1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/vmacache.h> 21 #include <linux/mman.h> 22 #include <linux/swap.h> 23 #include <linux/file.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/blkdev.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/printk.h> 38 39 #include <asm/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 #if 0 46 #define kenter(FMT, ...) \ 47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 48 #define kleave(FMT, ...) \ 49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 50 #define kdebug(FMT, ...) \ 51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 52 #else 53 #define kenter(FMT, ...) \ 54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 55 #define kleave(FMT, ...) \ 56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 57 #define kdebug(FMT, ...) \ 58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 59 #endif 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long highest_memmap_pfn; 65 struct percpu_counter vm_committed_as; 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 unsigned long sysctl_overcommit_kbytes __read_mostly; 69 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 70 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 71 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 72 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 73 int heap_stack_gap = 0; 74 75 atomic_long_t mmap_pages_allocated; 76 77 /* 78 * The global memory commitment made in the system can be a metric 79 * that can be used to drive ballooning decisions when Linux is hosted 80 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 81 * balancing memory across competing virtual machines that are hosted. 82 * Several metrics drive this policy engine including the guest reported 83 * memory commitment. 84 */ 85 unsigned long vm_memory_committed(void) 86 { 87 return percpu_counter_read_positive(&vm_committed_as); 88 } 89 90 EXPORT_SYMBOL_GPL(vm_memory_committed); 91 92 EXPORT_SYMBOL(mem_map); 93 94 /* list of mapped, potentially shareable regions */ 95 static struct kmem_cache *vm_region_jar; 96 struct rb_root nommu_region_tree = RB_ROOT; 97 DECLARE_RWSEM(nommu_region_sem); 98 99 const struct vm_operations_struct generic_file_vm_ops = { 100 }; 101 102 /* 103 * Return the total memory allocated for this pointer, not 104 * just what the caller asked for. 105 * 106 * Doesn't have to be accurate, i.e. may have races. 107 */ 108 unsigned int kobjsize(const void *objp) 109 { 110 struct page *page; 111 112 /* 113 * If the object we have should not have ksize performed on it, 114 * return size of 0 115 */ 116 if (!objp || !virt_addr_valid(objp)) 117 return 0; 118 119 page = virt_to_head_page(objp); 120 121 /* 122 * If the allocator sets PageSlab, we know the pointer came from 123 * kmalloc(). 124 */ 125 if (PageSlab(page)) 126 return ksize(objp); 127 128 /* 129 * If it's not a compound page, see if we have a matching VMA 130 * region. This test is intentionally done in reverse order, 131 * so if there's no VMA, we still fall through and hand back 132 * PAGE_SIZE for 0-order pages. 133 */ 134 if (!PageCompound(page)) { 135 struct vm_area_struct *vma; 136 137 vma = find_vma(current->mm, (unsigned long)objp); 138 if (vma) 139 return vma->vm_end - vma->vm_start; 140 } 141 142 /* 143 * The ksize() function is only guaranteed to work for pointers 144 * returned by kmalloc(). So handle arbitrary pointers here. 145 */ 146 return PAGE_SIZE << compound_order(page); 147 } 148 149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 150 unsigned long start, unsigned long nr_pages, 151 unsigned int foll_flags, struct page **pages, 152 struct vm_area_struct **vmas, int *nonblocking) 153 { 154 struct vm_area_struct *vma; 155 unsigned long vm_flags; 156 int i; 157 158 /* calculate required read or write permissions. 159 * If FOLL_FORCE is set, we only require the "MAY" flags. 160 */ 161 vm_flags = (foll_flags & FOLL_WRITE) ? 162 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 163 vm_flags &= (foll_flags & FOLL_FORCE) ? 164 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 165 166 for (i = 0; i < nr_pages; i++) { 167 vma = find_vma(mm, start); 168 if (!vma) 169 goto finish_or_fault; 170 171 /* protect what we can, including chardevs */ 172 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 173 !(vm_flags & vma->vm_flags)) 174 goto finish_or_fault; 175 176 if (pages) { 177 pages[i] = virt_to_page(start); 178 if (pages[i]) 179 page_cache_get(pages[i]); 180 } 181 if (vmas) 182 vmas[i] = vma; 183 start = (start + PAGE_SIZE) & PAGE_MASK; 184 } 185 186 return i; 187 188 finish_or_fault: 189 return i ? : -EFAULT; 190 } 191 192 /* 193 * get a list of pages in an address range belonging to the specified process 194 * and indicate the VMA that covers each page 195 * - this is potentially dodgy as we may end incrementing the page count of a 196 * slab page or a secondary page from a compound page 197 * - don't permit access to VMAs that don't support it, such as I/O mappings 198 */ 199 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 200 unsigned long start, unsigned long nr_pages, 201 int write, int force, struct page **pages, 202 struct vm_area_struct **vmas) 203 { 204 int flags = 0; 205 206 if (write) 207 flags |= FOLL_WRITE; 208 if (force) 209 flags |= FOLL_FORCE; 210 211 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 212 NULL); 213 } 214 EXPORT_SYMBOL(get_user_pages); 215 216 /** 217 * follow_pfn - look up PFN at a user virtual address 218 * @vma: memory mapping 219 * @address: user virtual address 220 * @pfn: location to store found PFN 221 * 222 * Only IO mappings and raw PFN mappings are allowed. 223 * 224 * Returns zero and the pfn at @pfn on success, -ve otherwise. 225 */ 226 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 227 unsigned long *pfn) 228 { 229 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 230 return -EINVAL; 231 232 *pfn = address >> PAGE_SHIFT; 233 return 0; 234 } 235 EXPORT_SYMBOL(follow_pfn); 236 237 LIST_HEAD(vmap_area_list); 238 239 void vfree(const void *addr) 240 { 241 kfree(addr); 242 } 243 EXPORT_SYMBOL(vfree); 244 245 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 246 { 247 /* 248 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 249 * returns only a logical address. 250 */ 251 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 252 } 253 EXPORT_SYMBOL(__vmalloc); 254 255 void *vmalloc_user(unsigned long size) 256 { 257 void *ret; 258 259 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 260 PAGE_KERNEL); 261 if (ret) { 262 struct vm_area_struct *vma; 263 264 down_write(¤t->mm->mmap_sem); 265 vma = find_vma(current->mm, (unsigned long)ret); 266 if (vma) 267 vma->vm_flags |= VM_USERMAP; 268 up_write(¤t->mm->mmap_sem); 269 } 270 271 return ret; 272 } 273 EXPORT_SYMBOL(vmalloc_user); 274 275 struct page *vmalloc_to_page(const void *addr) 276 { 277 return virt_to_page(addr); 278 } 279 EXPORT_SYMBOL(vmalloc_to_page); 280 281 unsigned long vmalloc_to_pfn(const void *addr) 282 { 283 return page_to_pfn(virt_to_page(addr)); 284 } 285 EXPORT_SYMBOL(vmalloc_to_pfn); 286 287 long vread(char *buf, char *addr, unsigned long count) 288 { 289 /* Don't allow overflow */ 290 if ((unsigned long) buf + count < count) 291 count = -(unsigned long) buf; 292 293 memcpy(buf, addr, count); 294 return count; 295 } 296 297 long vwrite(char *buf, char *addr, unsigned long count) 298 { 299 /* Don't allow overflow */ 300 if ((unsigned long) addr + count < count) 301 count = -(unsigned long) addr; 302 303 memcpy(addr, buf, count); 304 return count; 305 } 306 307 /* 308 * vmalloc - allocate virtually continguos memory 309 * 310 * @size: allocation size 311 * 312 * Allocate enough pages to cover @size from the page level 313 * allocator and map them into continguos kernel virtual space. 