xref: /openbmc/linux/mm/nommu.c (revision 8730046c)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43 
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52 
53 atomic_long_t mmap_pages_allocated;
54 
55 EXPORT_SYMBOL(mem_map);
56 
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61 
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64 
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73 	struct page *page;
74 
75 	/*
76 	 * If the object we have should not have ksize performed on it,
77 	 * return size of 0
78 	 */
79 	if (!objp || !virt_addr_valid(objp))
80 		return 0;
81 
82 	page = virt_to_head_page(objp);
83 
84 	/*
85 	 * If the allocator sets PageSlab, we know the pointer came from
86 	 * kmalloc().
87 	 */
88 	if (PageSlab(page))
89 		return ksize(objp);
90 
91 	/*
92 	 * If it's not a compound page, see if we have a matching VMA
93 	 * region. This test is intentionally done in reverse order,
94 	 * so if there's no VMA, we still fall through and hand back
95 	 * PAGE_SIZE for 0-order pages.
96 	 */
97 	if (!PageCompound(page)) {
98 		struct vm_area_struct *vma;
99 
100 		vma = find_vma(current->mm, (unsigned long)objp);
101 		if (vma)
102 			return vma->vm_end - vma->vm_start;
103 	}
104 
105 	/*
106 	 * The ksize() function is only guaranteed to work for pointers
107 	 * returned by kmalloc(). So handle arbitrary pointers here.
108 	 */
109 	return PAGE_SIZE << compound_order(page);
110 }
111 
112 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
113 		      unsigned long start, unsigned long nr_pages,
114 		      unsigned int foll_flags, struct page **pages,
115 		      struct vm_area_struct **vmas, int *nonblocking)
116 {
117 	struct vm_area_struct *vma;
118 	unsigned long vm_flags;
119 	int i;
120 
121 	/* calculate required read or write permissions.
122 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
123 	 */
124 	vm_flags  = (foll_flags & FOLL_WRITE) ?
125 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
126 	vm_flags &= (foll_flags & FOLL_FORCE) ?
127 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
128 
129 	for (i = 0; i < nr_pages; i++) {
130 		vma = find_vma(mm, start);
131 		if (!vma)
132 			goto finish_or_fault;
133 
134 		/* protect what we can, including chardevs */
135 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
136 		    !(vm_flags & vma->vm_flags))
137 			goto finish_or_fault;
138 
139 		if (pages) {
140 			pages[i] = virt_to_page(start);
141 			if (pages[i])
142 				get_page(pages[i]);
143 		}
144 		if (vmas)
145 			vmas[i] = vma;
146 		start = (start + PAGE_SIZE) & PAGE_MASK;
147 	}
148 
149 	return i;
150 
151 finish_or_fault:
152 	return i ? : -EFAULT;
153 }
154 
155 /*
156  * get a list of pages in an address range belonging to the specified process
157  * and indicate the VMA that covers each page
158  * - this is potentially dodgy as we may end incrementing the page count of a
159  *   slab page or a secondary page from a compound page
160  * - don't permit access to VMAs that don't support it, such as I/O mappings
161  */
162 long get_user_pages(unsigned long start, unsigned long nr_pages,
163 		    unsigned int gup_flags, struct page **pages,
164 		    struct vm_area_struct **vmas)
165 {
166 	return __get_user_pages(current, current->mm, start, nr_pages,
167 				gup_flags, pages, vmas, NULL);
168 }
169 EXPORT_SYMBOL(get_user_pages);
170 
171 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
172 			    unsigned int gup_flags, struct page **pages,
173 			    int *locked)
174 {
175 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
176 }
177 EXPORT_SYMBOL(get_user_pages_locked);
178 
179 static long __get_user_pages_unlocked(struct task_struct *tsk,
180 			struct mm_struct *mm, unsigned long start,
181 			unsigned long nr_pages, struct page **pages,
182 			unsigned int gup_flags)
183 {
184 	long ret;
185 	down_read(&mm->mmap_sem);
186 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
187 				NULL, NULL);
188 	up_read(&mm->mmap_sem);
189 	return ret;
190 }
191 
192 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
193 			     struct page **pages, unsigned int gup_flags)
194 {
195 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
196 					 pages, gup_flags);
197 }
198 EXPORT_SYMBOL(get_user_pages_unlocked);
199 
200 /**
201  * follow_pfn - look up PFN at a user virtual address
202  * @vma: memory mapping
203  * @address: user virtual address
204  * @pfn: location to store found PFN
205  *
206  * Only IO mappings and raw PFN mappings are allowed.
207  *
208  * Returns zero and the pfn at @pfn on success, -ve otherwise.
209  */
210 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
211 	unsigned long *pfn)
212 {
213 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
214 		return -EINVAL;
215 
216 	*pfn = address >> PAGE_SHIFT;
217 	return 0;
218 }
219 EXPORT_SYMBOL(follow_pfn);
220 
221 LIST_HEAD(vmap_area_list);
222 
223 void vfree(const void *addr)
224 {
225 	kfree(addr);
226 }
227 EXPORT_SYMBOL(vfree);
228 
229 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
230 {
231 	/*
232 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
233 	 * returns only a logical address.
234 	 */
235 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
236 }
237 EXPORT_SYMBOL(__vmalloc);
238 
239 void *vmalloc_user(unsigned long size)
240 {
241 	void *ret;
242 
243 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
244 			PAGE_KERNEL);
245 	if (ret) {
246 		struct vm_area_struct *vma;
247 
248 		down_write(&current->mm->mmap_sem);
249 		vma = find_vma(current->mm, (unsigned long)ret);
250 		if (vma)
251 			vma->vm_flags |= VM_USERMAP;
252 		up_write(&current->mm->mmap_sem);
253 	}
254 
255 	return ret;
256 }
257 EXPORT_SYMBOL(vmalloc_user);
258 
259 struct page *vmalloc_to_page(const void *addr)
260 {
261 	return virt_to_page(addr);
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264 
265 unsigned long vmalloc_to_pfn(const void *addr)
266 {
267 	return page_to_pfn(virt_to_page(addr));
268 }
269 EXPORT_SYMBOL(vmalloc_to_pfn);
270 
271 long vread(char *buf, char *addr, unsigned long count)
272 {
273 	/* Don't allow overflow */
274 	if ((unsigned long) buf + count < count)
275 		count = -(unsigned long) buf;
276 
277 	memcpy(buf, addr, count);
278 	return count;
279 }
280 
281 long vwrite(char *buf, char *addr, unsigned long count)
282 {
283 	/* Don't allow overflow */
284 	if ((unsigned long) addr + count < count)
285 		count = -(unsigned long) addr;
286 
287 	memcpy(addr, buf, count);
288 	return count;
289 }
290 
291 /*
292  *	vmalloc  -  allocate virtually contiguous memory
293  *
294  *	@size:		allocation size
295  *
296  *	Allocate enough pages to cover @size from the page level
297  *	allocator and map them into contiguous kernel virtual space.
298  *
299  *	For tight control over page level allocator and protection flags
300  *	use __vmalloc() instead.
301  */
302 void *vmalloc(unsigned long size)
303 {
304        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
305 }
306 EXPORT_SYMBOL(vmalloc);
307 
308 /*
309  *	vzalloc - allocate virtually contiguous memory with zero fill
310  *
311  *	@size:		allocation size
312  *
313  *	Allocate enough pages to cover @size from the page level
314  *	allocator and map them into contiguous kernel virtual space.
