xref: /openbmc/linux/mm/nommu.c (revision 8e9356c6)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 unsigned long sysctl_overcommit_kbytes __read_mostly;
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
67 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
68 int heap_stack_gap = 0;
69 
70 atomic_long_t mmap_pages_allocated;
71 
72 /*
73  * The global memory commitment made in the system can be a metric
74  * that can be used to drive ballooning decisions when Linux is hosted
75  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
76  * balancing memory across competing virtual machines that are hosted.
77  * Several metrics drive this policy engine including the guest reported
78  * memory commitment.
79  */
80 unsigned long vm_memory_committed(void)
81 {
82 	return percpu_counter_read_positive(&vm_committed_as);
83 }
84 
85 EXPORT_SYMBOL_GPL(vm_memory_committed);
86 
87 EXPORT_SYMBOL(mem_map);
88 
89 /* list of mapped, potentially shareable regions */
90 static struct kmem_cache *vm_region_jar;
91 struct rb_root nommu_region_tree = RB_ROOT;
92 DECLARE_RWSEM(nommu_region_sem);
93 
94 const struct vm_operations_struct generic_file_vm_ops = {
95 };
96 
97 /*
98  * Return the total memory allocated for this pointer, not
99  * just what the caller asked for.
100  *
101  * Doesn't have to be accurate, i.e. may have races.
102  */
103 unsigned int kobjsize(const void *objp)
104 {
105 	struct page *page;
106 
107 	/*
108 	 * If the object we have should not have ksize performed on it,
109 	 * return size of 0
110 	 */
111 	if (!objp || !virt_addr_valid(objp))
112 		return 0;
113 
114 	page = virt_to_head_page(objp);
115 
116 	/*
117 	 * If the allocator sets PageSlab, we know the pointer came from
118 	 * kmalloc().
119 	 */
120 	if (PageSlab(page))
121 		return ksize(objp);
122 
123 	/*
124 	 * If it's not a compound page, see if we have a matching VMA
125 	 * region. This test is intentionally done in reverse order,
126 	 * so if there's no VMA, we still fall through and hand back
127 	 * PAGE_SIZE for 0-order pages.
128 	 */
129 	if (!PageCompound(page)) {
130 		struct vm_area_struct *vma;
131 
132 		vma = find_vma(current->mm, (unsigned long)objp);
133 		if (vma)
134 			return vma->vm_end - vma->vm_start;
135 	}
136 
137 	/*
138 	 * The ksize() function is only guaranteed to work for pointers
139 	 * returned by kmalloc(). So handle arbitrary pointers here.
140 	 */
141 	return PAGE_SIZE << compound_order(page);
142 }
143 
144 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
145 		      unsigned long start, unsigned long nr_pages,
146 		      unsigned int foll_flags, struct page **pages,
147 		      struct vm_area_struct **vmas, int *nonblocking)
148 {
149 	struct vm_area_struct *vma;
150 	unsigned long vm_flags;
151 	int i;
152 
153 	/* calculate required read or write permissions.
154 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
155 	 */
156 	vm_flags  = (foll_flags & FOLL_WRITE) ?
157 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
158 	vm_flags &= (foll_flags & FOLL_FORCE) ?
159 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
160 
161 	for (i = 0; i < nr_pages; i++) {
162 		vma = find_vma(mm, start);
163 		if (!vma)
164 			goto finish_or_fault;
165 
166 		/* protect what we can, including chardevs */
167 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
168 		    !(vm_flags & vma->vm_flags))
169 			goto finish_or_fault;
170 
171 		if (pages) {
172 			pages[i] = virt_to_page(start);
173 			if (pages[i])
174 				page_cache_get(pages[i]);
175 		}
176 		if (vmas)
177 			vmas[i] = vma;
178 		start = (start + PAGE_SIZE) & PAGE_MASK;
179 	}
180 
181 	return i;
182 
183 finish_or_fault:
184 	return i ? : -EFAULT;
185 }
186 
187 /*
188  * get a list of pages in an address range belonging to the specified process
189  * and indicate the VMA that covers each page
190  * - this is potentially dodgy as we may end incrementing the page count of a
191  *   slab page or a secondary page from a compound page
192  * - don't permit access to VMAs that don't support it, such as I/O mappings
193  */
194 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
195 		    unsigned long start, unsigned long nr_pages,
196 		    int write, int force, struct page **pages,
197 		    struct vm_area_struct **vmas)
198 {
199 	int flags = 0;
200 
201 	if (write)
202 		flags |= FOLL_WRITE;
203 	if (force)
204 		flags |= FOLL_FORCE;
205 
206 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
207 				NULL);
208 }
209 EXPORT_SYMBOL(get_user_pages);
210 
211 /**
212  * follow_pfn - look up PFN at a user virtual address
213  * @vma: memory mapping
214  * @address: user virtual address
215  * @pfn: location to store found PFN
216  *
217  * Only IO mappings and raw PFN mappings are allowed.
218  *
219  * Returns zero and the pfn at @pfn on success, -ve otherwise.
220  */
221 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
222 	unsigned long *pfn)
223 {
224 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
225 		return -EINVAL;
226 
227 	*pfn = address >> PAGE_SHIFT;
228 	return 0;
229 }
230 EXPORT_SYMBOL(follow_pfn);
231 
232 LIST_HEAD(vmap_area_list);
233 
234 void vfree(const void *addr)
235 {
236 	kfree(addr);
237 }
238 EXPORT_SYMBOL(vfree);
239 
240 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
241 {
242 	/*
243 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
244 	 * returns only a logical address.
245 	 */
246 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
247 }
248 EXPORT_SYMBOL(__vmalloc);
249 
250 void *vmalloc_user(unsigned long size)
251 {
252 	void *ret;
253 
254 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
255 			PAGE_KERNEL);
256 	if (ret) {
257 		struct vm_area_struct *vma;
258 
259 		down_write(&current->mm->mmap_sem);
260 		vma = find_vma(current->mm, (unsigned long)ret);
261 		if (vma)
262 			vma->vm_flags |= VM_USERMAP;
263 		up_write(&current->mm->mmap_sem);
264 	}
265 
266 	return ret;
267 }
268 EXPORT_SYMBOL(vmalloc_user);
269 
270 struct page *vmalloc_to_page(const void *addr)
271 {
272 	return virt_to_page(addr);
273 }
274 EXPORT_SYMBOL(vmalloc_to_page);
275 
276 unsigned long vmalloc_to_pfn(const void *addr)
277 {
278 	return page_to_pfn(virt_to_page(addr));
279 }
280 EXPORT_SYMBOL(vmalloc_to_pfn);
281 
282 long vread(char *buf, char *addr, unsigned long count)
283 {
284 	/* Don't allow overflow */
285 	if ((unsigned long) buf + count < count)
286 		count = -(unsigned long) buf;
287 
288 	memcpy(buf, addr, count);
289 	return count;
290 }
291 
292 long vwrite(char *buf, char *addr, unsigned long count)
293 {
294 	/* Don't allow overflow */
295 	if ((unsigned long) addr + count < count)
296 		count = -(unsigned long) addr;
297 
298 	memcpy(addr, buf, count);
299 	return(count);
300 }
301 
302 /*
303  *	vmalloc  -  allocate virtually continguos memory
304  *
305  *	@size:		allocation size
306  *
307  *	Allocate enough pages to cover @size from the page level
308  *	allocator and map them into continguos kernel virtual space.
309  *
310  *	For tight control over page level allocator and protection flags
311  *	use __vmalloc() instead.
312  */
313 void *vmalloc(unsigned long size)
314 {
315        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
316 }
317 EXPORT_SYMBOL(vmalloc);
318 
319 /*
320  *	vzalloc - allocate virtually continguos memory with zero fill
321  *
322  *	@size:		allocation size
323  *
324  *	Allocate enough pages to cover @size from the page level
325  *	allocator and map them into continguos kernel virtual space.
326  *	The memory allocated is set to zero.
