 120 if (PageSlab(page)) 121 return ksize(objp); 122 123 /* 124 * If it's not a compound page, see if we have a matching VMA 125 * region. This test is intentionally done in reverse order, 126 * so if there's no VMA, we still fall through and hand back 127 * PAGE_SIZE for 0-order pages. 128 */ 129 if (!PageCompound(page)) { 130 struct vm_area_struct *vma; 131 132 vma = find_vma(current->mm, (unsigned long)objp); 133 if (vma) 134 return vma->vm_end - vma->vm_start; 135 } 136 137 /* 138 * The ksize() function is only guaranteed to work for pointers 139 * returned by kmalloc(). So handle arbitrary pointers here. 140 */ 141 return PAGE_SIZE << compound_order(page); 142 } 143 144 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 145 unsigned long start, unsigned long nr_pages, 146 unsigned int foll_flags, struct page **pages, 147 struct vm_area_struct **vmas, int *nonblocking) 148 { 149 struct vm_area_struct *vma; 150 unsigned long vm_flags; 151 int i; 152 153 /* calculate required read or write permissions. 154 * If FOLL_FORCE is set, we only require the "MAY" flags. 155 */ 156 vm_flags = (foll_flags & FOLL_WRITE) ? 157 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 158 vm_flags &= (foll_flags & FOLL_FORCE) ? 159 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 160 161 for (i = 0; i < nr_pages; i++) { 162 vma = find_vma(mm, start); 163 if (!vma) 164 goto finish_or_fault; 165 166 /* protect what we can, including chardevs */ 167 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 168 !(vm_flags & vma->vm_flags)) 169 goto finish_or_fault; 170 171 if (pages) { 172 pages[i] = virt_to_page(start); 173 if (pages[i]) 174 page_cache_get(pages[i]); 175 } 176 if (vmas) 177 vmas[i] = vma; 178 start = (start + PAGE_SIZE) & PAGE_MASK; 179 } 180 181 return i; 182 183 finish_or_fault: 184 return i ? : -EFAULT; 185 } 186 187 /* 188 * get a list of pages in an address range belonging to the specified process 189 * and indicate the VMA that covers each page 190 * - this is potentially dodgy as we may end incrementing the page count of a 191 * slab page or a secondary page from a compound page 192 * - don't permit access to VMAs that don't support it, such as I/O mappings 193 */ 194 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 195 unsigned long start, unsigned long nr_pages, 196 int write, int force, struct page **pages, 197 struct vm_area_struct **vmas) 198 { 199 int flags = 0; 200 201 if (write) 202 flags |= FOLL_WRITE; 203 if (force) 204 flags |= FOLL_FORCE; 205 206 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 207 NULL); 208 } 209 EXPORT_SYMBOL(get_user_pages); 210 211 /** 212 * follow_pfn - look up PFN at a user virtual address 213 * @vma: memory mapping 214 * @address: user virtual address 215 * @pfn: location to store found PFN 216 * 217 * Only IO mappings and raw PFN mappings are allowed. 218 * 219 * Returns zero and the pfn at @pfn on success, -ve otherwise. 220 */ 221 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 222 unsigned long *pfn) 223 { 224 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 225 return -EINVAL; 226 227 *pfn = address >> PAGE_SHIFT; 228 return 0; 229 } 230 EXPORT_SYMBOL(follow_pfn); 231 232 LIST_HEAD(vmap_area_list); 233 234 void vfree(const void *addr) 235 { 236 kfree(addr); 237 } 238 EXPORT_SYMBOL(vfree); 239 240 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 241 { 242 /* 243 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 244 * returns only a logical address. 245 */ 246 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 247 } 248 EXPORT_SYMBOL(__vmalloc); 249 250 void *vmalloc_user(unsigned long size) 251 { 252 void *ret; 253 254 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 255 PAGE_KERNEL); 256 if (ret) { 257 struct vm_area_struct *vma; 258 259 down_write(¤t->mm->mmap_sem); 260 vma = find_vma(current->mm, (unsigned long)ret); 261 if (vma) 262 vma->vm_flags |= VM_USERMAP; 263 up_write(¤t->mm->mmap_sem); 264 } 265 266 return ret; 267 } 268 EXPORT_SYMBOL(vmalloc_user); 269 270 struct page *vmalloc_to_page(const void *addr) 271 { 272 return virt_to_page(addr); 273 } 274 EXPORT_SYMBOL(vmalloc_to_page); 275 276 unsigned long vmalloc_to_pfn(const void *addr) 277 { 278 return page_to_pfn(virt_to_page(addr)); 279 } 280 EXPORT_SYMBOL(vmalloc_to_pfn); 281 282 long vread(char *buf, char *addr, unsigned long count) 283 { 284 /* Don't allow overflow */ 285 if ((unsigned long) buf + count < count) 286 count = -(unsigned long) buf; 287 288 memcpy(buf, addr, count); 289 return count; 290 } 291 292 long vwrite(char *buf, char *addr, unsigned long count) 293 { 294 /* Don't allow overflow */ 295 if ((unsigned long) addr + count < count) 296 count = -(unsigned long) addr; 297 298 memcpy(addr, buf, count); 299 return(count); 300 } 301 302 /* 303 * vmalloc - allocate virtually continguos memory 304 * 305 * @size: allocation size 306 * 307 * Allocate enough pages to cover @size from the page level 308 * allocator and map them into continguos kernel virtual space. 309 * 310 * For tight control over page level allocator and protection flags 311 * use __vmalloc() instead. 312 */ 313 void *vmalloc(unsigned long size) 314 { 315 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 316 } 317 EXPORT_SYMBOL(vmalloc); 318 319 /* 320 * vzalloc - allocate virtually continguos memory with zero fill 321 * 322 * @size: allocation size 323 * 324 * Allocate enough pages to cover @size from the page level 325 * allocator and map them into continguos kernel virtual space. 326 * The memory allocated is set to zero. 327 * 328 * For tight control over page level allocator and protection flags 329 * use __vmalloc() instead. 330 */ 331 void *vzalloc(unsigned long size) 332 { 333 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 334 PAGE_KERNEL); 335 } 336 EXPORT_SYMBOL(vzalloc); 337 338 /** 339 * vmalloc_node - allocate memory on a specific node 340 * @size: allocation size 341 * @node: numa node 342 * 343 * Allocate enough pages to cover @size from the page level 344 * allocator and map them into contiguous kernel virtual space. 345 * 346 * For tight control over page level allocator and protection flags 347 * use __vmalloc() instead. 348 */ 349 void *vmalloc_node(unsigned long size, int node) 350 { 351 return vmalloc(size); 352 } 353 EXPORT_SYMBOL(vmalloc_node); 354 355 /** 356 * vzalloc_node - allocate memory on a specific node with zero fill 357 * @size: allocation size 358 * @node: numa node 359 * 360 * Allocate enough pages to cover @size from the page level 361 * allocator and map them into contiguous kernel virtual space. 362 * The memory allocated is set to zero. 363 * 364 * For tight control over page level allocator and protection flags 365 * use __vmalloc() instead. 