315  *	The memory allocated is set to zero.
316  *
317  *	For tight control over page level allocator and protection flags
318  *	use __vmalloc() instead.
319  */
320 void *vzalloc(unsigned long size)
321 {
322 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
323 			PAGE_KERNEL);
324 }
325 EXPORT_SYMBOL(vzalloc);
326 
327 /**
328  * vmalloc_node - allocate memory on a specific node
329  * @size:	allocation size
330  * @node:	numa node
331  *
332  * Allocate enough pages to cover @size from the page level
333  * allocator and map them into contiguous kernel virtual space.
334  *
335  * For tight control over page level allocator and protection flags
336  * use __vmalloc() instead.
337  */
338 void *vmalloc_node(unsigned long size, int node)
339 {
340 	return vmalloc(size);
341 }
342 EXPORT_SYMBOL(vmalloc_node);
343 
344 /**
345  * vzalloc_node - allocate memory on a specific node with zero fill
346  * @size:	allocation size
347  * @node:	numa node
348  *
349  * Allocate enough pages to cover @size from the page level
350  * allocator and map them into contiguous kernel virtual space.
351  * The memory allocated is set to zero.
352  *
353  * For tight control over page level allocator and protection flags
354  * use __vmalloc() instead.
355  */
356 void *vzalloc_node(unsigned long size, int node)
357 {
358 	return vzalloc(size);
359 }
360 EXPORT_SYMBOL(vzalloc_node);
361 
362 #ifndef PAGE_KERNEL_EXEC
363 # define PAGE_KERNEL_EXEC PAGE_KERNEL
364 #endif
365 
366 /**
367  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
368  *	@size:		allocation size
369  *
370  *	Kernel-internal function to allocate enough pages to cover @size
371  *	the page level allocator and map them into contiguous and
372  *	executable kernel virtual space.
373  *
374  *	For tight control over page level allocator and protection flags
375  *	use __vmalloc() instead.
376  */
377 
378 void *vmalloc_exec(unsigned long size)
379 {
380 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
381 }
382 
383 /**
384  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
385  *	@size:		allocation size
386  *
387  *	Allocate enough 32bit PA addressable pages to cover @size from the
388  *	page level allocator and map them into contiguous kernel virtual space.
389  */
390 void *vmalloc_32(unsigned long size)
391 {
392 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
393 }
394 EXPORT_SYMBOL(vmalloc_32);
395 
396 /**
397  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
398  *	@size:		allocation size
399  *
400  * The resulting memory area is 32bit addressable and zeroed so it can be
401  * mapped to userspace without leaking data.
402  *
403  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
404  * remap_vmalloc_range() are permissible.
405  */
406 void *vmalloc_32_user(unsigned long size)
407 {
408 	/*
409 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
410 	 * but for now this can simply use vmalloc_user() directly.
411 	 */
412 	return vmalloc_user(size);
413 }
414 EXPORT_SYMBOL(vmalloc_32_user);
415 
416 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
417 {
418 	BUG();
419 	return NULL;
420 }
421 EXPORT_SYMBOL(vmap);
422 
423 void vunmap(const void *addr)
424 {
425 	BUG();
426 }
427 EXPORT_SYMBOL(vunmap);
428 
429 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
430 {
431 	BUG();
432 	return NULL;
433 }
434 EXPORT_SYMBOL(vm_map_ram);
435 
436 void vm_unmap_ram(const void *mem, unsigned int count)
437 {
438 	BUG();
439 }
440 EXPORT_SYMBOL(vm_unmap_ram);
441 
442 void vm_unmap_aliases(void)
443 {
444 }
445 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
446 
447 /*
448  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
449  * have one.
450  */
451 void __weak vmalloc_sync_all(void)
452 {
453 }
454 
455 /**
456  *	alloc_vm_area - allocate a range of kernel address space
457  *	@size:		size of the area
458  *
459  *	Returns:	NULL on failure, vm_struct on success
460  *
461  *	This function reserves a range of kernel address space, and
462  *	allocates pagetables to map that range.  No actual mappings
463  *	are created.  If the kernel address space is not shared
464  *	between processes, it syncs the pagetable across all
465  *	processes.
466  */
467 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
468 {
469 	BUG();
470 	return NULL;
471 }
472 EXPORT_SYMBOL_GPL(alloc_vm_area);
473 
474 void free_vm_area(struct vm_struct *area)
475 {
476 	BUG();
477 }
478 EXPORT_SYMBOL_GPL(free_vm_area);
479 
480 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
481 		   struct page *page)
482 {
483 	return -EINVAL;
484 }
485 EXPORT_SYMBOL(vm_insert_page);
486 
487 /*
488  *  sys_brk() for the most part doesn't need the global kernel
489  *  lock, except when an application is doing something nasty
490  *  like trying to un-brk an area that has already been mapped
491  *  to a regular file.  in this case, the unmapping will need
492  *  to invoke file system routines that need the global lock.
493  */
494 SYSCALL_DEFINE1(brk, unsigned long, brk)
495 {
496 	struct mm_struct *mm = current->mm;
497 
498 	if (brk < mm->start_brk || brk > mm->context.end_brk)
499 		return mm->brk;
500 
501 	if (mm->brk == brk)
502 		return mm->brk;
503 
504 	/*
505 	 * Always allow shrinking brk
506 	 */
507 	if (brk <= mm->brk) {
508 		mm->brk = brk;
509 		return brk;
510 	}
511 
512 	/*
513 	 * Ok, looks good - let it rip.