314 * 315 * For tight control over page level allocator and protection flags 316 * use __vmalloc() instead. 317 */ 318 void *vmalloc(unsigned long size) 319 { 320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 321 } 322 EXPORT_SYMBOL(vmalloc); 323 324 /* 325 * vzalloc - allocate virtually continguos memory with zero fill 326 * 327 * @size: allocation size 328 * 329 * Allocate enough pages to cover @size from the page level 330 * allocator and map them into continguos kernel virtual space. 331 * The memory allocated is set to zero. 332 * 333 * For tight control over page level allocator and protection flags 334 * use __vmalloc() instead. 335 */ 336 void *vzalloc(unsigned long size) 337 { 338 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 339 PAGE_KERNEL); 340 } 341 EXPORT_SYMBOL(vzalloc); 342 343 /** 344 * vmalloc_node - allocate memory on a specific node 345 * @size: allocation size 346 * @node: numa node 347 * 348 * Allocate enough pages to cover @size from the page level 349 * allocator and map them into contiguous kernel virtual space. 350 * 351 * For tight control over page level allocator and protection flags 352 * use __vmalloc() instead. 353 */ 354 void *vmalloc_node(unsigned long size, int node) 355 { 356 return vmalloc(size); 357 } 358 EXPORT_SYMBOL(vmalloc_node); 359 360 /** 361 * vzalloc_node - allocate memory on a specific node with zero fill 362 * @size: allocation size 363 * @node: numa node 364 * 365 * Allocate enough pages to cover @size from the page level 366 * allocator and map them into contiguous kernel virtual space. 367 * The memory allocated is set to zero. 368 * 369 * For tight control over page level allocator and protection flags 370 * use __vmalloc() instead. 371 */ 372 void *vzalloc_node(unsigned long size, int node) 373 { 374 return vzalloc(size); 375 } 376 EXPORT_SYMBOL(vzalloc_node); 377 378 #ifndef PAGE_KERNEL_EXEC 379 # define PAGE_KERNEL_EXEC PAGE_KERNEL 380 #endif 381 382 /** 383 * vmalloc_exec - allocate virtually contiguous, executable memory 384 * @size: allocation size 385 * 386 * Kernel-internal function to allocate enough pages to cover @size 387 * the page level allocator and map them into contiguous and 388 * executable kernel virtual space. 389 * 390 * For tight control over page level allocator and protection flags 391 * use __vmalloc() instead. 392 */ 393 394 void *vmalloc_exec(unsigned long size) 395 { 396 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 397 } 398 399 /** 400 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 401 * @size: allocation size 402 * 403 * Allocate enough 32bit PA addressable pages to cover @size from the 404 * page level allocator and map them into continguos kernel virtual space. 405 */ 406 void *vmalloc_32(unsigned long size) 407 { 408 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 409 } 410 EXPORT_SYMBOL(vmalloc_32); 411 412 /** 413 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 414 * @size: allocation size 415 * 416 * The resulting memory area is 32bit addressable and zeroed so it can be 417 * mapped to userspace without leaking data. 418 * 419 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 420 * remap_vmalloc_range() are permissible. 421 */ 422 void *vmalloc_32_user(unsigned long size) 423 { 424 /* 425 * We'll have to sort out the ZONE_DMA bits for 64-bit, 426 * but for now this can simply use vmalloc_user() directly. 427 */ 428 return vmalloc_user(size); 429 } 430 EXPORT_SYMBOL(vmalloc_32_user); 431 432 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 433 { 434 BUG(); 435 return NULL; 436 } 437 EXPORT_SYMBOL(vmap); 438 439 void vunmap(const void *addr) 440 { 441 BUG(); 442 } 443 EXPORT_SYMBOL(vunmap); 444 445 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 446 { 447 BUG(); 448 return NULL; 449 } 450 EXPORT_SYMBOL(vm_map_ram); 451 452 void vm_unmap_ram(const void *mem, unsigned int count) 453 { 454 BUG(); 455 } 456 EXPORT_SYMBOL(vm_unmap_ram); 457 458 void vm_unmap_aliases(void) 459 { 460 } 461 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 462 463 /* 464 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 465 * have one. 466 */ 467 void __weak vmalloc_sync_all(void) 468 { 469 } 470 471 /** 472 * alloc_vm_area - allocate a range of kernel address space 473 * @size: size of the area 474 * 475 * Returns: NULL on failure, vm_struct on success 476 * 477 * This function reserves a range of kernel address space, and 478 * allocates pagetables to map that range. No actual mappings 479 * are created. If the kernel address space is not shared 480 * between processes, it syncs the pagetable across all 481 * processes. 482 */ 483 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 484 { 485 BUG(); 486 return NULL; 487 } 488 EXPORT_SYMBOL_GPL(alloc_vm_area); 489 490 void free_vm_area(struct vm_struct *area) 491 { 492 BUG(); 493 } 494 EXPORT_SYMBOL_GPL(free_vm_area); 495 496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 497 struct page *page) 498 { 499 return -EINVAL; 500 } 501 EXPORT_SYMBOL(vm_insert_page); 502 503 /* 504 * sys_brk() for the most part doesn't need the global kernel 505 * lock, except when an application is doing something nasty 506 * like trying to un-brk an area that has already been mapped 507 * to a regular file. in this case, the unmapping will need 508 * to invoke file system routines that need the global lock. 509 */ 510 SYSCALL_DEFINE1(brk, unsigned long, brk) 511 { 512 struct mm_struct *mm = current->mm; 513 514 if (brk < mm->start_brk || brk > mm->context.end_brk) 515 return mm->brk; 516 517 if (mm->brk == brk) 518 return mm->brk; 519 520 /* 521 * Always allow shrinking brk 522 */ 523 if (brk <= mm->brk) { 524 mm->brk = brk; 525 return brk; 526 } 527 528 /* 529 * Ok, looks good - let it rip. 530 */ 531 flush_icache_range(mm->brk, brk); 532 return mm->brk = brk; 533 } 534 535 /* 536 * initialise the VMA and region record slabs 537 */ 538 void __init mmap_init(void) 539 { 540 int ret; 541 542 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 543 VM_BUG_ON(ret); 544 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 545 } 546 547 /* 548 * validate the region tree 549 * - the caller must hold the region lock 550 */ 551 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 552 static noinline void validate_nommu_regions(void) 553 { 554 struct vm_region *region, *last; 555 struct rb_node *p, *lastp; 556 557 lastp = rb_first(&nommu_region_tree); 558 if (!lastp) 559 return; 560 561 last = rb_entry(lastp, struct vm_region, vm_rb); 562 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 563 BUG_ON(unlikely(last->vm_top < last->vm_end)); 564 565 while ((p = rb_next(lastp))) { 566 region = rb_entry(p, struct vm_region, vm_rb); 567 last = rb_entry(lastp, struct vm_region, vm_rb); 568 569 