366 */ 367 void *vzalloc_node(unsigned long size, int node) 368 { 369 return vzalloc(size); 370 } 371 EXPORT_SYMBOL(vzalloc_node); 372 373 #ifndef PAGE_KERNEL_EXEC 374 # define PAGE_KERNEL_EXEC PAGE_KERNEL 375 #endif 376 377 /** 378 * vmalloc_exec - allocate virtually contiguous, executable memory 379 * @size: allocation size 380 * 381 * Kernel-internal function to allocate enough pages to cover @size 382 * the page level allocator and map them into contiguous and 383 * executable kernel virtual space. 384 * 385 * For tight control over page level allocator and protection flags 386 * use __vmalloc() instead. 387 */ 388 389 void *vmalloc_exec(unsigned long size) 390 { 391 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 392 } 393 394 /** 395 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 396 * @size: allocation size 397 * 398 * Allocate enough 32bit PA addressable pages to cover @size from the 399 * page level allocator and map them into continguos kernel virtual space. 400 */ 401 void *vmalloc_32(unsigned long size) 402 { 403 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 404 } 405 EXPORT_SYMBOL(vmalloc_32); 406 407 /** 408 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 409 * @size: allocation size 410 * 411 * The resulting memory area is 32bit addressable and zeroed so it can be 412 * mapped to userspace without leaking data. 413 * 414 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 415 * remap_vmalloc_range() are permissible. 416 */ 417 void *vmalloc_32_user(unsigned long size) 418 { 419 /* 420 * We'll have to sort out the ZONE_DMA bits for 64-bit, 421 * but for now this can simply use vmalloc_user() directly. 422 */ 423 return vmalloc_user(size); 424 } 425 EXPORT_SYMBOL(vmalloc_32_user); 426 427 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 428 { 429 BUG(); 430 return NULL; 431 } 432 EXPORT_SYMBOL(vmap); 433 434 void vunmap(const void *addr) 435 { 436 BUG(); 437 } 438 EXPORT_SYMBOL(vunmap); 439 440 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 441 { 442 BUG(); 443 return NULL; 444 } 445 EXPORT_SYMBOL(vm_map_ram); 446 447 void vm_unmap_ram(const void *mem, unsigned int count) 448 { 449 BUG(); 450 } 451 EXPORT_SYMBOL(vm_unmap_ram); 452 453 void vm_unmap_aliases(void) 454 { 455 } 456 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 457 458 /* 459 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 460 * have one. 461 */ 462 void __attribute__((weak)) vmalloc_sync_all(void) 463 { 464 } 465 466 /** 467 * alloc_vm_area - allocate a range of kernel address space 468 * @size: size of the area 469 * 470 * Returns: NULL on failure, vm_struct on success 471 * 472 * This function reserves a range of kernel address space, and 473 * allocates pagetables to map that range. No actual mappings 474 * are created. If the kernel address space is not shared 475 * between processes, it syncs the pagetable across all 476 * processes. 477 */ 478 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 479 { 480 BUG(); 481 return NULL; 482 } 483 EXPORT_SYMBOL_GPL(alloc_vm_area); 484 485 void free_vm_area(struct vm_struct *area) 486 { 487 BUG(); 488 } 489 EXPORT_SYMBOL_GPL(free_vm_area); 490 491 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 492 struct page *page) 493 { 494 return -EINVAL; 495 } 496 EXPORT_SYMBOL(vm_insert_page); 497 498 /* 499 * sys_brk() for the most part doesn't need the global kernel 500 * lock, except when an application is doing something nasty 501 * like trying to un-brk an area that has already been mapped 502 * to a regular file. in this case, the unmapping will need 503 * to invoke file system routines that need the global lock. 504 */ 505 SYSCALL_DEFINE1(brk, unsigned long, brk) 506 { 507 struct mm_struct *mm = current->mm; 508 509 if (brk < mm->start_brk || brk > mm->context.end_brk) 510 return mm->brk; 511 512 if (mm->brk == brk) 513 return mm->brk; 514 515 /* 516 * Always allow shrinking brk 517 */ 518 if (brk <= mm->brk) { 519 mm->brk = brk; 520 return brk; 521 } 522 523 /* 524 * Ok, looks good - let it rip. 525 */ 526 flush_icache_range(mm->brk, brk); 527 return mm->brk = brk; 528 } 529 530 /* 531 * initialise the VMA and region record slabs 532 */ 533 void __init mmap_init(void) 534 { 535 int ret; 536 537 ret = percpu_counter_init(&vm_committed_as, 0); 538 VM_BUG_ON(ret); 539 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 540 } 541 542 /* 543 * validate the region tree 544 * - the caller must hold the region lock 545 */ 546 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 547 static noinline void validate_nommu_regions(void) 548 { 549 struct vm_region *region, *last; 550 struct rb_node *p, *lastp; 551 552 lastp = rb_first(&nommu_region_tree); 553 if (!lastp) 554 return; 555 556 last = rb_entry(lastp, struct vm_region, vm_rb); 557 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 558 BUG_ON(unlikely(last->vm_top < last->vm_end)); 559 560 while ((p = rb_next(lastp))) { 561 region = rb_entry(p, struct vm_region, vm_rb); 562 last = rb_entry(lastp, struct vm_region, vm_rb); 563 564 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 565 BUG_ON(unlikely(region->vm_top < region->vm_end)); 566 BUG_ON(unlikely(region->vm_start < last->vm_top)); 567 568 lastp = p; 569 } 570 } 571 #else 572 static void validate_nommu_regions(void) 573 { 574 } 575 #endif 576 577 /* 578 * add a region into the global tree 579 */ 580 static void add_nommu_region(struct vm_region *region) 581 { 582 struct vm_region *pregion; 583 struct rb_node **p, *parent; 584 585 validate_nommu_regions(); 586 587 parent = NULL; 588 p = &nommu_region_tree.rb_node; 589 while (*p) { 590 parent = *p; 591 pregion = rb_entry(parent, struct vm_region, vm_rb); 592 if (region->vm_start < pregion->vm_start) 593 p = &(*p)->rb_left; 594 else if (region->vm_start > pregion->vm_start) 595 p = &(*p)->rb_right; 596 else if (pregion == region) 597 return; 598 else 599 BUG(); 600 } 601 602 rb_link_node(®ion->vm_rb, parent, p); 603 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 604 605 validate_nommu_regions(); 606 } 607 608 /* 609 * delete a region from the global tree 610 */ 611 static void delete_nommu_region(struct vm_region *region) 612 { 613 BUG_ON(!nommu_region_tree.rb_node); 614 615 validate_nommu_regions(); 616 rb_erase(®ion->vm_rb, &nommu_region_tree); 617 validate_nommu_regions(); 618 } 619 620 /* 621 * free a contiguous series of pages 622 */ 623 static void free_page_series(unsigned long from, unsigned long to) 624 { 625 for (; from < to; from += PAGE_SIZE) { 626 struct page *page = virt_to_page(from); 627 628 kdebug("- free %lx", from); 629 atomic_long_dec(&mmap_pages_allocated); 630 if (page_count(page) != 1) 631 kdebug("free page %p: refcount not one: %d", 632 page, page_count(page)); 633 put_page(page); 634 } 635 } 636 637 /* 638 * release a reference to a region 639 * - the caller must hold the region semaphore for writing, which this releases 640 * - the region may not have been added to the tree yet, in which case vm_top 641 * will equal vm_start 642 */ 643 static void __put_nommu_region(struct vm_region *region) 644 __releases(nommu_region_sem) 645 { 646 kenter("%p{%d}", region, region->vm_usage); 647 648 BUG_ON(!nommu_region_tree.rb_node); 649 650 if (--region->vm_usage == 0) { 651 if (region->vm_top > region->vm_start) 652 delete_nommu_region(region); 653 up_write(&nommu_region_sem); 654 655 if (region->vm_file) 656 fput(region->vm_file); 657 658 /* IO memory and memory shared directly out of the pagecache 659 * from ramfs/tmpfs mustn't be released here */ 660 if (region->vm_flags & VM_MAPPED_COPY) { 661 kdebug("free series"); 662 free_page_series(region->vm_start, region->vm_top); 663 } 664 kmem_cache_free(vm_region_jar, region); 665 } else { 666 up_write(&nommu_region_sem); 667 } 668 } 669 670 /* 671 * release a reference to a region 672 */ 673 static void put_nommu_region(struct vm_region *region) 674 { 675 down_write(&nommu_region_sem); 676 __put_nommu_region(region); 677 } 678 679 /* 680 * update protection on a vma 681 */ 682 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 683 { 684 #ifdef CONFIG_MPU 685 struct mm_struct *mm = vma->vm_mm; 686 long start = vma->vm_start & PAGE_MASK; 687 while (start < vma->vm_end) { 688 protect_page(mm, start, flags); 689 start += PAGE_SIZE; 690 } 691 update_protections(mm); 692 #endif 693 } 694 695 /* 696 * add a VMA into a process's mm_struct in the appropriate place in the list 697 * and tree and add to the address space's page tree also if not an anonymous 698 * page 699 * - should be called with mm->mmap_sem held writelocked 700 */ 701 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 702 { 703 struct vm_area_struct *pvma, *prev; 704 struct address_space *mapping; 705 struct rb_node **p, *parent, *rb_prev; 706 707 kenter(",%p", vma); 708 709 BUG_ON(!vma->vm_region); 710 711 mm->map_count++; 712 vma->vm_mm = mm; 713 714 protect_vma(vma, vma->vm_flags); 715 716 /* add the VMA to the mapping */ 717 if (vma->vm_file) { 718 mapping = vma->vm_file->f_mapping; 719 720 mutex_lock(&mapping->i_mmap_mutex); 721 flush_dcache_mmap_lock(mapping); 722 vma_interval_tree_insert(vma, &mapping->i_mmap); 723 flush_dcache_mmap_unlock(mapping); 724 mutex_unlock(&mapping->i_mmap_mutex); 725 } 726 727 /* add the VMA to the tree */ 728 parent = rb_prev = NULL; 729 p = &mm->mm_rb.rb_node; 730 while (*p) { 731 parent = *p; 732 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 733 734 /* sort by: start addr, end addr, VMA struct addr in that order 735 * (the latter is necessary as we may get identical VMAs) */ 736 if (vma->vm_start < pvma->vm_start) 737 p = &(*p)->rb_left; 738 else if (vma->vm_start > pvma->vm_start) { 739 rb_prev = parent; 740 p = &(*p)->rb_right; 741 } else if (vma->vm_end < pvma->vm_end) 742 p = &(*p)->rb_left; 743 else if (vma->vm_end > pvma->vm_end) { 744 rb_prev = parent; 745 p = &(*p)->rb_right; 746 } else if (vma < pvma) 747 p = &(*p)->rb_left; 748 else if (vma > pvma) { 749 rb_prev = parent; 750 p = &(*p)->rb_right; 751 } else 752 BUG(); 753 } 754 755 rb_link_node(&vma->vm_rb, parent, p); 756 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 757 758 /* add VMA to the VMA list also */ 759 prev = NULL; 760 if (rb_prev) 761 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 762 763 __vma_link_list(mm, vma, prev, parent); 764 } 765 766 /* 767 * delete a VMA from its owning mm_struct and address space 768 */ 769 static void delete_vma_from_mm(struct vm_area_struct *vma) 770 { 771 struct address_space *mapping; 772 struct mm_struct *mm = vma->vm_mm; 773 774 kenter("%p", vma); 775 776 protect_vma(vma, 0); 777 778 mm->map_count--; 779 if (mm->mmap_cache == vma) 780 mm->mmap_cache = NULL; 781 782 /* remove the VMA from the mapping */ 783 if (vma->vm_file) { 784 mapping = vma->vm_file->f_mapping; 785 786 mutex_lock(&mapping->i_mmap_mutex); 787 flush_dcache_mmap_lock(mapping); 788 vma_interval_tree_remove(vma, &mapping->i_mmap); 789 flush_dcache_mmap_unlock(mapping); 790 mutex_unlock(&mapping->i_mmap_mutex); 791 } 792 793 /* remove from the MM's tree and list */ 794 rb_erase(&vma->vm_rb, &mm->mm_rb); 795 796 if (vma->vm_prev) 797 vma->vm_prev->vm_next = vma->vm_next; 798 else 799 mm->mmap = vma->vm_next; 800 801 if (vma->vm_next) 802 vma->vm_next->vm_prev = vma->vm_prev; 803 } 804 805 /* 806 * destroy a VMA record 807 */ 808 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 809 { 810 kenter("%p", vma); 811 if (vma->vm_ops && vma->vm_ops->close) 812 vma->vm_ops->close(vma); 813 if (vma->vm_file) 814 fput(vma->vm_file); 815 put_nommu_region(vma->vm_region); 816 kmem_cache_free(vm_area_cachep, vma); 817 } 818 819 /* 820 * look up the first VMA in which addr resides, NULL if none 821 * - should be called with mm->mmap_sem at least held readlocked 822 */ 823 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 824 { 825 struct vm_area_struct *vma; 826 827 /* check the cache first */ 828 vma = ACCESS_ONCE(mm->mmap_cache); 829 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 830 return vma; 831 832 /* trawl the list (there may be multiple mappings in which addr 833 * resides) */ 834 for (vma = mm->mmap; vma; vma = vma->vm_next) { 835 if (vma->vm_start > addr) 836 return NULL; 837 if (vma->vm_end > addr) { 838 mm->mmap_cache = vma; 839 return vma; 840 } 841 } 842 843 return NULL; 844 } 845 EXPORT_SYMBOL(find_vma); 846 847 /* 848 * find a VMA 849 * - we don't extend stack VMAs under NOMMU conditions 850 */ 851 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 852 { 853 return find_vma(mm, addr); 854 } 855 856 /* 857 * expand a stack to a given address 858 * - not supported under NOMMU conditions 859 */ 860 int expand_stack(struct vm_area_struct *vma, unsigned long address) 861 { 862 return -ENOMEM; 863 } 864 865 /* 866 * look up the first VMA exactly that exactly matches addr 867 * - should be called with mm->mmap_sem at least held readlocked 868 */ 869 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 870 unsigned long addr, 871 unsigned long len) 872 { 873 struct vm_area_struct *vma; 874 unsigned long end = addr + len; 875 876 /* check the cache first */ 877 vma = mm->mmap_cache; 878 if (vma && vma->vm_start == addr && vma->vm_end == end) 879 return vma; 880 881 /* trawl the list (there may be multiple mappings in which addr 882 * resides) */ 883 for (vma = mm->mmap; vma; vma = vma->vm_next) { 884 if (vma->vm_start < addr) 885 continue; 886 if (vma->vm_start > addr) 887 return NULL; 888 if (vma->vm_end == end) { 889 mm->mmap_cache = vma; 890 return vma; 891 } 892 } 893 894 return NULL; 895 } 896 897 /* 898 * determine whether a mapping should be permitted and, if so, what sort of 899 * mapping we're capable of supporting 900 */ 901 static int validate_mmap_request(struct file *file, 902 unsigned long addr, 903 unsigned long len, 904 unsigned long prot, 905 unsigned long flags, 906 unsigned long pgoff, 907 unsigned long *_capabilities) 908 { 909 unsigned long capabilities, rlen; 910 int ret; 911 912 /* do the simple checks first */ 913 if (flags & MAP_FIXED) { 914 printk(KERN_DEBUG 915 "%d: Can't do fixed-address/overlay mmap of RAM\n", 916 current->pid); 917 return -EINVAL; 918 } 919 920 if ((flags & MAP_TYPE) != MAP_PRIVATE && 921 (flags & MAP_TYPE) != MAP_SHARED) 922 return -EINVAL; 923 924 if (!len) 925 return -EINVAL; 926 927 /* Careful about overflows.. */ 928 rlen = PAGE_ALIGN(len); 929 if (!rlen || rlen > TASK_SIZE) 930 return -ENOMEM; 931 932 /* offset overflow? */ 933 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 934 return -EOVERFLOW; 935 936 if (file) { 937 /* validate file mapping requests */ 938 struct address_space *mapping; 939 940 /* files must support mmap */ 941 if (!file->f_op->mmap) 942 return -ENODEV; 943 944 /* work out if what we've got could possibly be shared 945 * - we support chardevs that provide their own "memory" 946 * - we support files/blockdevs that are memory backed 947 */ 948 mapping = file->f_mapping; 949 if (!mapping) 950 mapping = file_inode(file)->i_mapping; 951 952 capabilities = 0; 953 if (mapping && mapping->backing_dev_info) 954 capabilities = mapping->backing_dev_info->capabilities; 955 956 if (!capabilities) { 957 /* no explicit capabilities set, so assume some 958 * defaults */ 959 switch (file_inode(file)->i_mode & S_IFMT) { 960 case S_IFREG: 961 case S_IFBLK: 962 capabilities = BDI_CAP_MAP_COPY; 963 break; 964 965 case S_IFCHR: 966 capabilities = 967 BDI_CAP_MAP_DIRECT | 968 BDI_CAP_READ_MAP | 969 BDI_CAP_WRITE_MAP; 970 break; 971 972 default: 973 return -EINVAL; 974 } 975 } 976 977 /* eliminate any capabilities that we can't support on this 978 * device */ 979 if (!file->f_op->get_unmapped_area) 980 capabilities &= ~BDI_CAP_MAP_DIRECT; 981 if (!file->f_op->read) 982 capabilities &= ~BDI_CAP_MAP_COPY; 983 984 /* The file shall have been opened with read permission. */ 985 if (!(file->f_mode & FMODE_READ)) 986 return -EACCES; 987 988 if (flags & MAP_SHARED) { 989 /* do checks for writing, appending and locking */ 990 if ((prot & PROT_WRITE) && 991 !(file->f_mode & FMODE_WRITE)) 992 return -EACCES; 993 994 if (IS_APPEND(file_inode(file)) && 995 (file->f_mode & FMODE_WRITE)) 996 return -EACCES; 997 998 if (locks_verify_locked(file_inode(file))) 999 return -EAGAIN; 1000 1001 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1002 return -ENODEV; 1003 1004 /* we mustn't privatise shared mappings */ 1005 capabilities &= ~BDI_CAP_MAP_COPY; 1006 } 1007 else { 1008 /* we're going to read the file into private memory we 1009 * allocate */ 1010 if (!(capabilities & BDI_CAP_MAP_COPY)) 1011 return -ENODEV; 1012 1013 /* we don't permit a private writable mapping to be 1014 * shared with the backing device */ 1015 if (prot & PROT_WRITE) 1016 capabilities &= ~BDI_CAP_MAP_DIRECT; 1017 } 1018 1019 if (capabilities & BDI_CAP_MAP_DIRECT) { 1020 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1021 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1022 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1023 ) { 1024 capabilities &= ~BDI_CAP_MAP_DIRECT; 1025 if (flags & MAP_SHARED) { 1026 printk(KERN_WARNING 1027 "MAP_SHARED not completely supported on !MMU\n"); 1028 return -EINVAL; 1029 } 1030 } 1031 } 1032 1033 /* handle executable mappings and implied executable 1034 * mappings */ 1035 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1036 if (prot & PROT_EXEC) 1037 return -EPERM; 1038 } 1039 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1040 /* handle implication of PROT_EXEC by PROT_READ */ 1041 if (current->personality & READ_IMPLIES_EXEC) { 1042 if (capabilities & BDI_CAP_EXEC_MAP) 1043 prot |= PROT_EXEC; 1044 } 1045 } 1046 else if ((prot & PROT_READ) && 1047 (prot & PROT_EXEC) && 1048 !(capabilities & BDI_CAP_EXEC_MAP) 1049 ) { 1050 /* backing file is not executable, try to copy */ 1051 capabilities &= ~BDI_CAP_MAP_DIRECT; 1052 } 1053 } 1054 else { 1055 /* anonymous mappings are always memory backed and can be 1056 * privately mapped 1057 */ 1058 capabilities = BDI_CAP_MAP_COPY; 1059 1060 /* handle PROT_EXEC implication by PROT_READ */ 1061 if ((prot & PROT_READ) && 1062 (current->personality & READ_IMPLIES_EXEC)) 1063 prot |= PROT_EXEC; 1064 } 1065 1066 /* allow the security API to have its say */ 1067 ret = security_mmap_addr(addr); 1068 if (ret < 0) 1069 return ret; 1070 1071 /* looks okay */ 1072 *_capabilities = capabilities; 1073 return 0; 1074 } 1075 1076 /* 1077 * we've determined that we can make the mapping, now translate what we 1078 * now know into VMA flags 1079 */ 1080 static unsigned long determine_vm_flags(struct file *file, 1081 unsigned long prot, 1082 unsigned long flags, 1083 unsigned long capabilities) 1084 { 1085 unsigned long vm_flags; 1086 1087 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1088 /* vm_flags |= mm->def_flags; */ 1089 1090 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1091 /* attempt to share read-only copies of mapped file chunks */ 1092 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1093 if (file && !(prot & PROT_WRITE)) 1094 vm_flags |= VM_MAYSHARE; 1095 } else { 1096 /* overlay a shareable mapping on the backing device or inode 1097 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1098 * romfs/cramfs */ 1099 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1100 if (flags & MAP_SHARED) 1101 vm_flags |= VM_SHARED; 1102 } 1103 1104 /* refuse to let anyone share private mappings with this process if 1105 * it's being traced - otherwise breakpoints set in it may interfere 1106 * with another untraced process 1107 */ 1108 if ((flags & MAP_PRIVATE) && current->ptrace) 1109 vm_flags &= ~VM_MAYSHARE; 1110 1111 return vm_flags; 1112 } 1113 1114 /* 1115 * set up a shared mapping on a file (the driver or filesystem provides and 1116 * pins the storage) 1117 */ 1118 static int do_mmap_shared_file(struct vm_area_struct *vma) 1119 { 1120 int ret; 1121 1122 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1123 if (ret == 0) { 1124 vma->vm_region->vm_top = vma->vm_region->vm_end; 1125 return 0; 1126 } 1127 if (ret != -ENOSYS) 1128 return ret; 1129 1130 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1131 * opposed to tried but failed) so we can only give a suitable error as 1132 * it's not possible to make a private copy if MAP_SHARED was given */ 1133 return -ENODEV; 1134 } 1135 1136 /* 1137 * set up a private mapping or an anonymous shared mapping 1138 */ 1139 static int do_mmap_private(struct vm_area_struct *vma, 1140 struct vm_region *region, 1141 unsigned long len, 1142 unsigned long capabilities) 1143 { 1144 struct page *pages; 1145 unsigned long total, point, n; 1146 void *base; 1147 int ret, order; 1148 1149 /* invoke the file's mapping function so that it can keep track of 1150 * shared mappings on devices or memory 1151 * - VM_MAYSHARE will be set if it may attempt to share 1152 */ 1153 if (capabilities & BDI_CAP_MAP_DIRECT) { 1154 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1155 if (ret == 0) { 1156 /* shouldn't return success if we're not sharing */ 1157 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1158 vma->vm_region->vm_top = vma->vm_region->vm_end; 1159 return 0; 1160 } 1161 if (ret != -ENOSYS) 1162 return ret; 1163 1164 /* getting an ENOSYS error