514 	 */
515 	flush_icache_range(mm->brk, brk);
516 	return mm->brk = brk;
517 }
518 
519 /*
520  * initialise the VMA and region record slabs
521  */
522 void __init mmap_init(void)
523 {
524 	int ret;
525 
526 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
527 	VM_BUG_ON(ret);
528 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
529 }
530 
531 /*
532  * validate the region tree
533  * - the caller must hold the region lock
534  */
535 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
536 static noinline void validate_nommu_regions(void)
537 {
538 	struct vm_region *region, *last;
539 	struct rb_node *p, *lastp;
540 
541 	lastp = rb_first(&nommu_region_tree);
542 	if (!lastp)
543 		return;
544 
545 	last = rb_entry(lastp, struct vm_region, vm_rb);
546 	BUG_ON(last->vm_end <= last->vm_start);
547 	BUG_ON(last->vm_top < last->vm_end);
548 
549 	while ((p = rb_next(lastp))) {
550 		region = rb_entry(p, struct vm_region, vm_rb);
551 		last = rb_entry(lastp, struct vm_region, vm_rb);
552 
553 		BUG_ON(region->vm_end <= region->vm_start);
554 		BUG_ON(region->vm_top < region->vm_end);
555 		BUG_ON(region->vm_start < last->vm_top);
556 
557 		lastp = p;
558 	}
559 }
560 #else
561 static void validate_nommu_regions(void)
562 {
563 }
564 #endif
565 
566 /*
567  * add a region into the global tree
568  */
569 static void add_nommu_region(struct vm_region *region)
570 {
571 	struct vm_region *pregion;
572 	struct rb_node **p, *parent;
573 
574 	validate_nommu_regions();
575 
576 	parent = NULL;
577 	p = &nommu_region_tree.rb_node;
578 	while (*p) {
579 		parent = *p;
580 		pregion = rb_entry(parent, struct vm_region, vm_rb);
581 		if (region->vm_start < pregion->vm_start)
582 			p = &(*p)->rb_left;
583 		else if (region->vm_start > pregion->vm_start)
584 			p = &(*p)->rb_right;
585 		else if (pregion == region)
586 			return;
587 		else
588 			BUG();
589 	}
590 
591 	rb_link_node(&region->vm_rb, parent, p);
592 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
593 
594 	validate_nommu_regions();
595 }
596 
597 /*
598  * delete a region from the global tree
599  */
600 static void delete_nommu_region(struct vm_region *region)
601 {
602 	BUG_ON(!nommu_region_tree.rb_node);
603 
604 	validate_nommu_regions();
605 	rb_erase(&region->vm_rb, &nommu_region_tree);
606 	validate_nommu_regions();
607 }
608 
609 /*
610  * free a contiguous series of pages
611  */
612 static void free_page_series(unsigned long from, unsigned long to)
613 {
614 	for (; from < to; from += PAGE_SIZE) {
615 		struct page *page = virt_to_page(from);
616 
617 		atomic_long_dec(&mmap_pages_allocated);
618 		put_page(page);
619 	}
620 }
621 
622 /*
623  * release a reference to a region
624  * - the caller must hold the region semaphore for writing, which this releases
625  * - the region may not have been added to the tree yet, in which case vm_top
626  *   will equal vm_start
627  */
628 static void __put_nommu_region(struct vm_region *region)
629 	__releases(nommu_region_sem)
630 {
631 	BUG_ON(!nommu_region_tree.rb_node);
632 
633 	if (--region->vm_usage == 0) {
634 		if (region->vm_top > region->vm_start)
635 			delete_nommu_region(region);
636 		up_write(&nommu_region_sem);
637 
638 		if (region->vm_file)
639 			fput(region->vm_file);
640 
641 		/* IO memory and memory shared directly out of the pagecache
642 		 * from ramfs/tmpfs mustn't be released here */
643 		if (region->vm_flags & VM_MAPPED_COPY)
644 			free_page_series(region->vm_start, region->vm_top);
645 		kmem_cache_free(vm_region_jar, region);
646 	} else {
647 		up_write(&nommu_region_sem);
648 	}
649 }
650 
651 /*
652  * release a reference to a region
653  */
654 static void put_nommu_region(struct vm_region *region)
655 {
656 	down_write(&nommu_region_sem);
657 	__put_nommu_region(region);
658 }
659 
660 /*
661  * update protection on a vma
662  */
663 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
664 {
665 #ifdef CONFIG_MPU
666 	struct mm_struct *mm = vma->vm_mm;
667 	long start = vma->vm_start & PAGE_MASK;
668 	while (start < vma->vm_end) {
669 		protect_page(mm, start, flags);
670 		start += PAGE_SIZE;
671 	}
672 	update_protections(mm);
673 #endif
674 }
675 
676 /*
677  * add a VMA into a process's mm_struct in the appropriate place in the list
678  * and tree and add to the address space's page tree also if not an anonymous
679  * page
680  * - should be called with mm->mmap_sem held writelocked
681  */
682 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
683 {
684 	struct vm_area_struct *pvma, *prev;
685 	struct address_space *mapping;
686 	struct rb_node **p, *parent, *rb_prev;
687 
688 	BUG_ON(!vma->vm_region);
689 
690 	mm->map_count++;
691 	vma->vm_mm = mm;
692 
693 	protect_vma(vma, vma->vm_flags);
694 
695 	/* add the VMA to the mapping */
696 	if (vma->vm_file) {
697 		mapping = vma->vm_file->f_mapping;
698 
699 		i_mmap_lock_write(mapping);
700 		flush_dcache_mmap_lock(mapping);
701 		vma_interval_tree_insert(vma, &mapping->i_mmap);
702 		flush_dcache_mmap_unlock(mapping);
703 		i_mmap_unlock_write(mapping);
704 	}
705 
706 	/* add the VMA to the tree */
707 	parent = rb_prev = NULL;
708 	p = &mm->mm_rb.rb_node;
709 	while (*p) {
710 		parent = *p;
711 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712 
713 		/* sort by: start addr, end addr, VMA struct addr in that order
714 		 * (the latter is necessary as we may get identical VMAs) */
715 		if (vma->vm_start < pvma->vm_start)
716 			p = &(*p)->rb_left;
717 		else if (vma->vm_start > pvma->vm_start) {
718 			rb_prev = parent;
719 			p = &(*p)->rb_right;
720 		} else if (vma->vm_end < pvma->vm_end)
721 			p = &(*p)->rb_left;
722 		else if (vma->vm_end > pvma->vm_end) {
723 			rb_prev = parent;
724 			p = &(*p)->rb_right;
725 		} else if (vma < pvma)
726 			p = &(*p)->rb_left;
727 		else if (vma > pvma) {
728 			rb_prev = parent;
729 			p = &(*p)->rb_right;
730 		} else
731 			BUG();
732 	}
733 
734 	rb_link_node(&vma->vm_rb, parent, p);
735 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736 
737 	/* add VMA to the VMA list also */
738 	prev = NULL;
739 	if (rb_prev)
740 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741 
742 	__vma_link_list(mm, vma, prev, parent);
743 }
744 
745 /*
746  * delete a VMA from its owning mm_struct and address space
747  */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750 	int i;
751 	struct address_space *mapping;
752 	struct mm_struct *mm = vma->vm_mm;
753 	struct task_struct *curr = current;
754 
755 	protect_vma(vma, 0);
756 
757 	mm->map_count--;
758 	for (i = 0; i < VMACACHE_SIZE; i++) {
759 		/* if the vma is cached, invalidate the entire cache */
760 		if (curr->vmacache[i] == vma) {
761 			vmacache_invalidate(mm);
762 			break;
763 		}
764 	}
765 
766 	/* remove the VMA from the mapping */
767 	if (vma->vm_file) {
768 		mapping = vma->vm_file->f_mapping;
769 
770 		i_mmap_lock_write(mapping);
771 		flush_dcache_mmap_lock(mapping);