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 570 BUG_ON(unlikely(region->vm_top < region->vm_end)); 571 BUG_ON(unlikely(region->vm_start < last->vm_top)); 572 573 lastp = p; 574 } 575 } 576 #else 577 static void validate_nommu_regions(void) 578 { 579 } 580 #endif 581 582 /* 583 * add a region into the global tree 584 */ 585 static void add_nommu_region(struct vm_region *region) 586 { 587 struct vm_region *pregion; 588 struct rb_node **p, *parent; 589 590 validate_nommu_regions(); 591 592 parent = NULL; 593 p = &nommu_region_tree.rb_node; 594 while (*p) { 595 parent = *p; 596 pregion = rb_entry(parent, struct vm_region, vm_rb); 597 if (region->vm_start < pregion->vm_start) 598 p = &(*p)->rb_left; 599 else if (region->vm_start > pregion->vm_start) 600 p = &(*p)->rb_right; 601 else if (pregion == region) 602 return; 603 else 604 BUG(); 605 } 606 607 rb_link_node(®ion->vm_rb, parent, p); 608 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 609 610 validate_nommu_regions(); 611 } 612 613 /* 614 * delete a region from the global tree 615 */ 616 static void delete_nommu_region(struct vm_region *region) 617 { 618 BUG_ON(!nommu_region_tree.rb_node); 619 620 validate_nommu_regions(); 621 rb_erase(®ion->vm_rb, &nommu_region_tree); 622 validate_nommu_regions(); 623 } 624 625 /* 626 * free a contiguous series of pages 627 */ 628 static void free_page_series(unsigned long from, unsigned long to) 629 { 630 for (; from < to; from += PAGE_SIZE) { 631 struct page *page = virt_to_page(from); 632 633 kdebug("- free %lx", from); 634 atomic_long_dec(&mmap_pages_allocated); 635 if (page_count(page) != 1) 636 kdebug("free page %p: refcount not one: %d", 637 page, page_count(page)); 638 put_page(page); 639 } 640 } 641 642 /* 643 * release a reference to a region 644 * - the caller must hold the region semaphore for writing, which this releases 645 * - the region may not have been added to the tree yet, in which case vm_top 646 * will equal vm_start 647 */ 648 static void __put_nommu_region(struct vm_region *region) 649 __releases(nommu_region_sem) 650 { 651 kenter("%p{%d}", region, region->vm_usage); 652 653 BUG_ON(!nommu_region_tree.rb_node); 654 655 if (--region->vm_usage == 0) { 656 if (region->vm_top > region->vm_start) 657 delete_nommu_region(region); 658 up_write(&nommu_region_sem); 659 660 if (region->vm_file) 661 fput(region->vm_file); 662 663 /* IO memory and memory shared directly out of the pagecache 664 * from ramfs/tmpfs mustn't be released here */ 665 if (region->vm_flags & VM_MAPPED_COPY) { 666 kdebug("free series"); 667 free_page_series(region->vm_start, region->vm_top); 668 } 669 kmem_cache_free(vm_region_jar, region); 670 } else { 671 up_write(&nommu_region_sem); 672 } 673 } 674 675 /* 676 * release a reference to a region 677 */ 678 static void put_nommu_region(struct vm_region *region) 679 { 680 down_write(&nommu_region_sem); 681 __put_nommu_region(region); 682 } 683 684 /* 685 * update protection on a vma 686 */ 687 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 688 { 689 #ifdef CONFIG_MPU 690 struct mm_struct *mm = vma->vm_mm; 691 long start = vma->vm_start & PAGE_MASK; 692 while (start < vma->vm_end) { 693 protect_page(mm, start, flags); 694 start += PAGE_SIZE; 695 } 696 update_protections(mm); 697 #endif 698 } 699 700 /* 701 * add a VMA into a process's mm_struct in the appropriate place in the list 702 * and tree and add to the address space's page tree also if not an anonymous 703 * page 704 * - should be called with mm->mmap_sem held writelocked 705 */ 706 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 707 { 708 struct vm_area_struct *pvma, *prev; 709 struct address_space *mapping; 710 struct rb_node **p, *parent, *rb_prev; 711 712 kenter(",%p", vma); 713 714 BUG_ON(!vma->vm_region); 715 716 mm->map_count++; 717 vma->vm_mm = mm; 718 719 protect_vma(vma, vma->vm_flags); 720 721 /* add the VMA to the mapping */ 722 if (vma->vm_file) { 723 mapping = vma->vm_file->f_mapping; 724 725 i_mmap_lock_write(mapping); 726 flush_dcache_mmap_lock(mapping); 727 vma_interval_tree_insert(vma, &mapping->i_mmap); 728 flush_dcache_mmap_unlock(mapping); 729 i_mmap_unlock_write(mapping); 730 } 731 732 /* add the VMA to the tree */ 733 parent = rb_prev = NULL; 734 p = &mm->mm_rb.rb_node; 735 while (*p) { 736 parent = *p; 737 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 738 739 /* sort by: start addr, end addr, VMA struct addr in that order 740 * (the latter is necessary as we may get identical VMAs) */ 741 if (vma->vm_start < pvma->vm_start) 742 p = &(*p)->rb_left; 743 else if (vma->vm_start > pvma->vm_start) { 744 rb_prev = parent; 745 p = &(*p)->rb_right; 746 } else if (vma->vm_end < pvma->vm_end) 747 p = &(*p)->rb_left; 748 else if (vma->vm_end > pvma->vm_end) { 749 rb_prev = parent; 750 p = &(*p)->rb_right; 751 } else if (vma < pvma) 752 p = &(*p)->rb_left; 753 else if (vma > pvma) { 754 rb_prev = parent; 755 p = &(*p)->rb_right; 756 } else 757 BUG(); 758 } 759 760 rb_link_node(&vma->vm_rb, parent, p); 761 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 762 763 /* add VMA to the VMA list also */ 764 prev = NULL; 765 if (rb_prev) 766 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 767 768 __vma_link_list(mm, vma, prev, parent); 769 } 770 771 /* 772 * delete a VMA from its owning mm_struct and address space 773 */ 774 static void delete_vma_from_mm(struct vm_area_struct *vma) 775 { 776 int i; 777 struct address_space *mapping; 778 struct mm_struct *mm = vma->vm_mm; 779 struct task_struct *curr = current; 780 781 kenter("%p", vma); 782 783 protect_vma(vma, 0); 784 785 mm->map_count--; 786 for (i = 0; i < VMACACHE_SIZE; i++) { 787 /* if the vma is cached, invalidate the entire cache */ 788 if (curr->vmacache[i] == vma) { 789 vmacache_invalidate(mm); 790 break; 791 } 792 } 793 794 /* remove the VMA from the mapping */ 795 if (vma->vm_file) { 796 mapping = vma->vm_file->f_mapping; 797 798 i_mmap_lock_write(mapping); 799 flush_dcache_mmap_lock(mapping); 800 vma_interval_tree_remove(vma, &mapping->i_mmap); 801 flush_dcache_mmap_unlock(mapping); 802 i_mmap_unlock_write(mapping); 803 } 804 805 /* remove from the MM's tree and list */ 806 rb_erase(&vma->vm_rb, &mm->mm_rb); 807 808 if (vma->vm_prev) 809 vma->vm_prev->vm_next = vma->vm_next; 810 else 811 mm->mmap = vma->vm_next; 812 813 if (vma->vm_next) 814 vma->vm_next->vm_prev = vma->vm_prev; 815 } 816 817 /* 818 * destroy a VMA record 819 */ 820 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 821 { 822 kenter("%p", vma); 823 if (vma->vm_ops && vma->vm_ops->close) 824 vma->vm_ops->close(vma); 825 if (vma->vm_file) 826 fput(vma->vm_file); 827 put_nommu_region(vma->vm_region); 828 kmem_cache_free(vm_area_cachep, vma); 829 } 830 831 /* 832 * look up the first VMA in which addr resides, NULL if none 833 * - should be called with mm->mmap_sem at least held readlocked 834 */ 835 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 836 { 837 struct vm_area_struct *vma; 838 839 /* check the cache first */ 840 vma = vmacache_find(mm, addr); 841 if (likely(vma)) 842 return vma; 843 844 /* trawl the list (there may be multiple mappings in which addr 845 * resides) */ 846 for (vma = mm->mmap; vma; vma = vma->vm_next) { 847 if (vma->vm_start > addr) 848 return NULL; 849 if (vma->vm_end > addr) { 850 