indicates that direct mmap isn't 1165 * possible (as opposed to tried but failed) so we'll try to 1166 * make a private copy of the data and map that instead */ 1167 } 1168 1169 1170 /* allocate some memory to hold the mapping 1171 * - note that this may not return a page-aligned address if the object 1172 * we're allocating is smaller than a page 1173 */ 1174 order = get_order(len); 1175 kdebug("alloc order %d for %lx", order, len); 1176 1177 pages = alloc_pages(GFP_KERNEL, order); 1178 if (!pages) 1179 goto enomem; 1180 1181 total = 1 << order; 1182 atomic_long_add(total, &mmap_pages_allocated); 1183 1184 point = len >> PAGE_SHIFT; 1185 1186 /* we allocated a power-of-2 sized page set, so we may want to trim off 1187 * the excess */ 1188 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1189 while (total > point) { 1190 order = ilog2(total - point); 1191 n = 1 << order; 1192 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1193 atomic_long_sub(n, &mmap_pages_allocated); 1194 total -= n; 1195 set_page_refcounted(pages + total); 1196 __free_pages(pages + total, order); 1197 } 1198 } 1199 1200 for (point = 1; point < total; point++) 1201 set_page_refcounted(&pages[point]); 1202 1203 base = page_address(pages); 1204 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1205 region->vm_start = (unsigned long) base; 1206 region->vm_end = region->vm_start + len; 1207 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1208 1209 vma->vm_start = region->vm_start; 1210 vma->vm_end = region->vm_start + len; 1211 1212 if (vma->vm_file) { 1213 /* read the contents of a file into the copy */ 1214 mm_segment_t old_fs; 1215 loff_t fpos; 1216 1217 fpos = vma->vm_pgoff; 1218 fpos <<= PAGE_SHIFT; 1219 1220 old_fs = get_fs(); 1221 set_fs(KERNEL_DS); 1222 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); 1223 set_fs(old_fs); 1224 1225 if (ret < 0) 1226 goto error_free; 1227 1228 /* clear the last little bit */ 1229 if (ret < len) 1230 memset(base + ret, 0, len - ret); 1231 1232 } 1233 1234 return 0; 1235 1236 error_free: 1237 free_page_series(region->vm_start, region->vm_top); 1238 region->vm_start = vma->vm_start = 0; 1239 region->vm_end = vma->vm_end = 0; 1240 region->vm_top = 0; 1241 return ret; 1242 1243 enomem: 1244 printk("Allocation of length %lu from process %d (%s) failed\n", 1245 len, current->pid, current->comm); 1246 show_free_areas(0); 1247 return -ENOMEM; 1248 } 1249 1250 /* 1251 * handle mapping creation for uClinux 1252 */ 1253 unsigned long do_mmap_pgoff(struct file *file, 1254 unsigned long addr, 1255 unsigned long len, 1256 unsigned long prot, 1257 unsigned long flags, 1258 unsigned long pgoff, 1259 unsigned long *populate) 1260 { 1261 struct vm_area_struct *vma; 1262 struct vm_region *region; 1263 struct rb_node *rb; 1264 unsigned long capabilities, vm_flags, result; 1265 int ret; 1266 1267 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1268 1269 *populate = 0; 1270 1271 /* decide whether we should attempt the mapping, and if so what sort of 1272 * mapping */ 1273 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1274 &capabilities); 1275 if (ret < 0) { 1276 kleave(" = %d [val]", ret); 1277 return ret; 1278 } 1279 1280 /* we ignore the address hint */ 1281 addr = 0; 1282 len = PAGE_ALIGN(len); 1283 1284 /* we've determined that we can make the mapping, now translate what we 1285 * now know into VMA flags */ 1286 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1287 1288 /* we're going to need to record the mapping */ 1289 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1290 if (!region) 1291 goto error_getting_region; 1292 1293 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1294 if (!vma) 1295 goto error_getting_vma; 1296 1297 region->vm_usage = 1; 1298 region->vm_flags = vm_flags; 1299 region->vm_pgoff = pgoff; 1300 1301 INIT_LIST_HEAD(&vma->anon_vma_chain); 1302 vma->vm_flags = vm_flags; 1303 vma->vm_pgoff = pgoff; 1304 1305 if (file) { 1306 region->vm_file = get_file(file); 1307 vma->vm_file = get_file(file); 1308 } 1309 1310 down_write(&nommu_region_sem); 1311 1312 /* if we want to share, we need to check for regions created by other 1313 * mmap() calls that overlap with our proposed mapping 1314 * - we can only share with a superset match on most regular files 1315 * - shared mappings on character devices and memory backed files are 1316 * permitted to overlap inexactly as far as we are concerned for in 1317 * these cases, sharing is handled in the driver or filesystem rather 1318 * than here 1319 */ 1320 if (vm_flags & VM_MAYSHARE) { 1321 struct vm_region *pregion; 1322 unsigned long pglen, rpglen, pgend, rpgend, start; 1323 1324 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1325 pgend = pgoff + pglen; 1326 1327 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1328 pregion = rb_entry(rb, struct vm_region, vm_rb); 1329 1330 if (!(pregion->vm_flags & VM_MAYSHARE)) 1331 continue; 1332 1333 /* search for overlapping mappings on the same file */ 1334 if (file_inode(pregion->vm_file) != 1335 file_inode(file)) 1336 continue; 1337 1338 if (pregion->vm_pgoff >= pgend) 1339 continue; 1340 1341 rpglen = pregion->vm_end - pregion->vm_start; 1342 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1343 rpgend = pregion->vm_pgoff + rpglen; 1344 if (pgoff >= rpgend) 1345 continue; 1346 1347 /* handle inexactly overlapping matches between 1348 * mappings */ 1349 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1350 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1351 /* new mapping is not a subset of the region */ 1352 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1353 goto sharing_violation; 1354 continue; 1355 } 1356 1357 /* we've found a region we can share */ 1358 pregion->vm_usage++; 1359 vma->vm_region = pregion; 1360 start = pregion->vm_start; 1361 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1362 vma->vm_start = start; 1363 vma->vm_end = start + len; 1364 1365 if (pregion->vm_flags & VM_MAPPED_COPY) { 1366 kdebug("share copy"); 1367 vma->vm_flags |= VM_MAPPED_COPY; 1368 } else { 1369 kdebug("share mmap"); 1370 ret = do_mmap_shared_file(vma); 1371 if (ret < 0) { 1372 vma->vm_region = NULL; 1373 vma->vm_start = 0; 1374 vma->vm_end = 0; 1375 pregion->vm_usage--; 1376 pregion = NULL; 1377 goto error_just_free; 1378 } 1379 } 1380 fput(region->vm_file); 1381 kmem_cache_free(vm_region_jar, region); 1382 region = pregion; 1383 result = start; 1384 goto share; 1385 } 1386 1387 /* obtain the address at which to make a shared mapping 1388 * - this is the hook for quasi-memory character devices to 1389 * tell us the location of a shared mapping 1390 */ 1391 if (capabilities & BDI_CAP_MAP_DIRECT) { 1392 addr = file->f_op->get_unmapped_area(file, addr, len, 1393 pgoff, flags); 1394 if (IS_ERR_VALUE(addr)) { 1395 ret = addr; 1396 if (ret != -ENOSYS) 1397 goto error_just_free; 1398 1399 /* the driver refused to tell us where to site 1400 * the mapping so we'll have to attempt to copy 1401 * it */ 1402 ret = -ENODEV; 1403 if (!