772 		vma_interval_tree_remove(vma, &mapping->i_mmap);
773 		flush_dcache_mmap_unlock(mapping);
774 		i_mmap_unlock_write(mapping);
775 	}
776 
777 	/* remove from the MM's tree and list */
778 	rb_erase(&vma->vm_rb, &mm->mm_rb);
779 
780 	if (vma->vm_prev)
781 		vma->vm_prev->vm_next = vma->vm_next;
782 	else
783 		mm->mmap = vma->vm_next;
784 
785 	if (vma->vm_next)
786 		vma->vm_next->vm_prev = vma->vm_prev;
787 }
788 
789 /*
790  * destroy a VMA record
791  */
792 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
793 {
794 	if (vma->vm_ops && vma->vm_ops->close)
795 		vma->vm_ops->close(vma);
796 	if (vma->vm_file)
797 		fput(vma->vm_file);
798 	put_nommu_region(vma->vm_region);
799 	kmem_cache_free(vm_area_cachep, vma);
800 }
801 
802 /*
803  * look up the first VMA in which addr resides, NULL if none
804  * - should be called with mm->mmap_sem at least held readlocked
805  */
806 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
807 {
808 	struct vm_area_struct *vma;
809 
810 	/* check the cache first */
811 	vma = vmacache_find(mm, addr);
812 	if (likely(vma))
813 		return vma;
814 
815 	/* trawl the list (there may be multiple mappings in which addr
816 	 * resides) */
817 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
818 		if (vma->vm_start > addr)
819 			return NULL;
820 		if (vma->vm_end > addr) {
821 			vmacache_update(addr, vma);
822 			return vma;
823 		}
824 	}
825 
826 	return NULL;
827 }
828 EXPORT_SYMBOL(find_vma);
829 
830 /*
831  * find a VMA
832  * - we don't extend stack VMAs under NOMMU conditions
833  */
834 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
835 {
836 	return find_vma(mm, addr);
837 }
838 
839 /*
840  * expand a stack to a given address
841  * - not supported under NOMMU conditions
842  */
843 int expand_stack(struct vm_area_struct *vma, unsigned long address)
844 {
845 	return -ENOMEM;
846 }
847 
848 /*
849  * look up the first VMA exactly that exactly matches addr
850  * - should be called with mm->mmap_sem at least held readlocked
851  */
852 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
853 					     unsigned long addr,
854 					     unsigned long len)
855 {
856 	struct vm_area_struct *vma;
857 	unsigned long end = addr + len;
858 
859 	/* check the cache first */
860 	vma = vmacache_find_exact(mm, addr, end);
861 	if (vma)
862 		return vma;
863 
864 	/* trawl the list (there may be multiple mappings in which addr
865 	 * resides) */
866 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 		if (vma->vm_start < addr)
868 			continue;
869 		if (vma->vm_start > addr)
870 			return NULL;
871 		if (vma->vm_end == end) {
872 			vmacache_update(addr, vma);
873 			return vma;
874 		}
875 	}
876 
877 	return NULL;
878 }
879 
880 /*
881  * determine whether a mapping should be permitted and, if so, what sort of
882  * mapping we're capable of supporting
883  */
884 static int validate_mmap_request(struct file *file,
885 				 unsigned long addr,
886 				 unsigned long len,
887 				 unsigned long prot,
888 				 unsigned long flags,
889 				 unsigned long pgoff,
890 				 unsigned long *_capabilities)
891 {
892 	unsigned long capabilities, rlen;
893 	int ret;
894 
895 	/* do the simple checks first */
896 	if (flags & MAP_FIXED)
897 		return -EINVAL;
898 
899 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
900 	    (flags & MAP_TYPE) != MAP_SHARED)
901 		return -EINVAL;
902 
903 	if (!len)
904 		return -EINVAL;
905 
906 	/* Careful about overflows.. */
907 	rlen = PAGE_ALIGN(len);
908 	if (!rlen || rlen > TASK_SIZE)
909 		return -ENOMEM;
910 
911 	/* offset overflow? */
912 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
913 		return -EOVERFLOW;
914 
915 	if (file) {
916 		/* files must support mmap */
917 		if (!file->f_op->mmap)
918 			return -ENODEV;
919 
920 		/* work out if what we've got could possibly be shared
921 		 * - we support chardevs that provide their own "memory"
922 		 * - we support files/blockdevs that are memory backed
923 		 */
924 		if (file->f_op->mmap_capabilities) {
925 			capabilities = file->f_op->mmap_capabilities(file);
926 		} else {
927 			/* no explicit capabilities set, so assume some
928 			 * defaults */
929 			switch (file_inode(file)->i_mode & S_IFMT) {
930 			case S_IFREG:
931 			case S_IFBLK:
932 				capabilities = NOMMU_MAP_COPY;
933 				break;
934 
935 			case S_IFCHR:
936 				capabilities =
937 					NOMMU_MAP_DIRECT |
938 					NOMMU_MAP_READ |
939 					NOMMU_MAP_WRITE;
940 				break;
941 
942 			default:
943 				return -EINVAL;
944 			}
945 		}
946 
947 		/* eliminate any capabilities that we can't support on this
948 		 * device */
949 		if (!file->f_op->get_unmapped_area)
950 			capabilities &= ~NOMMU_MAP_DIRECT;
951 		if (!(file->f_mode & FMODE_CAN_READ))
952 			capabilities &= ~NOMMU_MAP_COPY;
953 
954 		/* The file shall have been opened with read permission. */
955 		if (!(file->f_mode & FMODE_READ))
956 			return -EACCES;
957 
958 		if (flags & MAP_SHARED) {
959 			/* do checks for writing, appending and locking */
960 			if ((prot & PROT_WRITE) &&
961 			    !(file->f_mode & FMODE_WRITE))
962 				return -EACCES;
963 
964 			if (IS_APPEND(file_inode(file)) &&
965 			    (file->f_mode & FMODE_WRITE))
966 				return -EACCES;
967 
968 			if (locks_verify_locked(file))
969 				return -EAGAIN;
970 
971 			if (!(capabilities & NOMMU_MAP_DIRECT))
972 				return -ENODEV;
973 
974 			/* we mustn't privatise shared mappings */
975 			capabilities &= ~NOMMU_MAP_COPY;
976 		} else {
977 			/* we're going to read the file into private memory we
978 			 * allocate */
979 			if (!(capabilities & NOMMU_MAP_COPY))
980 				return -ENODEV;
981 
982 			/* we don't permit a private writable mapping to be
983 			 * shared with the backing device */
984 			if (prot & PROT_WRITE)
985 				capabilities &= ~NOMMU_MAP_DIRECT;
986 		}
987 
988 		if (capabilities & NOMMU_MAP_DIRECT) {
989 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
990 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
991 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
992 			    ) {
993 				capabilities &= ~NOMMU_MAP_DIRECT;
994 				if (flags & MAP_SHARED) {
995 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
996 					return -EINVAL;
997 				}
998 			}
999 		}
1000 
1001 		/* handle executable mappings and implied executable
1002 		 * mappings */
1003 		if (path_noexec(&file->f_path)) {
1004 			if (prot & PROT_EXEC)
1005 				return -EPERM;
1006 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1007 			/* handle implication of PROT_EXEC by PROT_READ */
1008 			if (current->personality & READ_IMPLIES_EXEC) {
1009 				if (capabilities & NOMMU_MAP_EXEC)
1010 					prot |= PROT_EXEC;
1011 			}
1012 		} else if ((prot & PROT_READ) &&
1013 			 (prot & PROT_EXEC) &&
1014 			 !(capabilities & NOMMU_MAP_EXEC)
1015 			 ) {
1016 			/* backing file is not executable, try to copy */
1017 			capabilities &= ~NOMMU_MAP_DIRECT;
1018 		}
1019 	} else {
1020 		/* anonymous mappings are always memory backed and can be