327  *
328  *	For tight control over page level allocator and protection flags
329  *	use __vmalloc() instead.
330  */
331 void *vzalloc(unsigned long size)
332 {
333 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
334 			PAGE_KERNEL);
335 }
336 EXPORT_SYMBOL(vzalloc);
337 
338 /**
339  * vmalloc_node - allocate memory on a specific node
340  * @size:	allocation size
341  * @node:	numa node
342  *
343  * Allocate enough pages to cover @size from the page level
344  * allocator and map them into contiguous kernel virtual space.
345  *
346  * For tight control over page level allocator and protection flags
347  * use __vmalloc() instead.
348  */
349 void *vmalloc_node(unsigned long size, int node)
350 {
351 	return vmalloc(size);
352 }
353 EXPORT_SYMBOL(vmalloc_node);
354 
355 /**
356  * vzalloc_node - allocate memory on a specific node with zero fill
357  * @size:	allocation size
358  * @node:	numa node
359  *
360  * Allocate enough pages to cover @size from the page level
361  * allocator and map them into contiguous kernel virtual space.
362  * The memory allocated is set to zero.
363  *
364  * For tight control over page level allocator and protection flags
365  * use __vmalloc() instead.
366  */
367 void *vzalloc_node(unsigned long size, int node)
368 {
369 	return vzalloc(size);
370 }
371 EXPORT_SYMBOL(vzalloc_node);
372 
373 #ifndef PAGE_KERNEL_EXEC
374 # define PAGE_KERNEL_EXEC PAGE_KERNEL
375 #endif
376 
377 /**
378  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
379  *	@size:		allocation size
380  *
381  *	Kernel-internal function to allocate enough pages to cover @size
382  *	the page level allocator and map them into contiguous and
383  *	executable kernel virtual space.
384  *
385  *	For tight control over page level allocator and protection flags
386  *	use __vmalloc() instead.
387  */
388 
389 void *vmalloc_exec(unsigned long size)
390 {
391 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
392 }
393 
394 /**
395  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
396  *	@size:		allocation size
397  *
398  *	Allocate enough 32bit PA addressable pages to cover @size from the
399  *	page level allocator and map them into continguos kernel virtual space.
400  */
401 void *vmalloc_32(unsigned long size)
402 {
403 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
404 }
405 EXPORT_SYMBOL(vmalloc_32);
406 
407 /**
408  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
409  *	@size:		allocation size
410  *
411  * The resulting memory area is 32bit addressable and zeroed so it can be
412  * mapped to userspace without leaking data.
413  *
414  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
415  * remap_vmalloc_range() are permissible.
416  */
417 void *vmalloc_32_user(unsigned long size)
418 {
419 	/*
420 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
421 	 * but for now this can simply use vmalloc_user() directly.
422 	 */
423 	return vmalloc_user(size);
424 }
425 EXPORT_SYMBOL(vmalloc_32_user);
426 
427 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
428 {
429 	BUG();
430 	return NULL;
431 }
432 EXPORT_SYMBOL(vmap);
433 
434 void vunmap(const void *addr)
435 {
436 	BUG();
437 }
438 EXPORT_SYMBOL(vunmap);
439 
440 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
441 {
442 	BUG();
443 	return NULL;
444 }
445 EXPORT_SYMBOL(vm_map_ram);
446 
447 void vm_unmap_ram(const void *mem, unsigned int count)
448 {
449 	BUG();
450 }
451 EXPORT_SYMBOL(vm_unmap_ram);
452 
453 void vm_unmap_aliases(void)
454 {
455 }
456 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
457 
458 /*
459  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
460  * have one.
461  */
462 void  __attribute__((weak)) vmalloc_sync_all(void)
463 {
464 }
465 
466 /**
467  *	alloc_vm_area - allocate a range of kernel address space
468  *	@size:		size of the area
469  *
470  *	Returns:	NULL on failure, vm_struct on success
471  *
472  *	This function reserves a range of kernel address space, and
473  *	allocates pagetables to map that range.  No actual mappings
474  *	are created.  If the kernel address space is not shared
475  *	between processes, it syncs the pagetable across all
476  *	processes.
477  */
478 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
479 {
480 	BUG();
481 	return NULL;
482 }
483 EXPORT_SYMBOL_GPL(alloc_vm_area);
484 
485 void free_vm_area(struct vm_struct *area)
486 {
487 	BUG();
488 }
489 EXPORT_SYMBOL_GPL(free_vm_area);
490 
491 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
492 		   struct page *page)
493 {
494 	return -EINVAL;
495 }
496 EXPORT_SYMBOL(vm_insert_page);
497 
498 /*
499  *  sys_brk() for the most part doesn't need the global kernel
500  *  lock, except when an application is doing something nasty
501  *  like trying to un-brk an area that has already been mapped
502  *  to a regular file.  in this case, the unmapping will need
503  *  to invoke file system routines that need the global lock.
504  */
505 SYSCALL_DEFINE1(brk, unsigned long, brk)
506 {
507 	struct mm_struct *mm = current->mm;
508 
509 	if (brk < mm->start_brk || brk > mm->context.end_brk)
510 		return mm->brk;
511 
512 	if (mm->brk == brk)
513 		return mm->brk;
514 
515 	/*
516 	 * Always allow shrinking brk
517 	 */
518 	if (brk <= mm->brk) {
519 		mm->brk = brk;
520 		return brk;
521 	}
522 
523 	/*
524 	 * Ok, looks good - let it rip.
525 	 */
526 	flush_icache_range(mm->brk, brk);
527 	return mm->brk = brk;
528 }
529 
530 /*
531  * initialise the VMA and region record slabs
532  */
533 void __init mmap_init(void)
534 {
535 	int ret;
536 
537 	ret = percpu_counter_init(&vm_committed_as, 0);
538 	VM_BUG_ON(ret);
539 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
540 }
541 
542 /*
543  * validate the region tree
544  * - the caller must hold the region lock
545  */
546 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
547 static noinline void validate_nommu_regions(void)
548 {
549 	struct vm_region *region, *last;
550 	struct rb_node *p, *lastp;
551 
552 	lastp = rb_first(&nommu_region_tree);
553 	if (!lastp)
554 		return;
555 
556 	last = rb_entry(lastp, struct vm_region, vm_rb);
557 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
558 	BUG_ON(unlikely(last->vm_top < last->vm_end));
559 
560 	while ((p = rb_next(lastp))) {
561 		region = rb_entry(p, struct vm_region, vm_rb);
562 		last = rb_entry(lastp, struct vm_region, vm_rb);
563 
564 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
565 		BUG_ON(unlikely(region->vm_top < region->vm_end));
566 		BUG_ON(unlikely(region->vm_start < last->vm_top));
567 
568 		lastp = p;
569 	}
570 }
571 #else
572 static void validate_nommu_regions(void)
573 {
574 }
575 #endif
576 
577 /*
578  * add a region into the global tree
579  */
580 static void add_nommu_region(struct vm_region *region)
581 {
582 	struct vm_region *pregion;
583 	struct rb_node **p, *parent;
584 
585 	validate_nommu_regions();
586 
587 	parent = NULL;
588 	p = &nommu_region_tree.rb_node;
589 	while (*p) {
590 		parent = *p;
591 		pregion = rb_entry(parent, struct vm_region, vm_rb);
592 		if (region->vm_start < pregion->vm_start)
593 			p = &(*p)->rb_left;
594 		else if (region->vm_start > pregion->vm_start)
595 			p = &(*p)->rb_right;
596 		else if (pregion == region)
597 			return;
598 		else
599 			BUG();
600 	}
601 
602 	rb_link_node(&region->vm_rb, parent, p);
603 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
604 
605 	validate_nommu_regions();