vmacache_update(addr, vma); 851 return vma; 852 } 853 } 854 855 return NULL; 856 } 857 EXPORT_SYMBOL(find_vma); 858 859 /* 860 * find a VMA 861 * - we don't extend stack VMAs under NOMMU conditions 862 */ 863 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 864 { 865 return find_vma(mm, addr); 866 } 867 868 /* 869 * expand a stack to a given address 870 * - not supported under NOMMU conditions 871 */ 872 int expand_stack(struct vm_area_struct *vma, unsigned long address) 873 { 874 return -ENOMEM; 875 } 876 877 /* 878 * look up the first VMA exactly that exactly matches addr 879 * - should be called with mm->mmap_sem at least held readlocked 880 */ 881 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 882 unsigned long addr, 883 unsigned long len) 884 { 885 struct vm_area_struct *vma; 886 unsigned long end = addr + len; 887 888 /* check the cache first */ 889 vma = vmacache_find_exact(mm, addr, end); 890 if (vma) 891 return vma; 892 893 /* trawl the list (there may be multiple mappings in which addr 894 * resides) */ 895 for (vma = mm->mmap; vma; vma = vma->vm_next) { 896 if (vma->vm_start < addr) 897 continue; 898 if (vma->vm_start > addr) 899 return NULL; 900 if (vma->vm_end == end) { 901 vmacache_update(addr, vma); 902 return vma; 903 } 904 } 905 906 return NULL; 907 } 908 909 /* 910 * determine whether a mapping should be permitted and, if so, what sort of 911 * mapping we're capable of supporting 912 */ 913 static int validate_mmap_request(struct file *file, 914 unsigned long addr, 915 unsigned long len, 916 unsigned long prot, 917 unsigned long flags, 918 unsigned long pgoff, 919 unsigned long *_capabilities) 920 { 921 unsigned long capabilities, rlen; 922 int ret; 923 924 /* do the simple checks first */ 925 if (flags & MAP_FIXED) { 926 printk(KERN_DEBUG 927 "%d: Can't do fixed-address/overlay mmap of RAM\n", 928 current->pid); 929 return -EINVAL; 930 } 931 932 if ((flags & MAP_TYPE) != MAP_PRIVATE && 933 (flags & MAP_TYPE) != MAP_SHARED) 934 return -EINVAL; 935 936 if (!len) 937 return -EINVAL; 938 939 /* Careful about overflows.. */ 940 rlen = PAGE_ALIGN(len); 941 if (!rlen || rlen > TASK_SIZE) 942 return -ENOMEM; 943 944 /* offset overflow? */ 945 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 946 return -EOVERFLOW; 947 948 if (file) { 949 /* validate file mapping requests */ 950 struct address_space *mapping; 951 952 /* files must support mmap */ 953 if (!file->f_op->mmap) 954 return -ENODEV; 955 956 /* work out if what we've got could possibly be shared 957 * - we support chardevs that provide their own "memory" 958 * - we support files/blockdevs that are memory backed 959 */ 960 mapping = file->f_mapping; 961 if (!mapping) 962 mapping = file_inode(file)->i_mapping; 963 964 capabilities = 0; 965 if (mapping && mapping->backing_dev_info) 966 capabilities = mapping->backing_dev_info->capabilities; 967 968 if (!capabilities) { 969 /* no explicit capabilities set, so assume some 970 * defaults */ 971 switch (file_inode(file)->i_mode & S_IFMT) { 972 case S_IFREG: 973 case S_IFBLK: 974 capabilities = BDI_CAP_MAP_COPY; 975 break; 976 977 case S_IFCHR: 978 capabilities = 979 BDI_CAP_MAP_DIRECT | 980 BDI_CAP_READ_MAP | 981 BDI_CAP_WRITE_MAP; 982 break; 983 984 default: 985 return -EINVAL; 986 } 987 } 988 989 /* eliminate any capabilities that we can't support on this 990 * device */ 991 if (!file->f_op->get_unmapped_area) 992 capabilities &= ~BDI_CAP_MAP_DIRECT; 993 if (!file->f_op->read) 994 capabilities &= ~BDI_CAP_MAP_COPY; 995 996 /* The file shall have been opened with read permission. */ 997 if (!(file->f_mode & FMODE_READ)) 998 return -EACCES; 999 1000 if (flags & MAP_SHARED) { 1001 /* do checks for writing, appending and locking */ 1002 if ((prot & PROT_WRITE) && 1003 !(file->f_mode & FMODE_WRITE)) 1004 return -EACCES; 1005 1006 if (IS_APPEND(file_inode(file)) && 1007 (file->f_mode & FMODE_WRITE)) 1008 return -EACCES; 1009 1010 if (locks_verify_locked(file)) 1011 return -EAGAIN; 1012 1013 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1014 return -ENODEV; 1015 1016 /* we mustn't privatise shared mappings */ 1017 capabilities &= ~BDI_CAP_MAP_COPY; 1018 } else { 1019 /* we're going to read the file into private memory we 1020 * allocate */ 1021 if (!(capabilities & BDI_CAP_MAP_COPY)) 1022 return -ENODEV; 1023 1024 /* we don't permit a private writable mapping to be 1025 * shared with the backing device */ 1026 if (prot & PROT_WRITE) 1027 capabilities &= ~BDI_CAP_MAP_DIRECT; 1028 } 1029 1030 if (capabilities & BDI_CAP_MAP_DIRECT) { 1031 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1032 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1033 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1034 ) { 1035 capabilities &= ~BDI_CAP_MAP_DIRECT; 1036 if (flags & MAP_SHARED) { 1037 printk(KERN_WARNING 1038 "MAP_SHARED not completely supported on !MMU\n"); 1039 return -EINVAL; 1040 } 1041 } 1042 } 1043 1044 /* handle executable mappings and implied executable 1045 * mappings */ 1046 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1047 if (prot & PROT_EXEC) 1048 return -EPERM; 1049 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1050 /* handle implication of PROT_EXEC by PROT_READ */ 1051 if (current->personality & READ_IMPLIES_EXEC) { 1052 if (capabilities & BDI_CAP_EXEC_MAP) 1053 prot |= PROT_EXEC; 1054 } 1055 } else if ((prot & PROT_READ) && 1056 (prot & PROT_EXEC) && 1057 !(capabilities & BDI_CAP_EXEC_MAP) 1058 ) { 1059 /* backing file is not executable, try to copy */ 1060 capabilities &= ~BDI_CAP_MAP_DIRECT; 1061 } 1062 } else { 1063 /* anonymous mappings are always memory backed and can be 1064 * privately mapped 1065 */ 1066 capabilities = BDI_CAP_MAP_COPY; 1067 1068 /* handle PROT_EXEC implication by PROT_READ */ 1069 if ((prot & PROT_READ) && 1070 (current->personality & READ_IMPLIES_EXEC)) 1071 prot |= PROT_EXEC; 1072 } 1073 1074 /* allow the security API to have its say */ 1075 ret = security_mmap_addr(addr); 1076 if (ret < 0) 1077 return ret; 1078 1079 /* looks okay */ 1080 *_capabilities = capabilities; 1081 return 0; 1082 } 1083 1084 /* 1085 * we've determined that we can make the mapping, now translate what we 1086 * now know into VMA flags 1087 */ 1088 static unsigned long determine_vm_flags(struct file *file, 1089 unsigned long prot, 1090 unsigned long flags, 1091 unsigned long capabilities) 1092 { 1093 unsigned long vm_flags; 1094 1095 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1096 /* vm_flags |= mm->def_flags; */ 1097 1098 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1099 /* attempt to share read-only copies of mapped file chunks */ 1100 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1101 if (file && !