1021 		 * privately mapped
1022 		 */
1023 		capabilities = NOMMU_MAP_COPY;
1024 
1025 		/* handle PROT_EXEC implication by PROT_READ */
1026 		if ((prot & PROT_READ) &&
1027 		    (current->personality & READ_IMPLIES_EXEC))
1028 			prot |= PROT_EXEC;
1029 	}
1030 
1031 	/* allow the security API to have its say */
1032 	ret = security_mmap_addr(addr);
1033 	if (ret < 0)
1034 		return ret;
1035 
1036 	/* looks okay */
1037 	*_capabilities = capabilities;
1038 	return 0;
1039 }
1040 
1041 /*
1042  * we've determined that we can make the mapping, now translate what we
1043  * now know into VMA flags
1044  */
1045 static unsigned long determine_vm_flags(struct file *file,
1046 					unsigned long prot,
1047 					unsigned long flags,
1048 					unsigned long capabilities)
1049 {
1050 	unsigned long vm_flags;
1051 
1052 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1053 	/* vm_flags |= mm->def_flags; */
1054 
1055 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1056 		/* attempt to share read-only copies of mapped file chunks */
1057 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1058 		if (file && !(prot & PROT_WRITE))
1059 			vm_flags |= VM_MAYSHARE;
1060 	} else {
1061 		/* overlay a shareable mapping on the backing device or inode
1062 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1063 		 * romfs/cramfs */
1064 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1065 		if (flags & MAP_SHARED)
1066 			vm_flags |= VM_SHARED;
1067 	}
1068 
1069 	/* refuse to let anyone share private mappings with this process if
1070 	 * it's being traced - otherwise breakpoints set in it may interfere
1071 	 * with another untraced process
1072 	 */
1073 	if ((flags & MAP_PRIVATE) && current->ptrace)
1074 		vm_flags &= ~VM_MAYSHARE;
1075 
1076 	return vm_flags;
1077 }
1078 
1079 /*
1080  * set up a shared mapping on a file (the driver or filesystem provides and
1081  * pins the storage)
1082  */
1083 static int do_mmap_shared_file(struct vm_area_struct *vma)
1084 {
1085 	int ret;
1086 
1087 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1088 	if (ret == 0) {
1089 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1090 		return 0;
1091 	}
1092 	if (ret != -ENOSYS)
1093 		return ret;
1094 
1095 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1096 	 * opposed to tried but failed) so we can only give a suitable error as
1097 	 * it's not possible to make a private copy if MAP_SHARED was given */
1098 	return -ENODEV;
1099 }
1100 
1101 /*
1102  * set up a private mapping or an anonymous shared mapping
1103  */
1104 static int do_mmap_private(struct vm_area_struct *vma,
1105 			   struct vm_region *region,
1106 			   unsigned long len,
1107 			   unsigned long capabilities)
1108 {
1109 	unsigned long total, point;
1110 	void *base;
1111 	int ret, order;
1112 
1113 	/* invoke the file's mapping function so that it can keep track of
1114 	 * shared mappings on devices or memory
1115 	 * - VM_MAYSHARE will be set if it may attempt to share
1116 	 */
1117 	if (capabilities & NOMMU_MAP_DIRECT) {
1118 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1119 		if (ret == 0) {
1120 			/* shouldn't return success if we're not sharing */
1121 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1122 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1123 			return 0;
1124 		}
1125 		if (ret != -ENOSYS)
1126 			return ret;
1127 
1128 		/* getting an ENOSYS error indicates that direct mmap isn't
1129 		 * possible (as opposed to tried but failed) so we'll try to
1130 		 * make a private copy of the data and map that instead */
1131 	}
1132 
1133 
1134 	/* allocate some memory to hold the mapping
1135 	 * - note that this may not return a page-aligned address if the object
1136 	 *   we're allocating is smaller than a page
1137 	 */
1138 	order = get_order(len);
1139 	total = 1 << order;
1140 	point = len >> PAGE_SHIFT;
1141 
1142 	/* we don't want to allocate a power-of-2 sized page set */
1143 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1144 		total = point;
1145 
1146 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1147 	if (!base)
1148 		goto enomem;
1149 
1150 	atomic_long_add(total, &mmap_pages_allocated);
1151 
1152 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1153 	region->vm_start = (unsigned long) base;
1154 	region->vm_end   = region->vm_start + len;
1155 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1156 
1157 	vma->vm_start = region->vm_start;
1158 	vma->vm_end   = region->vm_start + len;
1159 
1160 	if (vma->vm_file) {
1161 		/* read the contents of a file into the copy */
1162 		mm_segment_t old_fs;
1163 		loff_t fpos;
1164 
1165 		fpos = vma->vm_pgoff;
1166 		fpos <<= PAGE_SHIFT;
1167 
1168 		old_fs = get_fs();
1169 		set_fs(KERNEL_DS);
1170 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1171 		set_fs(old_fs);
1172 
1173 		if (ret < 0)
1174 			goto error_free;
1175 
1176 		/* clear the last little bit */
1177 		if (ret < len)
1178 			memset(base + ret, 0, len - ret);
1179 
1180 	}
1181 
1182 	return 0;
1183 
1184 error_free:
1185 	free_page_series(region->vm_start, region->vm_top);
1186 	region->vm_start = vma->vm_start = 0;
1187 	region->vm_end   = vma->vm_end = 0;
1188 	region->vm_top   = 0;
1189 	return ret;
1190 
1191 enomem:
1192 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1193 	       len, current->pid, current->comm);
1194 	show_free_areas(0);
1195 	return -ENOMEM;
1196 }
1197 
1198 /*
1199  * handle mapping creation for uClinux
1200  */
1201 unsigned long do_mmap(struct file *file,
1202 			unsigned long addr,
1203 			unsigned long len,
1204 			unsigned long prot,
1205 			unsigned long flags,
1206 			vm_flags_t vm_flags,
1207 			unsigned long pgoff,
1208 			unsigned long *populate)
1209 {
1210 	struct vm_area_struct *vma;
1211 	struct vm_region *region;
1212 	struct rb_node *rb;
1213 	unsigned long capabilities, result;
1214 	int ret;
1215 
1216 	*populate = 0;
1217 
1218 	/* decide whether we should attempt the mapping, and if so what sort of
1219 	 * mapping */
1220 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1221 				    &capabilities);
1222 	if (ret < 0)
1223 		return ret;
1224 
1225 	/* we ignore the address hint */
1226 	addr = 0;
1227 	len = PAGE_ALIGN(len);
1228 
1229 	/* we've determined that we can make the mapping, now translate what we
1230 	 * now know into VMA flags */
1231 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1232 
1233 	/* we're going to need to record the mapping */
1234 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1235 	if (!region)
1236 		goto error_getting_region;
1237 
1238 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1239 	if (!vma)
1240 		goto error_getting_vma;
1241 
1242 	region->vm_usage = 1;
1243 	region->vm_flags = vm_flags;
1244 	region->vm_pgoff = pgoff;
1245 
1246 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1247 	vma->vm_flags = vm_flags;
1248 	vma->vm_pgoff = pgoff;