606 }
607 
608 /*
609  * delete a region from the global tree
610  */
611 static void delete_nommu_region(struct vm_region *region)
612 {
613 	BUG_ON(!nommu_region_tree.rb_node);
614 
615 	validate_nommu_regions();
616 	rb_erase(&region->vm_rb, &nommu_region_tree);
617 	validate_nommu_regions();
618 }
619 
620 /*
621  * free a contiguous series of pages
622  */
623 static void free_page_series(unsigned long from, unsigned long to)
624 {
625 	for (; from < to; from += PAGE_SIZE) {
626 		struct page *page = virt_to_page(from);
627 
628 		kdebug("- free %lx", from);
629 		atomic_long_dec(&mmap_pages_allocated);
630 		if (page_count(page) != 1)
631 			kdebug("free page %p: refcount not one: %d",
632 			       page, page_count(page));
633 		put_page(page);
634 	}
635 }
636 
637 /*
638  * release a reference to a region
639  * - the caller must hold the region semaphore for writing, which this releases
640  * - the region may not have been added to the tree yet, in which case vm_top
641  *   will equal vm_start
642  */
643 static void __put_nommu_region(struct vm_region *region)
644 	__releases(nommu_region_sem)
645 {
646 	kenter("%p{%d}", region, region->vm_usage);
647 
648 	BUG_ON(!nommu_region_tree.rb_node);
649 
650 	if (--region->vm_usage == 0) {
651 		if (region->vm_top > region->vm_start)
652 			delete_nommu_region(region);
653 		up_write(&nommu_region_sem);
654 
655 		if (region->vm_file)
656 			fput(region->vm_file);
657 
658 		/* IO memory and memory shared directly out of the pagecache
659 		 * from ramfs/tmpfs mustn't be released here */
660 		if (region->vm_flags & VM_MAPPED_COPY) {
661 			kdebug("free series");
662 			free_page_series(region->vm_start, region->vm_top);
663 		}
664 		kmem_cache_free(vm_region_jar, region);
665 	} else {
666 		up_write(&nommu_region_sem);
667 	}
668 }
669 
670 /*
671  * release a reference to a region
672  */
673 static void put_nommu_region(struct vm_region *region)
674 {
675 	down_write(&nommu_region_sem);
676 	__put_nommu_region(region);
677 }
678 
679 /*
680  * update protection on a vma
681  */
682 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
683 {
684 #ifdef CONFIG_MPU
685 	struct mm_struct *mm = vma->vm_mm;
686 	long start = vma->vm_start & PAGE_MASK;
687 	while (start < vma->vm_end) {
688 		protect_page(mm, start, flags);
689 		start += PAGE_SIZE;
690 	}
691 	update_protections(mm);
692 #endif
693 }
694 
695 /*
696  * add a VMA into a process's mm_struct in the appropriate place in the list
697  * and tree and add to the address space's page tree also if not an anonymous
698  * page
699  * - should be called with mm->mmap_sem held writelocked
700  */
701 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
702 {
703 	struct vm_area_struct *pvma, *prev;
704 	struct address_space *mapping;
705 	struct rb_node **p, *parent, *rb_prev;
706 
707 	kenter(",%p", vma);
708 
709 	BUG_ON(!vma->vm_region);
710 
711 	mm->map_count++;
712 	vma->vm_mm = mm;
713 
714 	protect_vma(vma, vma->vm_flags);
715 
716 	/* add the VMA to the mapping */
717 	if (vma->vm_file) {
718 		mapping = vma->vm_file->f_mapping;
719 
720 		mutex_lock(&mapping->i_mmap_mutex);
721 		flush_dcache_mmap_lock(mapping);
722 		vma_interval_tree_insert(vma, &mapping->i_mmap);
723 		flush_dcache_mmap_unlock(mapping);
724 		mutex_unlock(&mapping->i_mmap_mutex);
725 	}
726 
727 	/* add the VMA to the tree */
728 	parent = rb_prev = NULL;
729 	p = &mm->mm_rb.rb_node;
730 	while (*p) {
731 		parent = *p;
732 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
733 
734 		/* sort by: start addr, end addr, VMA struct addr in that order
735 		 * (the latter is necessary as we may get identical VMAs) */
736 		if (vma->vm_start < pvma->vm_start)
737 			p = &(*p)->rb_left;
738 		else if (vma->vm_start > pvma->vm_start) {
739 			rb_prev = parent;
740 			p = &(*p)->rb_right;
741 		} else if (vma->vm_end < pvma->vm_end)
742 			p = &(*p)->rb_left;
743 		else if (vma->vm_end > pvma->vm_end) {
744 			rb_prev = parent;
745 			p = &(*p)->rb_right;
746 		} else if (vma < pvma)
747 			p = &(*p)->rb_left;
748 		else if (vma > pvma) {
749 			rb_prev = parent;
750 			p = &(*p)->rb_right;
751 		} else
752 			BUG();
753 	}
754 
755 	rb_link_node(&vma->vm_rb, parent, p);
756 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
757 
758 	/* add VMA to the VMA list also */
759 	prev = NULL;
760 	if (rb_prev)
761 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
762 
763 	__vma_link_list(mm, vma, prev, parent);
764 }
765 
766 /*
767  * delete a VMA from its owning mm_struct and address space
768  */
769 static void delete_vma_from_mm(struct vm_area_struct *vma)
770 {
771 	struct address_space *mapping;
772 	struct mm_struct *mm = vma->vm_mm;
773 
774 	kenter("%p", vma);
775 
776 	protect_vma(vma, 0);
777 
778 	mm->map_count--;
779 	if (mm->mmap_cache == vma)
780 		mm->mmap_cache = NULL;
781 
782 	/* remove the VMA from the mapping */
783 	if (vma->vm_file) {
784 		mapping = vma->vm_file->f_mapping;
785 
786 		mutex_lock(&mapping->i_mmap_mutex);
787 		flush_dcache_mmap_lock(mapping);
788 		vma_interval_tree_remove(vma, &mapping->i_mmap);
789 		flush_dcache_mmap_unlock(mapping);
790 		mutex_unlock(&mapping->i_mmap_mutex);
791 	}
792 
793 	/* remove from the MM's tree and list */
794 	rb_erase(&vma->vm_rb, &mm->mm_rb);
795 
796 	if (vma->vm_prev)
797 		vma->vm_prev->vm_next = vma->vm_next;
798 	else
799 		mm->mmap = vma->vm_next;
800 
801 	if (vma->vm_next)
802 		vma->vm_next->vm_prev = vma->vm_prev;
803 }
804 
805 /*
806  * destroy a VMA record
807  */
808 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
809 {
810 	kenter("%p", vma);
811 	if (vma->vm_ops && vma->vm_ops->close)
812 		vma->vm_ops->close(vma);
813 	if (vma->vm_file)
814 		fput(vma->vm_file);
815 	put_nommu_region(vma->vm_region);
816 	kmem_cache_free(vm_area_cachep, vma);
817 }
818 
819 /*
820  * look up the first VMA in which addr resides, NULL if none
821  * - should be called with mm->mmap_sem at least held readlocked
822  */
823 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
824 {
825 	struct vm_area_struct *vma;
826 
827 	/* check the cache first */
828 	vma = ACCESS_ONCE(mm->mmap_cache);
829 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
830 		return vma;
831 
832 	/* trawl the list (there may be multiple mappings in which addr
833 	 * resides) */
834 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
835 		if (vma->vm_start > addr)
836 			return NULL;
837 		if (vma->vm_end > addr) {
838 			mm->mmap_cache = vma;
839 			return vma;
840 		}
841 	}
842 
843 	return NULL;
844 }
845 EXPORT_SYMBOL(find_vma);
846 
847 /*
848  * find a VMA
849  * - we don't extend stack VMAs under NOMMU conditions
850  */
851 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
852 {
853 	return find_vma(mm, addr);
854 }
855 
856 /*
857  * expand a stack to a given address
858  * - not supported under NOMMU conditions
859  */
860 int expand_stack(struct vm_area_struct *vma, unsigned long address)
861 {
862 	return -ENOMEM;
863 }
864 
865 /*
866  * look up the first VMA exactly that exactly matches addr
867  * - should be called with mm->mmap_sem at least held readlocked
868  */
869 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
870 					     unsigned long addr,
871 					     unsigned long len)
872 {
873 	struct vm_area_struct *vma;
874 	unsigned long end = addr + len;
875 
876 	/* check the cache first */
877 	vma = mm->mmap_cache;