(prot & PROT_WRITE)) 1102 vm_flags |= VM_MAYSHARE; 1103 } else { 1104 /* overlay a shareable mapping on the backing device or inode 1105 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1106 * romfs/cramfs */ 1107 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1108 if (flags & MAP_SHARED) 1109 vm_flags |= VM_SHARED; 1110 } 1111 1112 /* refuse to let anyone share private mappings with this process if 1113 * it's being traced - otherwise breakpoints set in it may interfere 1114 * with another untraced process 1115 */ 1116 if ((flags & MAP_PRIVATE) && current->ptrace) 1117 vm_flags &= ~VM_MAYSHARE; 1118 1119 return vm_flags; 1120 } 1121 1122 /* 1123 * set up a shared mapping on a file (the driver or filesystem provides and 1124 * pins the storage) 1125 */ 1126 static int do_mmap_shared_file(struct vm_area_struct *vma) 1127 { 1128 int ret; 1129 1130 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1131 if (ret == 0) { 1132 vma->vm_region->vm_top = vma->vm_region->vm_end; 1133 return 0; 1134 } 1135 if (ret != -ENOSYS) 1136 return ret; 1137 1138 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1139 * opposed to tried but failed) so we can only give a suitable error as 1140 * it's not possible to make a private copy if MAP_SHARED was given */ 1141 return -ENODEV; 1142 } 1143 1144 /* 1145 * set up a private mapping or an anonymous shared mapping 1146 */ 1147 static int do_mmap_private(struct vm_area_struct *vma, 1148 struct vm_region *region, 1149 unsigned long len, 1150 unsigned long capabilities) 1151 { 1152 unsigned long total, point; 1153 void *base; 1154 int ret, order; 1155 1156 /* invoke the file's mapping function so that it can keep track of 1157 * shared mappings on devices or memory 1158 * - VM_MAYSHARE will be set if it may attempt to share 1159 */ 1160 if (capabilities & BDI_CAP_MAP_DIRECT) { 1161 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1162 if (ret == 0) { 1163 /* shouldn't return success if we're not sharing */ 1164 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1165 vma->vm_region->vm_top = vma->vm_region->vm_end; 1166 return 0; 1167 } 1168 if (ret != -ENOSYS) 1169 return ret; 1170 1171 /* getting an ENOSYS error indicates that direct mmap isn't 1172 * possible (as opposed to tried but failed) so we'll try to 1173 * make a private copy of the data and map that instead */ 1174 } 1175 1176 1177 /* allocate some memory to hold the mapping 1178 * - note that this may not return a page-aligned address if the object 1179 * we're allocating is smaller than a page 1180 */ 1181 order = get_order(len); 1182 kdebug("alloc order %d for %lx", order, len); 1183 1184 total = 1 << order; 1185 point = len >> PAGE_SHIFT; 1186 1187 /* we don't want to allocate a power-of-2 sized page set */ 1188 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1189 total = point; 1190 kdebug("try to alloc exact %lu pages", total); 1191 base = alloc_pages_exact(len, GFP_KERNEL); 1192 } else { 1193 base = (void *)__get_free_pages(GFP_KERNEL, order); 1194 } 1195 1196 if (!base) 1197 goto enomem; 1198 1199 atomic_long_add(total, &mmap_pages_allocated); 1200 1201 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1202 region->vm_start = (unsigned long) base; 1203 region->vm_end = region->vm_start + len; 1204 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1205 1206 vma->vm_start = region->vm_start; 1207 vma->vm_end = region->vm_start + len; 1208 1209 if (vma->vm_file) { 1210 /* read the contents of a file into the copy */ 1211 mm_segment_t old_fs; 1212 loff_t fpos; 1213 1214 fpos = vma->vm_pgoff; 1215 fpos <<= PAGE_SHIFT; 1216 1217 old_fs = get_fs(); 1218 set_fs(KERNEL_DS); 1219 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); 1220 set_fs(old_fs); 1221 1222 if (ret < 0) 1223 goto error_free; 1224 1225 /* clear the last little bit */ 1226 if (ret < len) 1227 memset(base + ret, 0, len - ret); 1228 1229 } 1230 1231 return 0; 1232 1233 error_free: 1234 free_page_series(region->vm_start, region->vm_top); 1235 region->vm_start = vma->vm_start = 0; 1236 region->vm_end = vma->vm_end = 0; 1237 region->vm_top = 0; 1238 return ret; 1239 1240 enomem: 1241 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1242 len, current->pid, current->comm); 1243 show_free_areas(0); 1244 return -ENOMEM; 1245 } 1246 1247 /* 1248 * handle mapping creation for uClinux 1249 */ 1250 unsigned long do_mmap_pgoff(struct file *file, 1251 unsigned long addr, 1252 unsigned long len, 1253 unsigned long prot, 1254 unsigned long flags, 1255 unsigned long pgoff, 1256 unsigned long *populate) 1257 { 1258 struct vm_area_struct *vma; 1259 struct vm_region *region; 1260 struct rb_node *rb; 1261 unsigned long capabilities, vm_flags, result; 1262 int ret; 1263 1264 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1265 1266 *populate = 0; 1267 1268 /* decide whether we should attempt the mapping, and if so what sort of 1269 * mapping */ 1270 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1271 &capabilities); 1272 if (ret < 0) { 1273 kleave(" = %d [val]", ret); 1274 return ret; 1275 } 1276 1277 /* we ignore the address hint */ 1278 addr = 0; 1279 len = PAGE_ALIGN(len); 1280 1281 /* we've determined that we can make the mapping, now translate what we 1282 * now know into VMA flags */ 1283 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1284 1285 /* we're going to need to record the mapping */ 1286 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1287 if (!region) 1288 goto error_getting_region; 1289 1290 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1291 if (!vma) 1292 goto error_getting_vma; 1293 1294 region->vm_usage = 1; 1295 region->vm_flags = vm_flags; 1296 region->vm_pgoff = pgoff; 1297 1298 INIT_LIST_HEAD(&vma->anon_vma_chain); 1299 vma->vm_flags = vm_flags; 1300 vma->vm_pgoff = pgoff; 1301 1302 if (file) { 1303 region->vm_file = get_file(file); 1304 vma->vm_file = get_file(file); 1305 } 1306 1307 down_write(&nommu_region_sem); 1308 1309 /* if we want to share, we need to check for regions created by other 1310 * mmap() calls that overlap with our proposed mapping 1311 * - we can only share with a superset match on most regular files 1312 * - shared mappings on character devices and memory backed files are 1313 * permitted to overlap inexactly as far as we are concerned for in 1314 * these cases, sharing is handled in the driver or filesystem rather 1315 * than here 1316 */ 1317 if (vm_flags & VM_MAYSHARE) { 1318 struct vm_region *pregion; 1319 unsigned long pglen, rpglen, pgend, rpgend, start; 1320 1321 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1322 pgend = pgoff + pglen; 1323 1324 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1325 pregion = rb_entry(rb, struct vm_region, vm_rb); 1326 1327 if (!(pregion->vm_flags & VM_MAYSHARE)) 1328 continue; 1329 1330 /* search for overlapping mappings on the same file */ 1331 if (file_inode(pregion->vm_file) != 1332 file_inode(file)) 1333 continue; 1334 1335 if (pregion->vm_pgoff >= pgend) 1336 continue; 1337 1338 rpglen = pregion->vm_end - pregion->vm_start; 1339 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1340 rpgend = pregion->vm_pgoff + rpglen; 1341 if (pgoff >= rpgend) 1342 continue; 1343 1344 /* handle inexactly overlapping matches between 1345 * mappings */ 1346 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1347 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1348 /* new mapping is not a subset of the region */ 1349 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1350 goto sharing_violation; 1351 continue; 1352 } 1353 1354 /* we've found a region we can share */ 1355 pregion->vm_usage++; 1356 vma->vm_region = pregion; 1357 start = pregion->vm_start; 1358 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1359 vma->vm_start = start; 1360 vma->vm_end = start + len; 1361 1362 if (pregion->vm_flags & VM_MAPPED_COPY) { 1363 kdebug("share copy"); 1364 vma->vm_flags |= VM_MAPPED_COPY; 1365 } else { 1366 kdebug("share mmap"); 1367 ret = do_mmap_shared_file(vma); 1368 if (ret < 0) { 1369 vma->vm_region = NULL; 1370 vma->vm_start = 0; 1371 vma->vm_end = 0; 1372 pregion->vm_usage--; 1373 pregion = NULL; 1374 goto error_just_free; 1375 } 1376 } 1377 fput(region->vm_file); 1378 kmem_cache_free(vm_region_jar, region); 1379 region = pregion; 1380 result = start; 1381 goto share; 1382 } 1383 1384 /* obtain the address at which to make a shared mapping 1385 * - this is the hook for quasi-memory character devices to 1386 * tell us the location of a shared mapping 1387 */ 1388 if (capabilities & BDI_CAP_MAP_DIRECT) { 1389 addr = file->f_op->get_unmapped_area(file, addr, len, 1390 pgoff, flags); 1391 if (IS_ERR_VALUE(addr)) { 1392 ret = addr; 1393 if (ret != -ENOSYS) 1394 goto error_just_free; 1395 1396 /* the driver refused to tell us where to site 1397 * the mapping so we'll have to attempt to copy 1398 * it */ 1399 ret = -ENODEV; 1400 if (!