(capabilities & BDI_CAP_MAP_COPY)) 1404 goto error_just_free; 1405 1406 capabilities &= ~BDI_CAP_MAP_DIRECT; 1407 } else { 1408 vma->vm_start = region->vm_start = addr; 1409 vma->vm_end = region->vm_end = addr + len; 1410 } 1411 } 1412 } 1413 1414 vma->vm_region = region; 1415 1416 /* set up the mapping 1417 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1418 */ 1419 if (file && vma->vm_flags & VM_SHARED) 1420 ret = do_mmap_shared_file(vma); 1421 else 1422 ret = do_mmap_private(vma, region, len, capabilities); 1423 if (ret < 0) 1424 goto error_just_free; 1425 add_nommu_region(region); 1426 1427 /* clear anonymous mappings that don't ask for uninitialized data */ 1428 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1429 memset((void *)region->vm_start, 0, 1430 region->vm_end - region->vm_start); 1431 1432 /* okay... we have a mapping; now we have to register it */ 1433 result = vma->vm_start; 1434 1435 current->mm->total_vm += len >> PAGE_SHIFT; 1436 1437 share: 1438 add_vma_to_mm(current->mm, vma); 1439 1440 /* we flush the region from the icache only when the first executable 1441 * mapping of it is made */ 1442 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1443 flush_icache_range(region->vm_start, region->vm_end); 1444 region->vm_icache_flushed = true; 1445 } 1446 1447 up_write(&nommu_region_sem); 1448 1449 kleave(" = %lx", result); 1450 return result; 1451 1452 error_just_free: 1453 up_write(&nommu_region_sem); 1454 error: 1455 if (region->vm_file) 1456 fput(region->vm_file); 1457 kmem_cache_free(vm_region_jar, region); 1458 if (vma->vm_file) 1459 fput(vma->vm_file); 1460 kmem_cache_free(vm_area_cachep, vma); 1461 kleave(" = %d", ret); 1462 return ret; 1463 1464 sharing_violation: 1465 up_write(&nommu_region_sem); 1466 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1467 ret = -EINVAL; 1468 goto error; 1469 1470 error_getting_vma: 1471 kmem_cache_free(vm_region_jar, region); 1472 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1473 " from process %d failed\n", 1474 len, current->pid); 1475 show_free_areas(0); 1476 return -ENOMEM; 1477 1478 error_getting_region: 1479 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1480 " from process %d failed\n", 1481 len, current->pid); 1482 show_free_areas(0); 1483 return -ENOMEM; 1484 } 1485 1486 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1487 unsigned long, prot, unsigned long, flags, 1488 unsigned long, fd, unsigned long, pgoff) 1489 { 1490 struct file *file = NULL; 1491 unsigned long retval = -EBADF; 1492 1493 audit_mmap_fd(fd, flags); 1494 if (!(flags & MAP_ANONYMOUS)) { 1495 file = fget(fd); 1496 if (!file) 1497 goto out; 1498 } 1499 1500 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1501 1502 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1503 1504 if (file) 1505 fput(file); 1506 out: 1507 return retval; 1508 } 1509 1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1511 struct mmap_arg_struct { 1512 unsigned long addr; 1513 unsigned long len; 1514 unsigned long prot; 1515 unsigned long flags; 1516 unsigned long fd; 1517 unsigned long offset; 1518 }; 1519 1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1521 { 1522 struct mmap_arg_struct a; 1523 1524 if (copy_from_user(&a, arg, sizeof(a))) 1525 return -EFAULT; 1526 if (a.offset & ~PAGE_MASK) 1527 return -EINVAL; 1528 1529 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1530 a.offset >> PAGE_SHIFT); 1531 } 1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1533 1534 /* 1535 * split a vma into two pieces at address 'addr', a new vma is allocated either 1536 * for the first part or the tail. 1537 */ 1538 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1539 unsigned long addr, int new_below) 1540 { 1541 struct vm_area_struct *new; 1542 struct vm_region *region; 1543 unsigned long npages; 1544 1545 kenter(""); 1546 1547 /* we're only permitted to split anonymous regions (these should have 1548 * only a single usage on the region) */ 1549 if (vma->vm_file) 1550 return -ENOMEM; 1551 1552 if (mm->map_count >= sysctl_max_map_count) 1553 return -ENOMEM; 1554 1555 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1556 if (!region) 1557 return -ENOMEM; 1558 1559 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1560 if (!new) { 1561 kmem_cache_free(vm_region_jar, region); 1562 return -ENOMEM; 1563 } 1564 1565 /* most fields are the same, copy all, and then fixup */ 1566 *new = *vma; 1567 *region = *vma->vm_region; 1568 new->vm_region = region; 1569 1570 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1571 1572 if (new_below) { 1573 region->vm_top = region->vm_end = new->vm_end = addr; 1574 } else { 1575 region->vm_start = new->vm_start = addr; 1576 region->vm_pgoff = new->vm_pgoff += npages; 1577 } 1578 1579 if (new->vm_ops && new->vm_ops->open) 1580 new->vm_ops->open(new); 1581 1582 delete_vma_from_mm(vma); 1583 down_write(&nommu_region_sem); 1584 delete_nommu_region(vma->vm_region); 1585 if (new_below) { 1586 vma->vm_region->vm_start = vma->vm_start = addr; 1587 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1588 } else { 1589 vma->vm_region->vm_end = vma->vm_end = addr; 1590 vma->vm_region->vm_top = addr; 1591 } 1592 add_nommu_region(vma->vm_region); 1593 add_nommu_region(new->vm_region); 1594 up_write(&nommu_region_sem); 1595 add_vma_to_mm(mm, vma); 1596 add_vma_to_mm(mm, new); 1597 return 0; 1598 } 1599 1600 /* 1601 * shrink a VMA by removing the specified chunk from either the beginning or 1602 * the end 1603 */ 1604 static int shrink_vma(struct mm_struct *mm, 1605 struct vm_area_struct *vma, 1606 unsigned long from, unsigned long to) 1607 { 1608 struct vm_region *region; 1609 1610 kenter(""); 1611 1612 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1613 * and list */ 1614 delete_vma_from_mm(vma); 1615 if (from > vma->vm_start) 1616 vma->vm_end = from; 1617 else 1618 vma->vm_start = to; 1619 add_vma_to_mm(mm, vma); 1620 1621 /* cut the backing region down to size */ 1622 region = vma->vm_region; 1623 BUG_ON(region->vm_usage != 1); 1624 1625 down_write(&nommu_region_sem); 1626 delete_nommu_region(region); 1627 if (from > region->vm_start) { 1628 to = region->vm_top; 1629 region->vm_top = region->vm_end = from; 1630 } else { 1631 region->vm_start = to; 1632 } 1633 add_nommu_region(region); 1634 up_write(&nommu_region_sem); 1635 1636 free_page_series(from, to); 1637 return 0; 1638 } 1639 1640 /* 1641 * release a mapping 1642 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1643 * VMA, though it need not cover the whole VMA 1644 */ 1645 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1646 { 1647 struct vm_area_struct *vma; 1648 unsigned long end; 1649 int ret; 1650 1651 kenter(",%lx,%zx", start, len); 1652 1653 len = PAGE_ALIGN(len); 1654 if (len == 0) 1655 return -EINVAL; 1656 1657 end = start + len; 1658 1659 /* find the first potentially overlapping VMA */ 1660 vma = find_vma(mm, start); 1661 if (!vma) { 1662 static int limit = 0; 1663 if (limit < 5) { 1664 printk(KERN_WARNING 1665 "munmap of memory not mmapped by process %d" 1666 " (%s): 0x%lx-0x%lx\n", 1667 current->pid, current->comm, 1668 start, start + len - 1); 1669 limit++; 1670 } 1671 return -EINVAL; 1672 } 1673 1674 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1675 if (vma->vm_file) { 1676 do { 1677 if (start > vma->vm_start) { 1678 kleave(" = -EINVAL [miss]"); 1679 return -EINVAL; 1680 } 1681 if (end == vma->vm_end) 1682 goto erase_whole_vma; 1683 vma = vma->vm_next; 1684 } while (vma); 1685 kleave(" = -EINVAL [split file]"); 1686 return -EINVAL; 1687 } else { 1688 /* the chunk must be a subset of the VMA found */ 1689 if (start == vma->vm_start && end == vma->vm_end) 1690 goto erase_whole_vma; 1691 if (start < vma->vm_start || end > vma->vm_end) { 1692 kleave(" = -EINVAL [superset]"); 1693 return -EINVAL; 1694 } 1695 if (start & ~PAGE_MASK) { 1696 kleave(" = -EINVAL [unaligned start]"); 1697 return -EINVAL; 1698 } 1699 if (end != vma->vm_end && end & ~PAGE_MASK) { 1700 kleave(" = -EINVAL [unaligned split]"); 1701 return -EINVAL; 1702 } 1703 if (start != vma->vm_start && end != vma->vm_end) { 1704 ret = split_vma(mm, vma, start, 1); 1705 if (ret < 0) { 1706 kleave(" = %d [split]", ret); 1707 return ret; 1708 } 1709 } 1710 return shrink_vma(mm, vma, start, end); 1711 } 1712 1713 erase_whole_vma: 1714 delete_vma_from_mm(vma); 1715 delete_vma(mm, vma); 1716 kleave(" = 0"); 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(do_munmap); 1720 1721 int vm_munmap(unsigned long addr, size_t len) 1722 { 1723 struct mm_struct *mm = current->mm; 1724 int ret; 1725 1726 down_write(&mm->mmap_sem); 1727 ret = do_munmap(mm, addr, len); 1728 up_write(&mm->mmap_sem); 1729 return ret; 1730 } 1731 EXPORT_SYMBOL(vm_munmap); 1732 1733 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1734 { 1735 return vm_munmap(addr, len); 1736 } 1737 1738 /* 1739 * release all the mappings made in a process's VM space 1740 */ 1741 void exit_mmap(struct mm_struct *mm) 1742 { 1743 struct vm_area_struct *vma; 1744 1745 if (!mm) 1746 return; 1747 1748 kenter(""); 1749 1750 mm->total_vm = 0; 1751 1752 while ((vma = mm->mmap)) { 1753 mm->mmap = vma->vm_next; 1754 delete_vma_from_mm(vma); 1755 delete_vma(mm, vma); 1756 cond_resched(); 1757 } 1758 1759 kleave(""); 1760 } 1761 1762 unsigned long vm_brk(unsigned long addr, unsigned long len) 1763 { 1764 return -ENOMEM; 1765 } 1766 1767 /* 1768 * expand (or shrink) an existing mapping, potentially moving it at the same 1769 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1770 * 1771 * under NOMMU conditions, we only permit changing a mapping's size, and only 1772 * as long as it stays within the region allocated by do_mmap_private() and the 1773 * block is not shareable 1774 * 1775 * MREMAP_FIXED is not supported under NOMMU conditions 1776 */ 1777 static unsigned long do_mremap(unsigned long addr, 1778 unsigned long old_len, unsigned long new_len, 1779 unsigned long flags, unsigned long new_addr) 1780 { 1781 struct vm_area_struct *vma; 1782 1783 /* insanity checks first */ 1784 old_len = PAGE_ALIGN(old_len); 1785 new_len = PAGE_ALIGN(new_len); 1786 if (old_len == 0 || new_len == 0) 1787 return (unsigned long) -EINVAL; 1788 1789 if (addr & ~PAGE_MASK) 1790 return -EINVAL; 1791 1792 if (flags & MREMAP_FIXED && new_addr != addr) 1793 return (unsigned long) -EINVAL; 1794 1795 vma = find_vma_exact(current->mm, addr, old_len); 1796 if (!vma) 1797 return (unsigned long) -EINVAL; 1798 1799 if (vma->vm_end != vma->vm_start + old_len) 1800 return (unsigned long) -EFAULT; 1801 1802 if (vma->vm_flags & VM_MAYSHARE) 1803 return (unsigned long) -EPERM; 1804 1805 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1806 return (unsigned long) -ENOMEM; 1807 1808 /* all checks complete - do it */ 1809 vma->vm_end = vma->vm_start + new_len; 1810 return vma->vm_start; 1811 } 1812 1813 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1814 unsigned long, new_len, unsigned long, flags, 1815 unsigned long, new_addr) 1816 { 1817 unsigned long ret; 1818 1819 down_write(¤t->mm->mmap_sem); 1820 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1821 up_write(¤t->mm->mmap_sem); 1822 return ret; 1823 } 1824 1825 struct page *follow_page_mask(struct vm_area_struct *vma, 1826 unsigned long address, unsigned int flags, 1827 unsigned int *page_mask) 1828 { 1829 *page_mask = 0; 1830 return NULL; 1831 } 1832 1833 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1834 unsigned long pfn, unsigned long size, pgprot_t prot) 1835 { 1836 if (addr != (pfn << PAGE_SHIFT)) 1837 return -EINVAL; 1838 1839 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1840 return 0; 1841 } 1842 EXPORT_SYMBOL(remap_pfn_range); 1843 1844 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1845 { 1846 unsigned long pfn = start >> PAGE_SHIFT; 1847 unsigned long vm_len = vma->vm_end - vma->vm_start; 1848 1849 pfn += vma->vm_pgoff; 1850 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1851 } 1852 EXPORT_SYMBOL(vm_iomap_memory); 1853 1854 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1855 unsigned long pgoff) 1856 { 1857 unsigned int size = vma->vm_end - vma->vm_start; 1858 1859 if (!(vma->vm_flags & VM_USERMAP)) 1860 return -EINVAL; 1861 1862 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1863 vma->vm_end = vma->vm_start + size; 1864 1865 return 0; 1866 } 1867 EXPORT_SYMBOL(remap_vmalloc_range); 1868 1869 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1870 unsigned long len, unsigned long pgoff, unsigned long flags) 1871 { 1872 return -ENOMEM; 1873 } 1874 1875 void unmap_mapping_range(struct address_space *mapping, 1876 loff_t const holebegin, loff_t const holelen, 1877 int even_cows) 1878 { 1879 } 1880 EXPORT_SYMBOL(unmap_mapping_range); 1881 1882 /* 1883 * Check that a process has enough memory to allocate a new virtual 1884 * mapping. 0 means there is enough memory for the allocation to 1885 * succeed and -ENOMEM implies there is not. 1886 * 1887 * We currently support three overcommit policies, which are set via the 1888 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1889 * 1890 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1891 * Additional code 2002 Jul 20 by Robert Love. 1892 * 1893 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1894 * 1895 * Note this is a helper function intended to be used by LSMs which 1896 * wish to use this logic. 1897 */ 1898 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1899 { 1900 unsigned long free, allowed, reserve; 1901 1902 vm_acct_memory(pages); 1903 1904 /* 1905 * Sometimes we want to use more memory than we have 1906 */ 1907 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1908 return 0; 1909 1910 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1911 free = global_page_state(NR_FREE_PAGES); 1912 free += global_page_state(NR_FILE_PAGES); 1913 1914 /* 1915 * shmem pages shouldn't be counted as free in this 1916 * case, they can't be purged, only swapped out, and 1917 * that won't affect the overall amount of available 1918 * memory in the system. 