878 	if (vma && vma->vm_start == addr && vma->vm_end == end)
879 		return vma;
880 
881 	/* trawl the list (there may be multiple mappings in which addr
882 	 * resides) */
883 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
884 		if (vma->vm_start < addr)
885 			continue;
886 		if (vma->vm_start > addr)
887 			return NULL;
888 		if (vma->vm_end == end) {
889 			mm->mmap_cache = vma;
890 			return vma;
891 		}
892 	}
893 
894 	return NULL;
895 }
896 
897 /*
898  * determine whether a mapping should be permitted and, if so, what sort of
899  * mapping we're capable of supporting
900  */
901 static int validate_mmap_request(struct file *file,
902 				 unsigned long addr,
903 				 unsigned long len,
904 				 unsigned long prot,
905 				 unsigned long flags,
906 				 unsigned long pgoff,
907 				 unsigned long *_capabilities)
908 {
909 	unsigned long capabilities, rlen;
910 	int ret;
911 
912 	/* do the simple checks first */
913 	if (flags & MAP_FIXED) {
914 		printk(KERN_DEBUG
915 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
916 		       current->pid);
917 		return -EINVAL;
918 	}
919 
920 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
921 	    (flags & MAP_TYPE) != MAP_SHARED)
922 		return -EINVAL;
923 
924 	if (!len)
925 		return -EINVAL;
926 
927 	/* Careful about overflows.. */
928 	rlen = PAGE_ALIGN(len);
929 	if (!rlen || rlen > TASK_SIZE)
930 		return -ENOMEM;
931 
932 	/* offset overflow? */
933 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
934 		return -EOVERFLOW;
935 
936 	if (file) {
937 		/* validate file mapping requests */
938 		struct address_space *mapping;
939 
940 		/* files must support mmap */
941 		if (!file->f_op->mmap)
942 			return -ENODEV;
943 
944 		/* work out if what we've got could possibly be shared
945 		 * - we support chardevs that provide their own "memory"
946 		 * - we support files/blockdevs that are memory backed
947 		 */
948 		mapping = file->f_mapping;
949 		if (!mapping)
950 			mapping = file_inode(file)->i_mapping;
951 
952 		capabilities = 0;
953 		if (mapping && mapping->backing_dev_info)
954 			capabilities = mapping->backing_dev_info->capabilities;
955 
956 		if (!capabilities) {
957 			/* no explicit capabilities set, so assume some
958 			 * defaults */
959 			switch (file_inode(file)->i_mode & S_IFMT) {
960 			case S_IFREG:
961 			case S_IFBLK:
962 				capabilities = BDI_CAP_MAP_COPY;
963 				break;
964 
965 			case S_IFCHR:
966 				capabilities =
967 					BDI_CAP_MAP_DIRECT |
968 					BDI_CAP_READ_MAP |
969 					BDI_CAP_WRITE_MAP;
970 				break;
971 
972 			default:
973 				return -EINVAL;
974 			}
975 		}
976 
977 		/* eliminate any capabilities that we can't support on this
978 		 * device */
979 		if (!file->f_op->get_unmapped_area)
980 			capabilities &= ~BDI_CAP_MAP_DIRECT;
981 		if (!file->f_op->read)
982 			capabilities &= ~BDI_CAP_MAP_COPY;
983 
984 		/* The file shall have been opened with read permission. */
985 		if (!(file->f_mode & FMODE_READ))
986 			return -EACCES;
987 
988 		if (flags & MAP_SHARED) {
989 			/* do checks for writing, appending and locking */
990 			if ((prot & PROT_WRITE) &&
991 			    !(file->f_mode & FMODE_WRITE))
992 				return -EACCES;
993 
994 			if (IS_APPEND(file_inode(file)) &&
995 			    (file->f_mode & FMODE_WRITE))
996 				return -EACCES;
997 
998 			if (locks_verify_locked(file_inode(file)))
999 				return -EAGAIN;
1000 
1001 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
1002 				return -ENODEV;
1003 
1004 			/* we mustn't privatise shared mappings */
1005 			capabilities &= ~BDI_CAP_MAP_COPY;
1006 		}
1007 		else {
1008 			/* we're going to read the file into private memory we
1009 			 * allocate */
1010 			if (!(capabilities & BDI_CAP_MAP_COPY))
1011 				return -ENODEV;
1012 
1013 			/* we don't permit a private writable mapping to be
1014 			 * shared with the backing device */
1015 			if (prot & PROT_WRITE)
1016 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1017 		}
1018 
1019 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1020 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1021 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1022 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1023 			    ) {
1024 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1025 				if (flags & MAP_SHARED) {
1026 					printk(KERN_WARNING
1027 					       "MAP_SHARED not completely supported on !MMU\n");
1028 					return -EINVAL;
1029 				}
1030 			}
1031 		}
1032 
1033 		/* handle executable mappings and implied executable
1034 		 * mappings */
1035 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1036 			if (prot & PROT_EXEC)
1037 				return -EPERM;
1038 		}
1039 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1040 			/* handle implication of PROT_EXEC by PROT_READ */
1041 			if (current->personality & READ_IMPLIES_EXEC) {
1042 				if (capabilities & BDI_CAP_EXEC_MAP)
1043 					prot |= PROT_EXEC;
1044 			}
1045 		}
1046 		else if ((prot & PROT_READ) &&
1047 			 (prot & PROT_EXEC) &&
1048 			 !(capabilities & BDI_CAP_EXEC_MAP)
1049 			 ) {
1050 			/* backing file is not executable, try to copy */
1051 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1052 		}
1053 	}
1054 	else {
1055 		/* anonymous mappings are always memory backed and can be
1056 		 * privately mapped
1057 		 */
1058 		capabilities = BDI_CAP_MAP_COPY;
1059 
1060 		/* handle PROT_EXEC implication by PROT_READ */
1061 		if ((prot & PROT_READ) &&
1062 		    (current->personality & READ_IMPLIES_EXEC))
1063 			prot |= PROT_EXEC;
1064 	}
1065 
1066 	/* allow the security API to have its say */
1067 	ret = security_mmap_addr(addr);
1068 	if (ret < 0)
1069 		return ret;
1070 
1071 	/* looks okay */
1072 	*_capabilities = capabilities;
1073 	return 0;
1074 }
1075 
1076 /*
1077  * we've determined that we can make the mapping, now translate what we
1078  * now know into VMA flags
1079  */
1080 static unsigned long determine_vm_flags(struct file *file,
1081 					unsigned long prot,
1082 					unsigned long flags,
1083 					unsigned long capabilities)
1084 {
1085 	unsigned long vm_flags;
1086 
1087 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1088 	/* vm_flags |= mm->def_flags; */
1089 
1090 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1091 		/* attempt to share read-only copies of mapped file chunks */
1092 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1093 		if (file && !(prot & PROT_WRITE))
1094 			vm_flags |= VM_MAYSHARE;
1095 	} else {
1096 		/* overlay a shareable mapping on the backing device or inode
1097 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 		 * romfs/cramfs */
1099 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1100 		if (flags & MAP_SHARED)
1101 			vm_flags |= VM_SHARED;
1102 	}
1103 
1104 	/* refuse to let anyone share private mappings with this process if
1105 	 * it's being traced - otherwise breakpoints set in it may interfere
1106 	 * with another untraced process
1107 	 */
1108 	if ((flags & MAP_PRIVATE) && current->ptrace)
1109 		vm_flags &= ~VM_MAYSHARE;
1110 
1111 	return vm_flags;
1112 }
1113 
1114 /*
1115  * set up a shared mapping on a file (the driver or filesystem provides and
1116  * pins the storage)
1117  */
1118 static int do_mmap_shared_file(struct vm_area_struct *vma)
1119 {
1120 	int ret;
1121 
1122 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123 	if (ret == 0) {
1124 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1125 		return 0;
1126 	}