(capabilities & BDI_CAP_MAP_COPY)) 1401 goto error_just_free; 1402 1403 capabilities &= ~BDI_CAP_MAP_DIRECT; 1404 } else { 1405 vma->vm_start = region->vm_start = addr; 1406 vma->vm_end = region->vm_end = addr + len; 1407 } 1408 } 1409 } 1410 1411 vma->vm_region = region; 1412 1413 /* set up the mapping 1414 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1415 */ 1416 if (file && vma->vm_flags & VM_SHARED) 1417 ret = do_mmap_shared_file(vma); 1418 else 1419 ret = do_mmap_private(vma, region, len, capabilities); 1420 if (ret < 0) 1421 goto error_just_free; 1422 add_nommu_region(region); 1423 1424 /* clear anonymous mappings that don't ask for uninitialized data */ 1425 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1426 memset((void *)region->vm_start, 0, 1427 region->vm_end - region->vm_start); 1428 1429 /* okay... we have a mapping; now we have to register it */ 1430 result = vma->vm_start; 1431 1432 current->mm->total_vm += len >> PAGE_SHIFT; 1433 1434 share: 1435 add_vma_to_mm(current->mm, vma); 1436 1437 /* we flush the region from the icache only when the first executable 1438 * mapping of it is made */ 1439 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1440 flush_icache_range(region->vm_start, region->vm_end); 1441 region->vm_icache_flushed = true; 1442 } 1443 1444 up_write(&nommu_region_sem); 1445 1446 kleave(" = %lx", result); 1447 return result; 1448 1449 error_just_free: 1450 up_write(&nommu_region_sem); 1451 error: 1452 if (region->vm_file) 1453 fput(region->vm_file); 1454 kmem_cache_free(vm_region_jar, region); 1455 if (vma->vm_file) 1456 fput(vma->vm_file); 1457 kmem_cache_free(vm_area_cachep, vma); 1458 kleave(" = %d", ret); 1459 return ret; 1460 1461 sharing_violation: 1462 up_write(&nommu_region_sem); 1463 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1464 ret = -EINVAL; 1465 goto error; 1466 1467 error_getting_vma: 1468 kmem_cache_free(vm_region_jar, region); 1469 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1470 " from process %d failed\n", 1471 len, current->pid); 1472 show_free_areas(0); 1473 return -ENOMEM; 1474 1475 error_getting_region: 1476 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1477 " from process %d failed\n", 1478 len, current->pid); 1479 show_free_areas(0); 1480 return -ENOMEM; 1481 } 1482 1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1484 unsigned long, prot, unsigned long, flags, 1485 unsigned long, fd, unsigned long, pgoff) 1486 { 1487 struct file *file = NULL; 1488 unsigned long retval = -EBADF; 1489 1490 audit_mmap_fd(fd, flags); 1491 if (!(flags & MAP_ANONYMOUS)) { 1492 file = fget(fd); 1493 if (!file) 1494 goto out; 1495 } 1496 1497 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1498 1499 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1500 1501 if (file) 1502 fput(file); 1503 out: 1504 return retval; 1505 } 1506 1507 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1508 struct mmap_arg_struct { 1509 unsigned long addr; 1510 unsigned long len; 1511 unsigned long prot; 1512 unsigned long flags; 1513 unsigned long fd; 1514 unsigned long offset; 1515 }; 1516 1517 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1518 { 1519 struct mmap_arg_struct a; 1520 1521 if (copy_from_user(&a, arg, sizeof(a))) 1522 return -EFAULT; 1523 if (a.offset & ~PAGE_MASK) 1524 return -EINVAL; 1525 1526 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1527 a.offset >> PAGE_SHIFT); 1528 } 1529 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1530 1531 /* 1532 * split a vma into two pieces at address 'addr', a new vma is allocated either 1533 * for the first part or the tail. 1534 */ 1535 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1536 unsigned long addr, int new_below) 1537 { 1538 struct vm_area_struct *new; 1539 struct vm_region *region; 1540 unsigned long npages; 1541 1542 kenter(""); 1543 1544 /* we're only permitted to split anonymous regions (these should have 1545 * only a single usage on the region) */ 1546 if (vma->vm_file) 1547 return -ENOMEM; 1548 1549 if (mm->map_count >= sysctl_max_map_count) 1550 return -ENOMEM; 1551 1552 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1553 if (!region) 1554 return -ENOMEM; 1555 1556 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1557 if (!new) { 1558 kmem_cache_free(vm_region_jar, region); 1559 return -ENOMEM; 1560 } 1561 1562 /* most fields are the same, copy all, and then fixup */ 1563 *new = *vma; 1564 *region = *vma->vm_region; 1565 new->vm_region = region; 1566 1567 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1568 1569 if (new_below) { 1570 region->vm_top = region->vm_end = new->vm_end = addr; 1571 } else { 1572 region->vm_start = new->vm_start = addr; 1573 region->vm_pgoff = new->vm_pgoff += npages; 1574 } 1575 1576 if (new->vm_ops && new->vm_ops->open) 1577 new->vm_ops->open(new); 1578 1579 delete_vma_from_mm(vma); 1580 down_write(&nommu_region_sem); 1581 delete_nommu_region(vma->vm_region); 1582 if (new_below) { 1583 vma->vm_region->vm_start = vma->vm_start = addr; 1584 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1585 } else { 1586 vma->vm_region->vm_end = vma->vm_end = addr; 1587 vma->vm_region->vm_top = addr; 1588 } 1589 add_nommu_region(vma->vm_region); 1590 add_nommu_region(new->vm_region); 1591 up_write(&nommu_region_sem); 1592 add_vma_to_mm(mm, vma); 1593 add_vma_to_mm(mm, new); 1594 return 0; 1595 } 1596 1597 /* 1598 * shrink a VMA by removing the specified chunk from either the beginning or 1599 * the end 1600 */ 1601 static int shrink_vma(struct mm_struct *mm, 1602 struct vm_area_struct *vma, 1603 unsigned long from, unsigned long to) 1604 { 1605 struct vm_region *region; 1606 1607 kenter(""); 1608 1609 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1610 * and list */ 1611 delete_vma_from_mm(vma); 1612 if (from > vma->vm_start) 1613 vma->vm_end = from; 1614 else 1615 vma->vm_start = to; 1616 add_vma_to_mm(mm, vma); 1617 1618 /* cut the backing region down to size */ 1619 region = vma->vm_region; 1620 BUG_ON(region->vm_usage != 1); 1621 1622 down_write(&nommu_region_sem); 1623 delete_nommu_region(region); 1624 if (from > region->vm_start) { 1625 to = region->vm_top; 1626 region->vm_top = region->vm_end = from; 1627 } else { 1628 region->vm_start = to; 1629 } 1630 add_nommu_region(region); 