1919 */ 1920 free -= global_page_state(NR_SHMEM); 1921 1922 free += get_nr_swap_pages(); 1923 1924 /* 1925 * Any slabs which are created with the 1926 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1927 * which are reclaimable, under pressure. The dentry 1928 * cache and most inode caches should fall into this 1929 */ 1930 free += global_page_state(NR_SLAB_RECLAIMABLE); 1931 1932 /* 1933 * Leave reserved pages. The pages are not for anonymous pages. 1934 */ 1935 if (free <= totalreserve_pages) 1936 goto error; 1937 else 1938 free -= totalreserve_pages; 1939 1940 /* 1941 * Reserve some for root 1942 */ 1943 if (!cap_sys_admin) 1944 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1945 1946 if (free > pages) 1947 return 0; 1948 1949 goto error; 1950 } 1951 1952 allowed = vm_commit_limit(); 1953 /* 1954 * Reserve some 3% for root 1955 */ 1956 if (!cap_sys_admin) 1957 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1958 1959 /* 1960 * Don't let a single process grow so big a user can't recover 1961 */ 1962 if (mm) { 1963 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1964 allowed -= min(mm->total_vm / 32, reserve); 1965 } 1966 1967 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1968 return 0; 1969 1970 error: 1971 vm_unacct_memory(pages); 1972 1973 return -ENOMEM; 1974 } 1975 1976 int in_gate_area_no_mm(unsigned long addr) 1977 { 1978 return 0; 1979 } 1980 1981 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1982 { 1983 BUG(); 1984 return 0; 1985 } 1986 EXPORT_SYMBOL(filemap_fault); 1987 1988 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr, 1989 unsigned long size, pgoff_t pgoff) 1990 { 1991 BUG(); 1992 return 0; 1993 } 1994 EXPORT_SYMBOL(generic_file_remap_pages); 1995 1996 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1997 unsigned long addr, void *buf, int len, int write) 1998 { 1999 struct vm_area_struct *vma; 2000 2001 down_read(&mm->mmap_sem); 2002 2003 /* the access must start within one of the target process's mappings */ 2004 vma = find_vma(mm, addr); 2005 if (vma) { 2006 /* don't overrun this mapping */ 2007 if (addr + len >= vma->vm_end) 2008 len = vma->vm_end - addr; 2009 2010 /* only read or write mappings where it is permitted */ 2011 if (write && vma->vm_flags & VM_MAYWRITE) 2012 copy_to_user_page(vma, NULL, addr, 2013 (void *) addr, buf, len); 2014 else if (!write && vma->vm_flags & VM_MAYREAD) 2015 copy_from_user_page(vma, NULL, addr, 2016 buf, (void *) addr, len); 2017 else 2018 len = 0; 2019 } else { 2020 len = 0; 2021 } 2022 2023 up_read(&mm->mmap_sem); 2024 2025 return len; 2026 } 2027 2028 /** 2029 * @access_remote_vm - access another process' address space 2030 * @mm: the mm_struct of the target address space 2031 * @addr: start address to access 2032 * @buf: source or destination buffer 2033 * @len: number of bytes to transfer 2034 * @write: whether the access is a write 2035 * 2036 * The caller must hold a reference on @mm. 2037 */ 2038 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2039 void *buf, int len, int write) 2040 { 2041 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2042 } 2043 2044 /* 2045 * Access another process' address space. 2046 * - source/target buffer must be kernel space 2047 */ 2048 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2049 { 2050 struct mm_struct *mm; 2051 2052 if (addr + len < addr) 2053 return 0; 2054 2055 mm = get_task_mm(tsk); 2056 if (!mm) 2057 return 0; 2058 2059 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2060 2061 mmput(mm); 2062 return len; 2063 } 2064 2065 /** 2066 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2067 * @inode: The inode to check 2068 * @size: The current filesize of the inode 2069 * @newsize: The proposed filesize of the inode 2070 * 2071 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2072 * make sure that that any outstanding VMAs aren't broken and then shrink the 2073 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2074 * automatically grant mappings that are too large. 2075 */ 2076 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2077 size_t newsize) 2078 { 2079 struct vm_area_struct *vma; 2080 struct vm_region *region; 2081 pgoff_t low, high; 2082 size_t r_size, r_top; 2083 2084 low = newsize >> PAGE_SHIFT; 2085 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2086 2087 down_write(&nommu_region_sem); 2088 mutex_lock(&inode->i_mapping->i_mmap_mutex); 2089 2090 /* search for VMAs that fall within the dead zone */ 2091 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 2092 /* found one - only interested if it's shared out of the page 2093 * cache */ 2094 if (vma->vm_flags & VM_SHARED) { 2095 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2096 up_write(&nommu_region_sem); 2097 return -ETXTBSY; /* not quite true, but near enough */ 2098 } 2099 } 2100 2101 /* reduce any regions that overlap the dead zone - if in existence, 2102 * these will be pointed to by VMAs that don't overlap the dead zone 2103 * 2104 * we don't check for any regions that start beyond the EOF as there 2105 * shouldn't be any 2106 */ 2107 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 2108 0, ULONG_MAX) { 2109 if (!(vma->vm_flags & VM_SHARED)) 2110 continue; 2111 2112 region = vma->vm_region; 2113 r_size = region->vm_top - region->vm_start; 2114 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2115 2116 if (r_top > newsize) { 2117 region->vm_top -= r_top - newsize; 2118 if (region->vm_end > region->vm_top) 2119 region->vm_end = region->vm_top; 2120 } 2121 } 2122 2123 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2124 up_write(&nommu_region_sem); 2125 return 0; 2126 } 2127 2128 /* 2129 * Initialise sysctl_user_reserve_kbytes. 2130 * 2131 * This is intended to prevent a user from starting a single memory hogging 2132 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2133 * mode. 2134 * 2135 * The default value is min(3% of free memory, 128MB) 2136 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2137 */ 2138 static int __meminit init_user_reserve(void) 2139 { 2140 unsigned long free_kbytes; 2141 2142 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2143 2144 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 2145 return 0; 2146 } 2147 module_init(init_user_reserve) 2148 2149 /* 2150 * Initialise sysctl_admin_reserve_kbytes. 2151 * 2152 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2153 * to log in and kill a memory hogging process. 2154 * 2155 * Systems with more than 256MB will reserve 8MB, enough to recover 2156 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2157 * only reserve 3% of free pages by default. 2158 */ 2159 static int __meminit init_admin_reserve(void) 2160 { 2161 unsigned long free_kbytes; 2162 2163 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2164 2165 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 2166 return 0; 2167 } 2168 module_init(init_admin_reserve) 2169