1127 	if (ret != -ENOSYS)
1128 		return ret;
1129 
1130 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 	 * opposed to tried but failed) so we can only give a suitable error as
1132 	 * it's not possible to make a private copy if MAP_SHARED was given */
1133 	return -ENODEV;
1134 }
1135 
1136 /*
1137  * set up a private mapping or an anonymous shared mapping
1138  */
1139 static int do_mmap_private(struct vm_area_struct *vma,
1140 			   struct vm_region *region,
1141 			   unsigned long len,
1142 			   unsigned long capabilities)
1143 {
1144 	struct page *pages;
1145 	unsigned long total, point, n;
1146 	void *base;
1147 	int ret, order;
1148 
1149 	/* invoke the file's mapping function so that it can keep track of
1150 	 * shared mappings on devices or memory
1151 	 * - VM_MAYSHARE will be set if it may attempt to share
1152 	 */
1153 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1154 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1155 		if (ret == 0) {
1156 			/* shouldn't return success if we're not sharing */
1157 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1158 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1159 			return 0;
1160 		}
1161 		if (ret != -ENOSYS)
1162 			return ret;
1163 
1164 		/* getting an ENOSYS error indicates that direct mmap isn't
1165 		 * possible (as opposed to tried but failed) so we'll try to
1166 		 * make a private copy of the data and map that instead */
1167 	}
1168 
1169 
1170 	/* allocate some memory to hold the mapping
1171 	 * - note that this may not return a page-aligned address if the object
1172 	 *   we're allocating is smaller than a page
1173 	 */
1174 	order = get_order(len);
1175 	kdebug("alloc order %d for %lx", order, len);
1176 
1177 	pages = alloc_pages(GFP_KERNEL, order);
1178 	if (!pages)
1179 		goto enomem;
1180 
1181 	total = 1 << order;
1182 	atomic_long_add(total, &mmap_pages_allocated);
1183 
1184 	point = len >> PAGE_SHIFT;
1185 
1186 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1187 	 * the excess */
1188 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1189 		while (total > point) {
1190 			order = ilog2(total - point);
1191 			n = 1 << order;
1192 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1193 			atomic_long_sub(n, &mmap_pages_allocated);
1194 			total -= n;
1195 			set_page_refcounted(pages + total);
1196 			__free_pages(pages + total, order);
1197 		}
1198 	}
1199 
1200 	for (point = 1; point < total; point++)
1201 		set_page_refcounted(&pages[point]);
1202 
1203 	base = page_address(pages);
1204 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1205 	region->vm_start = (unsigned long) base;
1206 	region->vm_end   = region->vm_start + len;
1207 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1208 
1209 	vma->vm_start = region->vm_start;
1210 	vma->vm_end   = region->vm_start + len;
1211 
1212 	if (vma->vm_file) {
1213 		/* read the contents of a file into the copy */
1214 		mm_segment_t old_fs;
1215 		loff_t fpos;
1216 
1217 		fpos = vma->vm_pgoff;
1218 		fpos <<= PAGE_SHIFT;
1219 
1220 		old_fs = get_fs();
1221 		set_fs(KERNEL_DS);
1222 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1223 		set_fs(old_fs);
1224 
1225 		if (ret < 0)
1226 			goto error_free;
1227 
1228 		/* clear the last little bit */
1229 		if (ret < len)
1230 			memset(base + ret, 0, len - ret);
1231 
1232 	}
1233 
1234 	return 0;
1235 
1236 error_free:
1237 	free_page_series(region->vm_start, region->vm_top);
1238 	region->vm_start = vma->vm_start = 0;
1239 	region->vm_end   = vma->vm_end = 0;
1240 	region->vm_top   = 0;
1241 	return ret;
1242 
1243 enomem:
1244 	printk("Allocation of length %lu from process %d (%s) failed\n",
1245 	       len, current->pid, current->comm);
1246 	show_free_areas(0);
1247 	return -ENOMEM;
1248 }
1249 
1250 /*
1251  * handle mapping creation for uClinux
1252  */
1253 unsigned long do_mmap_pgoff(struct file *file,
1254 			    unsigned long addr,
1255 			    unsigned long len,
1256 			    unsigned long prot,
1257 			    unsigned long flags,
1258 			    unsigned long pgoff,
1259 			    unsigned long *populate)
1260 {
1261 	struct vm_area_struct *vma;
1262 	struct vm_region *region;
1263 	struct rb_node *rb;
1264 	unsigned long capabilities, vm_flags, result;
1265 	int ret;
1266 
1267 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1268 
1269 	*populate = 0;
1270 
1271 	/* decide whether we should attempt the mapping, and if so what sort of
1272 	 * mapping */
1273 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1274 				    &capabilities);
1275 	if (ret < 0) {
1276 		kleave(" = %d [val]", ret);
1277 		return ret;
1278 	}
1279 
1280 	/* we ignore the address hint */
1281 	addr = 0;
1282 	len = PAGE_ALIGN(len);
1283 
1284 	/* we've determined that we can make the mapping, now translate what we
1285 	 * now know into VMA flags */
1286 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1287 
1288 	/* we're going to need to record the mapping */
1289 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1290 	if (!region)
1291 		goto error_getting_region;
1292 
1293 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1294 	if (!vma)
1295 		goto error_getting_vma;
1296 
1297 	region->vm_usage = 1;
1298 	region->vm_flags = vm_flags;
1299 	region->vm_pgoff = pgoff;
1300 
1301 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1302 	vma->vm_flags = vm_flags;
1303 	vma->vm_pgoff = pgoff;
1304 
1305 	if (file) {
1306 		region->vm_file = get_file(file);
1307 		vma->vm_file = get_file(file);
1308 	}
1309 
1310 	down_write(&nommu_region_sem);
1311 
1312 	/* if we want to share, we need to check for regions created by other
1313 	 * mmap() calls that overlap with our proposed mapping
1314 	 * - we can only share with a superset match on most regular files
1315 	 * - shared mappings on character devices and memory backed files are
1316 	 *   permitted to overlap inexactly as far as we are concerned for in
1317 	 *   these cases, sharing is handled in the driver or filesystem rather
1318 	 *   than here
1319 	 */
1320 	if (vm_flags & VM_MAYSHARE) {
1321 		struct vm_region *pregion;
1322 		unsigned long pglen, rpglen, pgend, rpgend, start;
1323 
1324 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1325 		pgend = pgoff + pglen;
1326 
1327 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1328 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1329 
1330 			if (!(pregion->vm_flags & VM_MAYSHARE))
1331 				continue;
1332 
1333 			/* search for overlapping mappings on the same file */
1334 			if (file_inode(pregion->vm_file) !=
1335 			    file_inode(file))
1336 				continue;
1337 
1338 			if (pregion->vm_pgoff >= pgend)
1339 				continue;
1340 
1341 			rpglen = pregion->vm_end - pregion->vm_start;
1342 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1343 			rpgend = pregion->vm_pgoff + rpglen;
1344 			if (pgoff >= rpgend)
1345 				continue;
1346 
1347 			/* handle inexactly overlapping matches between
1348 			 * mappings */
1349 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1350 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1351 				/* new mapping is not a subset of the region */
1352 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1353 					goto sharing_violation;
1354 				continue;
1355 			}
1356 
1357 			/* we've found a region we can share */
1358 			pregion->vm_usage++;
1359 			vma->vm_region = pregion;
1360 			start = pregion->vm_start;