1631 up_write(&nommu_region_sem); 1632 1633 free_page_series(from, to); 1634 return 0; 1635 } 1636 1637 /* 1638 * release a mapping 1639 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1640 * VMA, though it need not cover the whole VMA 1641 */ 1642 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1643 { 1644 struct vm_area_struct *vma; 1645 unsigned long end; 1646 int ret; 1647 1648 kenter(",%lx,%zx", start, len); 1649 1650 len = PAGE_ALIGN(len); 1651 if (len == 0) 1652 return -EINVAL; 1653 1654 end = start + len; 1655 1656 /* find the first potentially overlapping VMA */ 1657 vma = find_vma(mm, start); 1658 if (!vma) { 1659 static int limit; 1660 if (limit < 5) { 1661 printk(KERN_WARNING 1662 "munmap of memory not mmapped by process %d" 1663 " (%s): 0x%lx-0x%lx\n", 1664 current->pid, current->comm, 1665 start, start + len - 1); 1666 limit++; 1667 } 1668 return -EINVAL; 1669 } 1670 1671 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1672 if (vma->vm_file) { 1673 do { 1674 if (start > vma->vm_start) { 1675 kleave(" = -EINVAL [miss]"); 1676 return -EINVAL; 1677 } 1678 if (end == vma->vm_end) 1679 goto erase_whole_vma; 1680 vma = vma->vm_next; 1681 } while (vma); 1682 kleave(" = -EINVAL [split file]"); 1683 return -EINVAL; 1684 } else { 1685 /* the chunk must be a subset of the VMA found */ 1686 if (start == vma->vm_start && end == vma->vm_end) 1687 goto erase_whole_vma; 1688 if (start < vma->vm_start || end > vma->vm_end) { 1689 kleave(" = -EINVAL [superset]"); 1690 return -EINVAL; 1691 } 1692 if (start & ~PAGE_MASK) { 1693 kleave(" = -EINVAL [unaligned start]"); 1694 return -EINVAL; 1695 } 1696 if (end != vma->vm_end && end & ~PAGE_MASK) { 1697 kleave(" = -EINVAL [unaligned split]"); 1698 return -EINVAL; 1699 } 1700 if (start != vma->vm_start && end != vma->vm_end) { 1701 ret = split_vma(mm, vma, start, 1); 1702 if (ret < 0) { 1703 kleave(" = %d [split]", ret); 1704 return ret; 1705 } 1706 } 1707 return shrink_vma(mm, vma, start, end); 1708 } 1709 1710 erase_whole_vma: 1711 delete_vma_from_mm(vma); 1712 delete_vma(mm, vma); 1713 kleave(" = 0"); 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(do_munmap); 1717 1718 int vm_munmap(unsigned long addr, size_t len) 1719 { 1720 struct mm_struct *mm = current->mm; 1721 int ret; 1722 1723 down_write(&mm->mmap_sem); 1724 ret = do_munmap(mm, addr, len); 1725 up_write(&mm->mmap_sem); 1726 return ret; 1727 } 1728 EXPORT_SYMBOL(vm_munmap); 1729 1730 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1731 { 1732 return vm_munmap(addr, len); 1733 } 1734 1735 /* 1736 * release all the mappings made in a process's VM space 1737 */ 1738 void exit_mmap(struct mm_struct *mm) 1739 { 1740 struct vm_area_struct *vma; 1741 1742 if (!mm) 1743 return; 1744 1745 kenter(""); 1746 1747 mm->total_vm = 0; 1748 1749 while ((vma = mm->mmap)) { 1750 mm->mmap = vma->vm_next; 1751 delete_vma_from_mm(vma); 1752 delete_vma(mm, vma); 1753 cond_resched(); 1754 } 1755 1756 kleave(""); 1757 } 1758 1759 unsigned long vm_brk(unsigned long addr, unsigned long len) 1760 { 1761 return -ENOMEM; 1762 } 1763 1764 /* 1765 * expand (or shrink) an existing mapping, potentially moving it at the same 1766 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1767 * 1768 * under NOMMU conditions, we only permit changing a mapping's size, and only 1769 * as long as it stays within the region allocated by do_mmap_private() and the 1770 * block is not shareable 1771 * 1772 * MREMAP_FIXED is not supported under NOMMU conditions 1773 */ 1774 static unsigned long do_mremap(unsigned long addr, 1775 unsigned long old_len, unsigned long new_len, 1776 unsigned long flags, unsigned long new_addr) 1777 { 1778 struct vm_area_struct *vma; 1779 1780 /* insanity checks first */ 1781 old_len = PAGE_ALIGN(old_len); 1782 new_len = PAGE_ALIGN(new_len); 1783 if (old_len == 0 || new_len == 0) 1784 return (unsigned long) -EINVAL; 1785 1786 if (addr & ~PAGE_MASK) 1787 return -EINVAL; 1788 1789 if (flags & MREMAP_FIXED && new_addr != addr) 1790 return (unsigned long) -EINVAL; 1791 1792 vma = find_vma_exact(current->mm, addr, old_len); 1793 if (!vma) 1794 return (unsigned long) -EINVAL; 1795 1796 if (vma->vm_end != vma->vm_start + old_len) 1797 return (unsigned long) -EFAULT; 1798 1799 if (vma->vm_flags & VM_MAYSHARE) 1800 return (unsigned long) -EPERM; 1801 1802 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1803 return (unsigned long) -ENOMEM; 1804 1805 /* all checks complete - do it */ 1806 vma->vm_end = vma->vm_start + new_len; 1807 return vma->vm_start; 1808 } 1809 1810 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1811 unsigned long, new_len, unsigned long, flags, 1812 unsigned long, new_addr) 1813 { 1814 unsigned long ret; 1815 1816 down_write(¤t->mm->mmap_sem); 1817 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1818 up_write(¤t->mm->mmap_sem); 1819 return ret; 1820 } 1821 1822 struct page *follow_page_mask(struct vm_area_struct *vma, 1823 unsigned long address, unsigned int flags, 1824 unsigned int *page_mask) 1825 { 1826 *page_mask = 0; 1827 return NULL; 1828 } 1829 1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1831 unsigned long pfn, unsigned long size, pgprot_t prot) 1832 { 1833 if (addr != (pfn << PAGE_SHIFT)) 1834 return -EINVAL; 1835 1836 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(remap_pfn_range); 1840 1841 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1842 { 1843 unsigned long pfn = start >> PAGE_SHIFT; 1844 unsigned long vm_len = vma->vm_end - vma->vm_start; 1845 1846 pfn += vma->vm_pgoff; 1847 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1848 } 1849 EXPORT_SYMBOL(vm_iomap_memory); 1850 1851 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1852 unsigned long pgoff) 1853 { 1854 unsigned int size = vma->vm_end - vma->vm_start; 1855 1856 if (!(vma->vm_flags & VM_USERMAP)) 1857 return -EINVAL; 1858 1859 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1860 vma->vm_end = vma->vm_start + size; 1861 1862 return 0; 1863 } 1864 EXPORT_SYMBOL(remap_vmalloc_range); 1865 1866 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1867 unsigned long len, unsigned long pgoff, unsigned long flags) 1868 { 1869 return -ENOMEM; 1870 } 1871 1872 void unmap_mapping_range(struct address_space *mapping, 1873 loff_t const holebegin, loff_t const holelen, 1874 int even_cows) 1875 { 1876 } 1877 EXPORT_SYMBOL(unmap_mapping_range); 1878 1879 /* 1880 * Check that a process has enough memory to allocate a new virtual 1881 * mapping. 0 means there is enough memory for the allocation to 1882 * succeed and -ENOMEM implies there is not. 1883 * 1884 * We currently support three overcommit policies, which are set via the 1885 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1886 * 1887 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1888 * Additional code 2002 Jul 20 by Robert Love. 1889 * 1890 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1891 * 1892 * Note this is a helper function intended to be used by LSMs which 1893 * wish to use this logic. 