1249 
1250 	if (file) {
1251 		region->vm_file = get_file(file);
1252 		vma->vm_file = get_file(file);
1253 	}
1254 
1255 	down_write(&nommu_region_sem);
1256 
1257 	/* if we want to share, we need to check for regions created by other
1258 	 * mmap() calls that overlap with our proposed mapping
1259 	 * - we can only share with a superset match on most regular files
1260 	 * - shared mappings on character devices and memory backed files are
1261 	 *   permitted to overlap inexactly as far as we are concerned for in
1262 	 *   these cases, sharing is handled in the driver or filesystem rather
1263 	 *   than here
1264 	 */
1265 	if (vm_flags & VM_MAYSHARE) {
1266 		struct vm_region *pregion;
1267 		unsigned long pglen, rpglen, pgend, rpgend, start;
1268 
1269 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1270 		pgend = pgoff + pglen;
1271 
1272 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1273 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1274 
1275 			if (!(pregion->vm_flags & VM_MAYSHARE))
1276 				continue;
1277 
1278 			/* search for overlapping mappings on the same file */
1279 			if (file_inode(pregion->vm_file) !=
1280 			    file_inode(file))
1281 				continue;
1282 
1283 			if (pregion->vm_pgoff >= pgend)
1284 				continue;
1285 
1286 			rpglen = pregion->vm_end - pregion->vm_start;
1287 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1288 			rpgend = pregion->vm_pgoff + rpglen;
1289 			if (pgoff >= rpgend)
1290 				continue;
1291 
1292 			/* handle inexactly overlapping matches between
1293 			 * mappings */
1294 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1295 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1296 				/* new mapping is not a subset of the region */
1297 				if (!(capabilities & NOMMU_MAP_DIRECT))
1298 					goto sharing_violation;
1299 				continue;
1300 			}
1301 
1302 			/* we've found a region we can share */
1303 			pregion->vm_usage++;
1304 			vma->vm_region = pregion;
1305 			start = pregion->vm_start;
1306 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1307 			vma->vm_start = start;
1308 			vma->vm_end = start + len;
1309 
1310 			if (pregion->vm_flags & VM_MAPPED_COPY)
1311 				vma->vm_flags |= VM_MAPPED_COPY;
1312 			else {
1313 				ret = do_mmap_shared_file(vma);
1314 				if (ret < 0) {
1315 					vma->vm_region = NULL;
1316 					vma->vm_start = 0;
1317 					vma->vm_end = 0;
1318 					pregion->vm_usage--;
1319 					pregion = NULL;
1320 					goto error_just_free;
1321 				}
1322 			}
1323 			fput(region->vm_file);
1324 			kmem_cache_free(vm_region_jar, region);
1325 			region = pregion;
1326 			result = start;
1327 			goto share;
1328 		}
1329 
1330 		/* obtain the address at which to make a shared mapping
1331 		 * - this is the hook for quasi-memory character devices to
1332 		 *   tell us the location of a shared mapping
1333 		 */
1334 		if (capabilities & NOMMU_MAP_DIRECT) {
1335 			addr = file->f_op->get_unmapped_area(file, addr, len,
1336 							     pgoff, flags);
1337 			if (IS_ERR_VALUE(addr)) {
1338 				ret = addr;
1339 				if (ret != -ENOSYS)
1340 					goto error_just_free;
1341 
1342 				/* the driver refused to tell us where to site
1343 				 * the mapping so we'll have to attempt to copy
1344 				 * it */
1345 				ret = -ENODEV;
1346 				if (!(capabilities & NOMMU_MAP_COPY))
1347 					goto error_just_free;
1348 
1349 				capabilities &= ~NOMMU_MAP_DIRECT;
1350 			} else {
1351 				vma->vm_start = region->vm_start = addr;
1352 				vma->vm_end = region->vm_end = addr + len;
1353 			}
1354 		}
1355 	}
1356 
1357 	vma->vm_region = region;
1358 
1359 	/* set up the mapping
1360 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1361 	 */
1362 	if (file && vma->vm_flags & VM_SHARED)
1363 		ret = do_mmap_shared_file(vma);
1364 	else
1365 		ret = do_mmap_private(vma, region, len, capabilities);
1366 	if (ret < 0)
1367 		goto error_just_free;
1368 	add_nommu_region(region);
1369 
1370 	/* clear anonymous mappings that don't ask for uninitialized data */
1371 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1372 		memset((void *)region->vm_start, 0,
1373 		       region->vm_end - region->vm_start);
1374 
1375 	/* okay... we have a mapping; now we have to register it */
1376 	result = vma->vm_start;
1377 
1378 	current->mm->total_vm += len >> PAGE_SHIFT;
1379 
1380 share:
1381 	add_vma_to_mm(current->mm, vma);
1382 
1383 	/* we flush the region from the icache only when the first executable
1384 	 * mapping of it is made  */
1385 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1386 		flush_icache_range(region->vm_start, region->vm_end);
1387 		region->vm_icache_flushed = true;
1388 	}
1389 
1390 	up_write(&nommu_region_sem);
1391 
1392 	return result;
1393 
1394 error_just_free:
1395 	up_write(&nommu_region_sem);
1396 error:
1397 	if (region->vm_file)
1398 		fput(region->vm_file);
1399 	kmem_cache_free(vm_region_jar, region);
1400 	if (vma->vm_file)
1401 		fput(vma->vm_file);
1402 	kmem_cache_free(vm_area_cachep, vma);
1403 	return ret;
1404 
1405 sharing_violation:
1406 	up_write(&nommu_region_sem);
1407 	pr_warn("Attempt to share mismatched mappings\n");
1408 	ret = -EINVAL;
1409 	goto error;
1410 
1411 error_getting_vma:
1412 	kmem_cache_free(vm_region_jar, region);
1413 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1414 			len, current->pid);
1415 	show_free_areas(0);
1416 	return -ENOMEM;
1417 
1418 error_getting_region:
1419 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1420 			len, current->pid);
1421 	show_free_areas(0);
1422 	return -ENOMEM;
1423 }
1424 
1425 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1426 		unsigned long, prot, unsigned long, flags,
1427 		unsigned long, fd, unsigned long, pgoff)
1428 {
1429 	struct file *file = NULL;
1430 	unsigned long retval = -EBADF;
1431 
1432 	audit_mmap_fd(fd, flags);
1433 	if (!(flags & MAP_ANONYMOUS)) {
1434 		file = fget(fd);
1435 		if (!file)
1436 			goto out;
1437 	}
1438 
1439 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1440 
1441 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1442 
1443 	if (file)
1444 		fput(file);
1445 out:
1446 	return retval;
1447 }
1448 
1449 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1450 struct mmap_arg_struct {
1451 	unsigned long addr;
1452 	unsigned long len;
1453 	unsigned long prot;
1454 	unsigned long flags;
1455 	unsigned long fd;
1456 	unsigned long offset;
1457 };
1458 
1459 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1460 {
1461 	struct mmap_arg_struct a;
1462 
1463 	if (copy_from_user(&a, arg, sizeof(a)))
1464 		return -EFAULT;
1465 	if (offset_in_page(a.offset))
1466 		return -EINVAL;
1467 
1468 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1469 			      a.offset >> PAGE_SHIFT);
1470 }
1471 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1472 
1473 /*
1474  * split a vma into two pieces at address 'addr', a new vma is allocated either
1475  * for the first part or the tail.