1361 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1362 			vma->vm_start = start;
1363 			vma->vm_end = start + len;
1364 
1365 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1366 				kdebug("share copy");
1367 				vma->vm_flags |= VM_MAPPED_COPY;
1368 			} else {
1369 				kdebug("share mmap");
1370 				ret = do_mmap_shared_file(vma);
1371 				if (ret < 0) {
1372 					vma->vm_region = NULL;
1373 					vma->vm_start = 0;
1374 					vma->vm_end = 0;
1375 					pregion->vm_usage--;
1376 					pregion = NULL;
1377 					goto error_just_free;
1378 				}
1379 			}
1380 			fput(region->vm_file);
1381 			kmem_cache_free(vm_region_jar, region);
1382 			region = pregion;
1383 			result = start;
1384 			goto share;
1385 		}
1386 
1387 		/* obtain the address at which to make a shared mapping
1388 		 * - this is the hook for quasi-memory character devices to
1389 		 *   tell us the location of a shared mapping
1390 		 */
1391 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1392 			addr = file->f_op->get_unmapped_area(file, addr, len,
1393 							     pgoff, flags);
1394 			if (IS_ERR_VALUE(addr)) {
1395 				ret = addr;
1396 				if (ret != -ENOSYS)
1397 					goto error_just_free;
1398 
1399 				/* the driver refused to tell us where to site
1400 				 * the mapping so we'll have to attempt to copy
1401 				 * it */
1402 				ret = -ENODEV;
1403 				if (!(capabilities & BDI_CAP_MAP_COPY))
1404 					goto error_just_free;
1405 
1406 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1407 			} else {
1408 				vma->vm_start = region->vm_start = addr;
1409 				vma->vm_end = region->vm_end = addr + len;
1410 			}
1411 		}
1412 	}
1413 
1414 	vma->vm_region = region;
1415 
1416 	/* set up the mapping
1417 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1418 	 */
1419 	if (file && vma->vm_flags & VM_SHARED)
1420 		ret = do_mmap_shared_file(vma);
1421 	else
1422 		ret = do_mmap_private(vma, region, len, capabilities);
1423 	if (ret < 0)
1424 		goto error_just_free;
1425 	add_nommu_region(region);
1426 
1427 	/* clear anonymous mappings that don't ask for uninitialized data */
1428 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1429 		memset((void *)region->vm_start, 0,
1430 		       region->vm_end - region->vm_start);
1431 
1432 	/* okay... we have a mapping; now we have to register it */
1433 	result = vma->vm_start;
1434 
1435 	current->mm->total_vm += len >> PAGE_SHIFT;
1436 
1437 share:
1438 	add_vma_to_mm(current->mm, vma);
1439 
1440 	/* we flush the region from the icache only when the first executable
1441 	 * mapping of it is made  */
1442 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1443 		flush_icache_range(region->vm_start, region->vm_end);
1444 		region->vm_icache_flushed = true;
1445 	}
1446 
1447 	up_write(&nommu_region_sem);
1448 
1449 	kleave(" = %lx", result);
1450 	return result;
1451 
1452 error_just_free:
1453 	up_write(&nommu_region_sem);
1454 error:
1455 	if (region->vm_file)
1456 		fput(region->vm_file);
1457 	kmem_cache_free(vm_region_jar, region);
1458 	if (vma->vm_file)
1459 		fput(vma->vm_file);
1460 	kmem_cache_free(vm_area_cachep, vma);
1461 	kleave(" = %d", ret);
1462 	return ret;
1463 
1464 sharing_violation:
1465 	up_write(&nommu_region_sem);
1466 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1467 	ret = -EINVAL;
1468 	goto error;
1469 
1470 error_getting_vma:
1471 	kmem_cache_free(vm_region_jar, region);
1472 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1473 	       " from process %d failed\n",
1474 	       len, current->pid);
1475 	show_free_areas(0);
1476 	return -ENOMEM;
1477 
1478 error_getting_region:
1479 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1480 	       " from process %d failed\n",
1481 	       len, current->pid);
1482 	show_free_areas(0);
1483 	return -ENOMEM;
1484 }
1485 
1486 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1487 		unsigned long, prot, unsigned long, flags,
1488 		unsigned long, fd, unsigned long, pgoff)
1489 {
1490 	struct file *file = NULL;
1491 	unsigned long retval = -EBADF;
1492 
1493 	audit_mmap_fd(fd, flags);
1494 	if (!(flags & MAP_ANONYMOUS)) {
1495 		file = fget(fd);
1496 		if (!file)
1497 			goto out;
1498 	}
1499 
1500 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1501 
1502 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1503 
1504 	if (file)
1505 		fput(file);
1506 out:
1507 	return retval;
1508 }
1509 
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512 	unsigned long addr;
1513 	unsigned long len;
1514 	unsigned long prot;
1515 	unsigned long flags;
1516 	unsigned long fd;
1517 	unsigned long offset;
1518 };
1519 
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 {
1522 	struct mmap_arg_struct a;
1523 
1524 	if (copy_from_user(&a, arg, sizeof(a)))
1525 		return -EFAULT;
1526 	if (a.offset & ~PAGE_MASK)
1527 		return -EINVAL;
1528 
1529 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530 			      a.offset >> PAGE_SHIFT);
1531 }
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533 
1534 /*
1535  * split a vma into two pieces at address 'addr', a new vma is allocated either
1536  * for the first part or the tail.
1537  */
1538 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1539 	      unsigned long addr, int new_below)
1540 {
1541 	struct vm_area_struct *new;
1542 	struct vm_region *region;
1543 	unsigned long npages;
1544 
1545 	kenter("");
1546 
1547 	/* we're only permitted to split anonymous regions (these should have
1548 	 * only a single usage on the region) */
1549 	if (vma->vm_file)
1550 		return -ENOMEM;
1551 
1552 	if (mm->map_count >= sysctl_max_map_count)
1553 		return -ENOMEM;
1554 
1555 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1556 	if (!region)
1557 		return -ENOMEM;
1558 
1559 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1560 	if (!new) {
1561 		kmem_cache_free(vm_region_jar, region);
1562 		return -ENOMEM;
1563 	}
1564 
1565 	/* most fields are the same, copy all, and then fixup */
1566 	*new = *vma;
1567 	*region = *vma->vm_region;
1568 	new->vm_region = region;
1569 
1570 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1571 
1572 	if (new_below) {
1573 		region->vm_top = region->vm_end = new->vm_end = addr;
1574 	} else {
1575 		region->vm_start = new->vm_start = addr;
1576 		region->vm_pgoff = new->vm_pgoff += npages;
1577 	}
1578 
1579 	if (new->vm_ops && new->vm_ops->open)
1580 		new->vm_ops->open(new);
1581 
1582 	delete_vma_from_mm(vma);
1583 	down_write(&nommu_region_sem);
1584 	delete_nommu_region(vma->vm_region);
1585 	if (new_below) {
1586 		vma->vm_region->vm_start = vma->vm_start = addr;
1587 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1588 	} else {
1589 		vma->vm_region->vm_end = vma->vm_end = addr;
1590 		vma->vm_region->vm_top = addr;
1591 	}
1592 	add_nommu_region(vma->vm_region);
1593 	add_nommu_region(new->vm_region);
1594 	up_write(&nommu_region_sem);
1595 	add_vma_to_mm(mm, vma);
1596 	add_vma_to_mm(mm, new);
1597 	return 0;
1598 }
1599 
1600 /*
1601  * shrink a VMA by removing the specified chunk from either the beginning or
1602  * the end
1603  */
1604 static int shrink_vma(struct mm_struct *mm,
1605 		      struct vm_area_struct *vma,
1606 		      unsigned long from, unsigned long to)
1607 {
1608 	struct vm_region *region;
1609 
1610 	kenter("");
1611 
1612 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1613 	 * and list */
1614 	delete_vma_from_mm(vma);
1615 	if (from > vma->vm_start)
1616 		vma->vm_end = from;