1894 */ 1895 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1896 { 1897 unsigned long free, allowed, reserve; 1898 1899 vm_acct_memory(pages); 1900 1901 /* 1902 * Sometimes we want to use more memory than we have 1903 */ 1904 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1905 return 0; 1906 1907 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1908 free = global_page_state(NR_FREE_PAGES); 1909 free += global_page_state(NR_FILE_PAGES); 1910 1911 /* 1912 * shmem pages shouldn't be counted as free in this 1913 * case, they can't be purged, only swapped out, and 1914 * that won't affect the overall amount of available 1915 * memory in the system. 1916 */ 1917 free -= global_page_state(NR_SHMEM); 1918 1919 free += get_nr_swap_pages(); 1920 1921 /* 1922 * Any slabs which are created with the 1923 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1924 * which are reclaimable, under pressure. The dentry 1925 * cache and most inode caches should fall into this 1926 */ 1927 free += global_page_state(NR_SLAB_RECLAIMABLE); 1928 1929 /* 1930 * Leave reserved pages. The pages are not for anonymous pages. 1931 */ 1932 if (free <= totalreserve_pages) 1933 goto error; 1934 else 1935 free -= totalreserve_pages; 1936 1937 /* 1938 * Reserve some for root 1939 */ 1940 if (!cap_sys_admin) 1941 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1942 1943 if (free > pages) 1944 return 0; 1945 1946 goto error; 1947 } 1948 1949 allowed = vm_commit_limit(); 1950 /* 1951 * Reserve some 3% for root 1952 */ 1953 if (!cap_sys_admin) 1954 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1955 1956 /* 1957 * Don't let a single process grow so big a user can't recover 1958 */ 1959 if (mm) { 1960 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1961 allowed -= min(mm->total_vm / 32, reserve); 1962 } 1963 1964 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1965 return 0; 1966 1967 error: 1968 vm_unacct_memory(pages); 1969 1970 return -ENOMEM; 1971 } 1972 1973 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1974 { 1975 BUG(); 1976 return 0; 1977 } 1978 EXPORT_SYMBOL(filemap_fault); 1979 1980 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1981 { 1982 BUG(); 1983 } 1984 EXPORT_SYMBOL(filemap_map_pages); 1985 1986 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr, 1987 unsigned long size, pgoff_t pgoff) 1988 { 1989 BUG(); 1990 return 0; 1991 } 1992 EXPORT_SYMBOL(generic_file_remap_pages); 1993 1994 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1995 unsigned long addr, void *buf, int len, int write) 1996 { 1997 struct vm_area_struct *vma; 1998 1999 down_read(&mm->mmap_sem); 2000 2001 /* the access must start within one of the target process's mappings */ 2002 vma = find_vma(mm, addr); 2003 if (vma) { 2004 /* don't overrun this mapping */ 2005 if (addr + len >= vma->vm_end) 2006 len = vma->vm_end - addr; 2007 2008 /* only read or write mappings where it is permitted */ 2009 if (write && vma->vm_flags & VM_MAYWRITE) 2010 copy_to_user_page(vma, NULL, addr, 2011 (void *) addr, buf, len); 2012 else if (!write && vma->vm_flags & VM_MAYREAD) 2013 copy_from_user_page(vma, NULL, addr, 2014 buf, (void *) addr, len); 2015 else 2016 len = 0; 2017 } else { 2018 len = 0; 2019 } 2020 2021 up_read(&mm->mmap_sem); 2022 2023 return len; 2024 } 2025 2026 /** 2027 * @access_remote_vm - access another process' address space 2028 * @mm: the mm_struct of the target address space 2029 * @addr: start address to access 2030 * @buf: source or destination buffer 2031 * @len: number of bytes to transfer 2032 * @write: whether the access is a write 2033 * 2034 * The caller must hold a reference on @mm. 2035 */ 2036 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2037 void *buf, int len, int write) 2038 { 2039 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2040 } 2041 2042 /* 2043 * Access another process' address space. 2044 * - source/target buffer must be kernel space 2045 */ 2046 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2047 { 2048 struct mm_struct *mm; 2049 2050 if (addr + len < addr) 2051 return 0; 2052 2053 mm = get_task_mm(tsk); 2054 if (!mm) 2055 return 0; 2056 2057 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2058 2059 mmput(mm); 2060 return len; 2061 } 2062 2063 /** 2064 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2065 * @inode: The inode to check 2066 * @size: The current filesize of the inode 2067 * @newsize: The proposed filesize of the inode 2068 * 2069 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2070 * make sure that that any outstanding VMAs aren't broken and then shrink the 2071 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2072 * automatically grant mappings that are too large. 2073 */ 2074 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2075 size_t newsize) 2076 { 2077 struct vm_area_struct *vma; 2078 struct vm_region *region; 2079 pgoff_t low, high; 2080 size_t r_size, r_top; 2081 2082 low = newsize >> PAGE_SHIFT; 2083 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2084 2085 down_write(&nommu_region_sem); 2086 i_mmap_lock_read(inode->i_mapping); 2087 2088 /* search for VMAs that fall within the dead zone */ 2089 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 2090 /* found one - only interested if it's shared out of the page 2091 * cache */ 2092 if (vma->vm_flags & VM_SHARED) { 2093 i_mmap_unlock_read(inode->i_mapping); 2094 up_write(&nommu_region_sem); 2095 return -ETXTBSY; /* not quite true, but near enough */ 2096 } 2097 } 2098 2099 /* reduce any regions that overlap the dead zone - if in existence, 2100 * these will be pointed to by VMAs that don't overlap the dead zone 2101 * 2102 * we don't check for any regions that start beyond the EOF as there 2103 * shouldn't be any 2104 */ 2105 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 2106 if (!(vma->vm_flags & VM_SHARED)) 2107 continue; 2108 2109 region = vma->vm_region; 2110 r_size = region->vm_top - region->vm_start; 2111 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2112 2113 if (r_top > newsize) { 2114 region->vm_top -= r_top - newsize; 2115 if (region->vm_end > region->vm_top) 2116 region->vm_end = region->vm_top; 2117 } 2118 } 2119 2120 i_mmap_unlock_read(inode->i_mapping); 2121 up_write(&nommu_region_sem); 2122 return 0; 2123 } 2124 2125 /* 2126 * Initialise sysctl_user_reserve_kbytes. 2127 * 2128 * This is intended to prevent a user from starting a single memory hogging 2129 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2130 * mode. 2131 * 2132 * The default value is min(3% of free memory, 128MB) 2133 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2134 */ 2135 static int __meminit init_user_reserve(void) 2136 { 2137 unsigned long free_kbytes; 2138 2139 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2140 2141 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 2142 return 0; 2143 } 2144 module_init(init_user_reserve) 2145 2146 /* 2147 * Initialise sysctl_admin_reserve_kbytes. 2148 * 2149 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2150 * to log in and kill a memory hogging process. 2151 * 2152 * Systems with more than 256MB will reserve 8MB, enough to recover 2153 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2154 * only reserve 3% of free pages by default. 2155 */ 2156 static int __meminit init_admin_reserve(void) 2157 { 2158 unsigned long free_kbytes; 2159 2160 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2161 2162 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 2163 return 0; 2164 } 2165 module_init(init_admin_reserve) 2166