1476  */
1477 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1478 	      unsigned long addr, int new_below)
1479 {
1480 	struct vm_area_struct *new;
1481 	struct vm_region *region;
1482 	unsigned long npages;
1483 
1484 	/* we're only permitted to split anonymous regions (these should have
1485 	 * only a single usage on the region) */
1486 	if (vma->vm_file)
1487 		return -ENOMEM;
1488 
1489 	if (mm->map_count >= sysctl_max_map_count)
1490 		return -ENOMEM;
1491 
1492 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1493 	if (!region)
1494 		return -ENOMEM;
1495 
1496 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1497 	if (!new) {
1498 		kmem_cache_free(vm_region_jar, region);
1499 		return -ENOMEM;
1500 	}
1501 
1502 	/* most fields are the same, copy all, and then fixup */
1503 	*new = *vma;
1504 	*region = *vma->vm_region;
1505 	new->vm_region = region;
1506 
1507 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1508 
1509 	if (new_below) {
1510 		region->vm_top = region->vm_end = new->vm_end = addr;
1511 	} else {
1512 		region->vm_start = new->vm_start = addr;
1513 		region->vm_pgoff = new->vm_pgoff += npages;
1514 	}
1515 
1516 	if (new->vm_ops && new->vm_ops->open)
1517 		new->vm_ops->open(new);
1518 
1519 	delete_vma_from_mm(vma);
1520 	down_write(&nommu_region_sem);
1521 	delete_nommu_region(vma->vm_region);
1522 	if (new_below) {
1523 		vma->vm_region->vm_start = vma->vm_start = addr;
1524 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1525 	} else {
1526 		vma->vm_region->vm_end = vma->vm_end = addr;
1527 		vma->vm_region->vm_top = addr;
1528 	}
1529 	add_nommu_region(vma->vm_region);
1530 	add_nommu_region(new->vm_region);
1531 	up_write(&nommu_region_sem);
1532 	add_vma_to_mm(mm, vma);
1533 	add_vma_to_mm(mm, new);
1534 	return 0;
1535 }
1536 
1537 /*
1538  * shrink a VMA by removing the specified chunk from either the beginning or
1539  * the end
1540  */
1541 static int shrink_vma(struct mm_struct *mm,
1542 		      struct vm_area_struct *vma,
1543 		      unsigned long from, unsigned long to)
1544 {
1545 	struct vm_region *region;
1546 
1547 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1548 	 * and list */
1549 	delete_vma_from_mm(vma);
1550 	if (from > vma->vm_start)
1551 		vma->vm_end = from;
1552 	else
1553 		vma->vm_start = to;
1554 	add_vma_to_mm(mm, vma);
1555 
1556 	/* cut the backing region down to size */
1557 	region = vma->vm_region;
1558 	BUG_ON(region->vm_usage != 1);
1559 
1560 	down_write(&nommu_region_sem);
1561 	delete_nommu_region(region);
1562 	if (from > region->vm_start) {
1563 		to = region->vm_top;
1564 		region->vm_top = region->vm_end = from;
1565 	} else {
1566 		region->vm_start = to;
1567 	}
1568 	add_nommu_region(region);
1569 	up_write(&nommu_region_sem);
1570 
1571 	free_page_series(from, to);
1572 	return 0;
1573 }
1574 
1575 /*
1576  * release a mapping
1577  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1578  *   VMA, though it need not cover the whole VMA
1579  */
1580 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1581 {
1582 	struct vm_area_struct *vma;
1583 	unsigned long end;
1584 	int ret;
1585 
1586 	len = PAGE_ALIGN(len);
1587 	if (len == 0)
1588 		return -EINVAL;
1589 
1590 	end = start + len;
1591 
1592 	/* find the first potentially overlapping VMA */
1593 	vma = find_vma(mm, start);
1594 	if (!vma) {
1595 		static int limit;
1596 		if (limit < 5) {
1597 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1598 					current->pid, current->comm,
1599 					start, start + len - 1);
1600 			limit++;
1601 		}
1602 		return -EINVAL;
1603 	}
1604 
1605 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1606 	if (vma->vm_file) {
1607 		do {
1608 			if (start > vma->vm_start)
1609 				return -EINVAL;
1610 			if (end == vma->vm_end)
1611 				goto erase_whole_vma;
1612 			vma = vma->vm_next;
1613 		} while (vma);
1614 		return -EINVAL;
1615 	} else {
1616 		/* the chunk must be a subset of the VMA found */
1617 		if (start == vma->vm_start && end == vma->vm_end)
1618 			goto erase_whole_vma;
1619 		if (start < vma->vm_start || end > vma->vm_end)
1620 			return -EINVAL;
1621 		if (offset_in_page(start))
1622 			return -EINVAL;
1623 		if (end != vma->vm_end && offset_in_page(end))
1624 			return -EINVAL;
1625 		if (start != vma->vm_start && end != vma->vm_end) {
1626 			ret = split_vma(mm, vma, start, 1);
1627 			if (ret < 0)
1628 				return ret;
1629 		}
1630 		return shrink_vma(mm, vma, start, end);
1631 	}
1632 
1633 erase_whole_vma:
1634 	delete_vma_from_mm(vma);
1635 	delete_vma(mm, vma);
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(do_munmap);
1639 
1640 int vm_munmap(unsigned long addr, size_t len)
1641 {
1642 	struct mm_struct *mm = current->mm;
1643 	int ret;
1644 
1645 	down_write(&mm->mmap_sem);
1646 	ret = do_munmap(mm, addr, len);
1647 	up_write(&mm->mmap_sem);
1648 	return ret;
1649 }
1650 EXPORT_SYMBOL(vm_munmap);
1651 
1652 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1653 {
1654 	return vm_munmap(addr, len);
1655 }
1656 
1657 /*
1658  * release all the mappings made in a process's VM space
1659  */
1660 void exit_mmap(struct mm_struct *mm)
1661 {
1662 	struct vm_area_struct *vma;
1663 
1664 	if (!mm)
1665 		return;
1666 
1667 	mm->total_vm = 0;
1668 
1669 	while ((vma = mm->mmap)) {
1670 		mm->mmap = vma->vm_next;
1671 		delete_vma_from_mm(vma);
1672 		delete_vma(mm, vma);
1673 		cond_resched();
1674 	}
1675 }
1676 
1677 int vm_brk(unsigned long addr, unsigned long len)
1678 {
1679 	return -ENOMEM;
1680 }
1681 
1682 /*
1683  * expand (or shrink) an existing mapping, potentially moving it at the same
1684  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1685  *
1686  * under NOMMU conditions, we only permit changing a mapping's size, and only
1687  * as long as it stays within the region allocated by do_mmap_private() and the
1688  * block is not shareable
1689  *
1690  * MREMAP_FIXED is not supported under NOMMU conditions
1691  */
1692 static unsigned long do_mremap(unsigned long addr,
1693 			unsigned long old_len, unsigned long new_len,
1694 			unsigned long flags, unsigned long new_addr)
1695 {
1696 	struct vm_area_struct *vma;
1697 
1698 	/* insanity checks first */
1699 	old_len = PAGE_ALIGN(old_len);
1700 	new_len = PAGE_ALIGN(new_len);
1701 	if (old_len == 0 || new_len == 0)
1702 		return (unsigned long) -EINVAL;
1703 
1704 	if (offset_in_page(addr))
1705 		return -EINVAL;
1706 
1707 	if (flags & MREMAP_FIXED && new_addr != addr)
1708 		return (unsigned long) -EINVAL;
1709 
1710 	vma = find_vma_exact(current->mm, addr, old_len);
1711 	if (!vma)
1712 		return (unsigned long) -EINVAL;
1713 
1714 	if (vma->vm_end != vma->vm_start + old_len)
1715 		return (unsigned long) -EFAULT;
1716 
1717 	if (vma->vm_flags & VM_MAYSHARE)
1718 		return (unsigned long) -EPERM;
1719 
1720 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1721 		return (unsigned long) -ENOMEM;
1722 
1723 	/* all checks complete - do it */
1724 	vma->vm_end = vma->vm_start + new_len;
1725 	return vma->vm_start;
1726 }
1727 
1728 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1729 		unsigned long, new_len, unsigned long, flags,
1730 		unsigned long, new_addr)
1731 {
1732 	unsigned long ret;
1733 
1734 	down_write(&current->mm->mmap_sem);
1735 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1736 	up_write(&current->mm->mmap_sem);
1737 	return ret;