1617 	else
1618 		vma->vm_start = to;
1619 	add_vma_to_mm(mm, vma);
1620 
1621 	/* cut the backing region down to size */
1622 	region = vma->vm_region;
1623 	BUG_ON(region->vm_usage != 1);
1624 
1625 	down_write(&nommu_region_sem);
1626 	delete_nommu_region(region);
1627 	if (from > region->vm_start) {
1628 		to = region->vm_top;
1629 		region->vm_top = region->vm_end = from;
1630 	} else {
1631 		region->vm_start = to;
1632 	}
1633 	add_nommu_region(region);
1634 	up_write(&nommu_region_sem);
1635 
1636 	free_page_series(from, to);
1637 	return 0;
1638 }
1639 
1640 /*
1641  * release a mapping
1642  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1643  *   VMA, though it need not cover the whole VMA
1644  */
1645 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1646 {
1647 	struct vm_area_struct *vma;
1648 	unsigned long end;
1649 	int ret;
1650 
1651 	kenter(",%lx,%zx", start, len);
1652 
1653 	len = PAGE_ALIGN(len);
1654 	if (len == 0)
1655 		return -EINVAL;
1656 
1657 	end = start + len;
1658 
1659 	/* find the first potentially overlapping VMA */
1660 	vma = find_vma(mm, start);
1661 	if (!vma) {
1662 		static int limit = 0;
1663 		if (limit < 5) {
1664 			printk(KERN_WARNING
1665 			       "munmap of memory not mmapped by process %d"
1666 			       " (%s): 0x%lx-0x%lx\n",
1667 			       current->pid, current->comm,
1668 			       start, start + len - 1);
1669 			limit++;
1670 		}
1671 		return -EINVAL;
1672 	}
1673 
1674 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1675 	if (vma->vm_file) {
1676 		do {
1677 			if (start > vma->vm_start) {
1678 				kleave(" = -EINVAL [miss]");
1679 				return -EINVAL;
1680 			}
1681 			if (end == vma->vm_end)
1682 				goto erase_whole_vma;
1683 			vma = vma->vm_next;
1684 		} while (vma);
1685 		kleave(" = -EINVAL [split file]");
1686 		return -EINVAL;
1687 	} else {
1688 		/* the chunk must be a subset of the VMA found */
1689 		if (start == vma->vm_start && end == vma->vm_end)
1690 			goto erase_whole_vma;
1691 		if (start < vma->vm_start || end > vma->vm_end) {
1692 			kleave(" = -EINVAL [superset]");
1693 			return -EINVAL;
1694 		}
1695 		if (start & ~PAGE_MASK) {
1696 			kleave(" = -EINVAL [unaligned start]");
1697 			return -EINVAL;
1698 		}
1699 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1700 			kleave(" = -EINVAL [unaligned split]");
1701 			return -EINVAL;
1702 		}
1703 		if (start != vma->vm_start && end != vma->vm_end) {
1704 			ret = split_vma(mm, vma, start, 1);
1705 			if (ret < 0) {
1706 				kleave(" = %d [split]", ret);
1707 				return ret;
1708 			}
1709 		}
1710 		return shrink_vma(mm, vma, start, end);
1711 	}
1712 
1713 erase_whole_vma:
1714 	delete_vma_from_mm(vma);
1715 	delete_vma(mm, vma);
1716 	kleave(" = 0");
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL(do_munmap);
1720 
1721 int vm_munmap(unsigned long addr, size_t len)
1722 {
1723 	struct mm_struct *mm = current->mm;
1724 	int ret;
1725 
1726 	down_write(&mm->mmap_sem);
1727 	ret = do_munmap(mm, addr, len);
1728 	up_write(&mm->mmap_sem);
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL(vm_munmap);
1732 
1733 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1734 {
1735 	return vm_munmap(addr, len);
1736 }
1737 
1738 /*
1739  * release all the mappings made in a process's VM space
1740  */
1741 void exit_mmap(struct mm_struct *mm)
1742 {
1743 	struct vm_area_struct *vma;
1744 
1745 	if (!mm)
1746 		return;
1747 
1748 	kenter("");
1749 
1750 	mm->total_vm = 0;
1751 
1752 	while ((vma = mm->mmap)) {
1753 		mm->mmap = vma->vm_next;
1754 		delete_vma_from_mm(vma);
1755 		delete_vma(mm, vma);
1756 		cond_resched();
1757 	}
1758 
1759 	kleave("");
1760 }
1761 
1762 unsigned long vm_brk(unsigned long addr, unsigned long len)
1763 {
1764 	return -ENOMEM;
1765 }
1766 
1767 /*
1768  * expand (or shrink) an existing mapping, potentially moving it at the same
1769  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1770  *
1771  * under NOMMU conditions, we only permit changing a mapping's size, and only
1772  * as long as it stays within the region allocated by do_mmap_private() and the
1773  * block is not shareable
1774  *
1775  * MREMAP_FIXED is not supported under NOMMU conditions
1776  */
1777 static unsigned long do_mremap(unsigned long addr,
1778 			unsigned long old_len, unsigned long new_len,
1779 			unsigned long flags, unsigned long new_addr)
1780 {
1781 	struct vm_area_struct *vma;
1782 
1783 	/* insanity checks first */
1784 	old_len = PAGE_ALIGN(old_len);
1785 	new_len = PAGE_ALIGN(new_len);
1786 	if (old_len == 0 || new_len == 0)
1787 		return (unsigned long) -EINVAL;
1788 
1789 	if (addr & ~PAGE_MASK)
1790 		return -EINVAL;
1791 
1792 	if (flags & MREMAP_FIXED && new_addr != addr)
1793 		return (unsigned long) -EINVAL;
1794 
1795 	vma = find_vma_exact(current->mm, addr, old_len);
1796 	if (!vma)
1797 		return (unsigned long) -EINVAL;
1798 
1799 	if (vma->vm_end != vma->vm_start + old_len)
1800 		return (unsigned long) -EFAULT;
1801 
1802 	if (vma->vm_flags & VM_MAYSHARE)
1803 		return (unsigned long) -EPERM;
1804 
1805 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1806 		return (unsigned long) -ENOMEM;
1807 
1808 	/* all checks complete - do it */
1809 	vma->vm_end = vma->vm_start + new_len;
1810 	return vma->vm_start;
1811 }
1812 
1813 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1814 		unsigned long, new_len, unsigned long, flags,
1815 		unsigned long, new_addr)
1816 {
1817 	unsigned long ret;
1818 
1819 	down_write(&current->mm->mmap_sem);
1820 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1821 	up_write(&current->mm->mmap_sem);
1822 	return ret;
1823 }
1824 
1825 struct page *follow_page_mask(struct vm_area_struct *vma,
1826 			      unsigned long address, unsigned int flags,
1827 			      unsigned int *page_mask)
1828 {
1829 	*page_mask = 0;
1830 	return NULL;
1831 }
1832 
1833 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1834 		unsigned long pfn, unsigned long size, pgprot_t prot)
1835 {
1836 	if (addr != (pfn << PAGE_SHIFT))
1837 		return -EINVAL;
1838 
1839 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL(remap_pfn_range);
1843 
1844 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1845 {
1846 	unsigned long pfn = start >> PAGE_SHIFT;
1847 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1848 
1849 	pfn += vma->vm_pgoff;
1850 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1851 }
1852 EXPORT_SYMBOL(vm_iomap_memory);
1853 
1854 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1855 			unsigned long pgoff)
1856 {
1857 	unsigned int size = vma->vm_end - vma->vm_start;
1858 
1859 	if (!(vma->vm_flags & VM_USERMAP))
1860 		return -EINVAL;
1861 
1862 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1863 	vma->vm_end = vma->vm_start + size;
1864 
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(remap_vmalloc_range);
1868 
1869 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1870 	unsigned long len, unsigned long pgoff, unsigned long flags)
1871 {
1872 	return -ENOMEM;
1873 }
1874 
1875 void unmap_mapping_range(struct address_space *mapping,
1876 			 loff_t const holebegin, loff_t const holelen,
1877 			 int even_cows)
1878 {
1879 }
1880 EXPORT_SYMBOL(unmap_mapping_range);
1881 
1882 /*
1883  * Check that a process has enough memory to allocate a new virtual
1884  * mapping. 0 means there is enough memory for the allocation to
1885  * succeed and -ENOMEM implies there is not.
1886  *
1887  * We currently support three overcommit policies, which are set via the
1888  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1889  *
1890  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1891  * Additional code 2002 Jul 20 by Robert Love.
1892  *
1893  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1894  *
1895  * Note this is a helper function intended to be used by LSMs which
1896  * wish to use this logic.
1897  */
1898 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1899 {
1900 	unsigned long free, allowed, reserve;
1901 
1902 	vm_acct_memory(pages);
1903 
1904 	/*
1905 	 * Sometimes we want to use more memory than we have
1906 	 */
1907 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1908 		return 0;
1909 
1910 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1911 		free = global_page_state(NR_FREE_PAGES);
1912 		free += global_page_state(NR_FILE_PAGES);
1913 
1914 		/*
1915 		 * shmem pages shouldn't be counted as free in this
1916 		 * case, they can't be purged, only swapped out, and
1917 		 * that won't affect the overall amount of available
1918 		 * memory in the system.
1919 		 */
1920 		free -= global_page_state(NR_SHMEM);
1921 
1922 		free += get_nr_swap_pages();
1923 
1924 		/*
1925 		 * Any slabs which are created with the
1926 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1927 		 * which are reclaimable, under pressure.  The dentry
1928 		 * cache and most inode caches should fall into this
1929 		 */
1930 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1931 
1932 		/*
1933 		 * Leave reserved pages. The pages are not for anonymous pages.
1934 		 */
1935 		if (free <= totalreserve_pages)
1936 			goto error;
1937 		else
1938 			free -= totalreserve_pages;
1939 
1940 		/*
1941 		 * Reserve some for root
1942 		 */
1943 		if (!cap_sys_admin)
1944 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1945 
1946 		if (free > pages)
1947 			return 0;
1948 
1949 		goto error;
1950 	}
1951 
1952 	allowed = vm_commit_limit();
1953 	/*
1954 	 * Reserve some 3% for root
1955 	 */
1956 	if (!cap_sys_admin)
1957 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1958 
1959 	/*
1960 	 * Don't let a single process grow so big a user can't recover
1961 	 */
1962 	if (mm) {
1963 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1964 		allowed -= min(mm->total_vm / 32, reserve);
1965 	}
1966 
1967 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1968 		return 0;
1969 
1970 error:
1971 	vm_unacct_memory(pages);
1972 
1973 	return -ENOMEM;
1974 }
1975 
1976 int in_gate_area_no_mm(unsigned long addr)
1977 {
1978 	return 0;
1979 }
1980 
1981 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1982 {
1983 	BUG();
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL(filemap_fault);
1987 
1988 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1989 			     unsigned long size, pgoff_t pgoff)
1990 {
1991 	BUG();
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL(generic_file_remap_pages);
1995 
1996 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1997 		unsigned long addr, void *buf, int len, int write)
1998 {
1999 	struct vm_area_struct *vma;
2000 
2001 	down_read(&mm->mmap_sem);
2002 
2003 	/* the access must start within one of the target process's mappings */
2004 	vma = find_vma(mm, addr);
2005 	if (vma) {
2006 		/* don't overrun this mapping */
2007 		if (addr + len >= vma->vm_end)
2008 			len = vma->vm_end - addr;
2009 
2010 		/* only read or write mappings where it is permitted */
2011 		if (write && vma->vm_flags & VM_MAYWRITE)
2012 			copy_to_user_page(vma, NULL, addr,
2013 					 (void *) addr, buf, len);
2014 		else if (!write && vma->vm_flags & VM_MAYREAD)
2015 			copy_from_user_page(vma, NULL, addr,
2016 					    buf, (void *) addr, len);
2017 		else
2018 			len = 0;
2019 	} else {
2020 		len = 0;
2021 	}
2022 
2023 	up_read(&mm->mmap_sem);
2024 
2025 	return len;
2026 }
2027 
2028 /**
2029  * @access_remote_vm - access another process' address space
2030  * @mm:		the mm_struct of the target address space
2031  * @addr:	start address to access
2032  * @buf:	source or destination buffer
2033  * @len:	number of bytes to transfer
2034  * @write:	whether the access is a write
2035  *
2036  * The caller must hold a reference on @mm.
2037  */
2038 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2039 		void *buf, int len, int write)
2040 {
2041 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2042 }
2043 
2044 /*
2045  * Access another process' address space.
2046  * - source/target buffer must be kernel space
2047  */
2048 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2049 {
2050 	struct mm_struct *mm;
2051 
2052 	if (addr + len < addr)
2053 		return 0;
2054 
2055 	mm = get_task_mm(tsk);
2056 	if (!mm)
2057 		return 0;
2058 
2059 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2060 
2061 	mmput(mm);
2062 	return len;
2063 }
2064 
2065 /**
2066  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2067  * @inode: The inode to check
2068  * @size: The current filesize of the inode
2069  * @newsize: The proposed filesize of the inode
2070  *
2071  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2072  * make sure that that any outstanding VMAs aren't broken and then shrink the
2073  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2074  * automatically grant mappings that are too large.
2075  */
2076 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2077 				size_t newsize)
2078 {
2079 	struct vm_area_struct *vma;
2080 	struct vm_region *region;
2081 	pgoff_t low, high;
2082 	size_t r_size, r_top;
2083 
2084 	low = newsize >> PAGE_SHIFT;
2085 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2086 
2087 	down_write(&nommu_region_sem);
2088 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2089 
2090 	/* search for VMAs that fall within the dead zone */
2091 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2092 		/* found one - only interested if it's shared out of the page
2093 		 * cache */
2094 		if (vma->vm_flags & VM_SHARED) {
2095 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2096 			up_write(&nommu_region_sem);
2097 			return -ETXTBSY; /* not quite true, but near enough */
2098 		}
2099 	}
2100 
2101 	/* reduce any regions that overlap the dead zone - if in existence,
2102 	 * these will be pointed to by VMAs that don't overlap the dead zone
2103 	 *
2104 	 * we don't check for any regions that start beyond the EOF as there
2105 	 * shouldn't be any
2106 	 */
2107 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2108 				  0, ULONG_MAX) {
2109 		if (!(vma->vm_flags & VM_SHARED))
2110 			continue;
2111 
2112 		region = vma->vm_region;
2113 		r_size = region->vm_top - region->vm_start;
2114 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2115 
2116 		if (r_top > newsize) {
2117 			region->vm_top -= r_top - newsize;
2118 			if (region->vm_end > region->vm_top)
2119 				region->vm_end = region->vm_top;
2120 		}
2121 	}
2122 
2123 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2124 	up_write(&nommu_region_sem);
2125 	return 0;
2126 }
2127 
2128 /*
2129  * Initialise sysctl_user_reserve_kbytes.
2130  *
2131  * This is intended to prevent a user from starting a single memory hogging
2132  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2133  * mode.
2134  *
2135  * The default value is min(3% of free memory, 128MB)
2136  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2137  */
2138 static int __meminit init_user_reserve(void)
2139 {
2140 	unsigned long free_kbytes;
2141 
2142 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2143 
2144 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2145 	return 0;
2146 }
2147 module_init(init_user_reserve)
2148 
2149 /*
2150  * Initialise sysctl_admin_reserve_kbytes.
2151  *
2152  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2153  * to log in and kill a memory hogging process.
2154  *
2155  * Systems with more than 256MB will reserve 8MB, enough to recover
2156  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2157  * only reserve 3% of free pages by default.
2158  */
2159 static int __meminit init_admin_reserve(void)
2160 {
2161 	unsigned long free_kbytes;
2162 
2163 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2164 
2165 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2166 	return 0;
2167 }
2168 module_init(init_admin_reserve)
2169