1738 }
1739 
1740 struct page *follow_page_mask(struct vm_area_struct *vma,
1741 			      unsigned long address, unsigned int flags,
1742 			      unsigned int *page_mask)
1743 {
1744 	*page_mask = 0;
1745 	return NULL;
1746 }
1747 
1748 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1749 		unsigned long pfn, unsigned long size, pgprot_t prot)
1750 {
1751 	if (addr != (pfn << PAGE_SHIFT))
1752 		return -EINVAL;
1753 
1754 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(remap_pfn_range);
1758 
1759 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1760 {
1761 	unsigned long pfn = start >> PAGE_SHIFT;
1762 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1763 
1764 	pfn += vma->vm_pgoff;
1765 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1766 }
1767 EXPORT_SYMBOL(vm_iomap_memory);
1768 
1769 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1770 			unsigned long pgoff)
1771 {
1772 	unsigned int size = vma->vm_end - vma->vm_start;
1773 
1774 	if (!(vma->vm_flags & VM_USERMAP))
1775 		return -EINVAL;
1776 
1777 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1778 	vma->vm_end = vma->vm_start + size;
1779 
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(remap_vmalloc_range);
1783 
1784 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1785 	unsigned long len, unsigned long pgoff, unsigned long flags)
1786 {
1787 	return -ENOMEM;
1788 }
1789 
1790 void unmap_mapping_range(struct address_space *mapping,
1791 			 loff_t const holebegin, loff_t const holelen,
1792 			 int even_cows)
1793 {
1794 }
1795 EXPORT_SYMBOL(unmap_mapping_range);
1796 
1797 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1798 {
1799 	BUG();
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL(filemap_fault);
1803 
1804 void filemap_map_pages(struct vm_fault *vmf,
1805 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1806 {
1807 	BUG();
1808 }
1809 EXPORT_SYMBOL(filemap_map_pages);
1810 
1811 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1812 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1813 {
1814 	struct vm_area_struct *vma;
1815 	int write = gup_flags & FOLL_WRITE;
1816 
1817 	down_read(&mm->mmap_sem);
1818 
1819 	/* the access must start within one of the target process's mappings */
1820 	vma = find_vma(mm, addr);
1821 	if (vma) {
1822 		/* don't overrun this mapping */
1823 		if (addr + len >= vma->vm_end)
1824 			len = vma->vm_end - addr;
1825 
1826 		/* only read or write mappings where it is permitted */
1827 		if (write && vma->vm_flags & VM_MAYWRITE)
1828 			copy_to_user_page(vma, NULL, addr,
1829 					 (void *) addr, buf, len);
1830 		else if (!write && vma->vm_flags & VM_MAYREAD)
1831 			copy_from_user_page(vma, NULL, addr,
1832 					    buf, (void *) addr, len);
1833 		else
1834 			len = 0;
1835 	} else {
1836 		len = 0;
1837 	}
1838 
1839 	up_read(&mm->mmap_sem);
1840 
1841 	return len;
1842 }
1843 
1844 /**
1845  * @access_remote_vm - access another process' address space
1846  * @mm:		the mm_struct of the target address space
1847  * @addr:	start address to access
1848  * @buf:	source or destination buffer
1849  * @len:	number of bytes to transfer
1850  * @gup_flags:	flags modifying lookup behaviour
1851  *
1852  * The caller must hold a reference on @mm.
1853  */
1854 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1855 		void *buf, int len, unsigned int gup_flags)
1856 {
1857 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1858 }
1859 
1860 /*
1861  * Access another process' address space.
1862  * - source/target buffer must be kernel space
1863  */
1864 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1865 		unsigned int gup_flags)
1866 {
1867 	struct mm_struct *mm;
1868 
1869 	if (addr + len < addr)
1870 		return 0;
1871 
1872 	mm = get_task_mm(tsk);
1873 	if (!mm)
1874 		return 0;
1875 
1876 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1877 
1878 	mmput(mm);
1879 	return len;
1880 }
1881 EXPORT_SYMBOL_GPL(access_process_vm);
1882 
1883 /**
1884  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1885  * @inode: The inode to check
1886  * @size: The current filesize of the inode
1887  * @newsize: The proposed filesize of the inode
1888  *
1889  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1890  * make sure that that any outstanding VMAs aren't broken and then shrink the
1891  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1892  * automatically grant mappings that are too large.
1893  */
1894 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1895 				size_t newsize)
1896 {
1897 	struct vm_area_struct *vma;
1898 	struct vm_region *region;
1899 	pgoff_t low, high;
1900 	size_t r_size, r_top;
1901 
1902 	low = newsize >> PAGE_SHIFT;
1903 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1904 
1905 	down_write(&nommu_region_sem);
1906 	i_mmap_lock_read(inode->i_mapping);
1907 
1908 	/* search for VMAs that fall within the dead zone */
1909 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1910 		/* found one - only interested if it's shared out of the page
1911 		 * cache */
1912 		if (vma->vm_flags & VM_SHARED) {
1913 			i_mmap_unlock_read(inode->i_mapping);
1914 			up_write(&nommu_region_sem);
1915 			return -ETXTBSY; /* not quite true, but near enough */
1916 		}
1917 	}
1918 
1919 	/* reduce any regions that overlap the dead zone - if in existence,
1920 	 * these will be pointed to by VMAs that don't overlap the dead zone
1921 	 *
1922 	 * we don't check for any regions that start beyond the EOF as there
1923 	 * shouldn't be any
1924 	 */
1925 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1926 		if (!(vma->vm_flags & VM_SHARED))
1927 			continue;
1928 
1929 		region = vma->vm_region;
1930 		r_size = region->vm_top - region->vm_start;
1931 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1932 
1933 		if (r_top > newsize) {
1934 			region->vm_top -= r_top - newsize;
1935 			if (region->vm_end > region->vm_top)
1936 				region->vm_end = region->vm_top;
1937 		}
1938 	}
1939 
1940 	i_mmap_unlock_read(inode->i_mapping);
1941 	up_write(&nommu_region_sem);
1942 	return 0;
1943 }
1944 
1945 /*
1946  * Initialise sysctl_user_reserve_kbytes.
1947  *
1948  * This is intended to prevent a user from starting a single memory hogging
1949  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1950  * mode.
1951  *
1952  * The default value is min(3% of free memory, 128MB)
1953  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1954  */
1955 static int __meminit init_user_reserve(void)
1956 {
1957 	unsigned long free_kbytes;
1958 
1959 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1960 
1961 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1962 	return 0;
1963 }
1964 subsys_initcall(init_user_reserve);
1965 
1966 /*
1967  * Initialise sysctl_admin_reserve_kbytes.
1968  *
1969  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1970  * to log in and kill a memory hogging process.
1971  *
1972  * Systems with more than 256MB will reserve 8MB, enough to recover
1973  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1974  * only reserve 3% of free pages by default.
1975  */
1976 static int __meminit init_admin_reserve(void)
1977 {
1978 	unsigned long free_kbytes;
1979 
1980 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1981 
1982 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1983 	return 0;
1984 }
1985 subsys_initcall(init_admin_reserve);
1986