xref: /openbmc/linux/mm/nommu.c (revision 82ced6fd)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37 
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42 
43 #if 0
44 #define kenter(FMT, ...) \
45 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58 
59 #include "internal.h"
60 
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Handle all mappings that got truncated by a "truncate()"
87  * system call.
88  *
89  * NOTE! We have to be ready to update the memory sharing
90  * between the file and the memory map for a potential last
91  * incomplete page.  Ugly, but necessary.
92  */
93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95 	struct address_space *mapping = inode->i_mapping;
96 	unsigned long limit;
97 
98 	if (inode->i_size < offset)
99 		goto do_expand;
100 	i_size_write(inode, offset);
101 
102 	truncate_inode_pages(mapping, offset);
103 	goto out_truncate;
104 
105 do_expand:
106 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 	if (limit != RLIM_INFINITY && offset > limit)
108 		goto out_sig;
109 	if (offset > inode->i_sb->s_maxbytes)
110 		goto out;
111 	i_size_write(inode, offset);
112 
113 out_truncate:
114 	if (inode->i_op->truncate)
115 		inode->i_op->truncate(inode);
116 	return 0;
117 out_sig:
118 	send_sig(SIGXFSZ, current, 0);
119 out:
120 	return -EFBIG;
121 }
122 
123 EXPORT_SYMBOL(vmtruncate);
124 
125 /*
126  * Return the total memory allocated for this pointer, not
127  * just what the caller asked for.
128  *
129  * Doesn't have to be accurate, i.e. may have races.
130  */
131 unsigned int kobjsize(const void *objp)
132 {
133 	struct page *page;
134 
135 	/*
136 	 * If the object we have should not have ksize performed on it,
137 	 * return size of 0
138 	 */
139 	if (!objp || !virt_addr_valid(objp))
140 		return 0;
141 
142 	page = virt_to_head_page(objp);
143 
144 	/*
145 	 * If the allocator sets PageSlab, we know the pointer came from
146 	 * kmalloc().
147 	 */
148 	if (PageSlab(page))
149 		return ksize(objp);
150 
151 	/*
152 	 * If it's not a compound page, see if we have a matching VMA
153 	 * region. This test is intentionally done in reverse order,
154 	 * so if there's no VMA, we still fall through and hand back
155 	 * PAGE_SIZE for 0-order pages.
156 	 */
157 	if (!PageCompound(page)) {
158 		struct vm_area_struct *vma;
159 
160 		vma = find_vma(current->mm, (unsigned long)objp);
161 		if (vma)
162 			return vma->vm_end - vma->vm_start;
163 	}
164 
165 	/*
166 	 * The ksize() function is only guaranteed to work for pointers
167 	 * returned by kmalloc(). So handle arbitrary pointers here.
168 	 */
169 	return PAGE_SIZE << compound_order(page);
170 }
171 
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 		     unsigned long start, int len, int flags,
174 		struct page **pages, struct vm_area_struct **vmas)
175 {
176 	struct vm_area_struct *vma;
177 	unsigned long vm_flags;
178 	int i;
179 	int write = !!(flags & GUP_FLAGS_WRITE);
180 	int force = !!(flags & GUP_FLAGS_FORCE);
181 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182 
183 	/* calculate required read or write permissions.
184 	 * - if 'force' is set, we only require the "MAY" flags.
185 	 */
186 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188 
189 	for (i = 0; i < len; i++) {
190 		vma = find_vma(mm, start);
191 		if (!vma)
192 			goto finish_or_fault;
193 
194 		/* protect what we can, including chardevs */
195 		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 		    (!ignore && !(vm_flags & vma->vm_flags)))
197 			goto finish_or_fault;
198 
199 		if (pages) {
200 			pages[i] = virt_to_page(start);
201 			if (pages[i])
202 				page_cache_get(pages[i]);
203 		}
204 		if (vmas)
205 			vmas[i] = vma;
206 		start += PAGE_SIZE;
207 	}
208 
209 	return i;
210 
211 finish_or_fault:
212 	return i ? : -EFAULT;
213 }
214 
215 
216 /*
217  * get a list of pages in an address range belonging to the specified process
218  * and indicate the VMA that covers each page
219  * - this is potentially dodgy as we may end incrementing the page count of a
220  *   slab page or a secondary page from a compound page
221  * - don't permit access to VMAs that don't support it, such as I/O mappings
222  */
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 	unsigned long start, int len, int write, int force,
225 	struct page **pages, struct vm_area_struct **vmas)
226 {
227 	int flags = 0;
228 
229 	if (write)
230 		flags |= GUP_FLAGS_WRITE;
231 	if (force)
232 		flags |= GUP_FLAGS_FORCE;
233 
234 	return __get_user_pages(tsk, mm,
235 				start, len, flags,
236 				pages, vmas);
237 }
238 EXPORT_SYMBOL(get_user_pages);
239 
240 DEFINE_RWLOCK(vmlist_lock);
241 struct vm_struct *vmlist;
242 
243 void vfree(const void *addr)
244 {
245 	kfree(addr);
246 }
247 EXPORT_SYMBOL(vfree);
248 
249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
250 {
251 	/*
252 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253 	 * returns only a logical address.
254 	 */
255 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
256 }
257 EXPORT_SYMBOL(__vmalloc);
258 
259 void *vmalloc_user(unsigned long size)
260 {
261 	void *ret;
262 
263 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264 			PAGE_KERNEL);
265 	if (ret) {
266 		struct vm_area_struct *vma;
267 
268 		down_write(&current->mm->mmap_sem);
269 		vma = find_vma(current->mm, (unsigned long)ret);
270 		if (vma)
271 			vma->vm_flags |= VM_USERMAP;
272 		up_write(&current->mm->mmap_sem);
273 	}
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(vmalloc_user);
278 
279 struct page *vmalloc_to_page(const void *addr)
280 {
281 	return virt_to_page(addr);
282 }
283 EXPORT_SYMBOL(vmalloc_to_page);
284 
285 unsigned long vmalloc_to_pfn(const void *addr)
286 {
287 	return page_to_pfn(virt_to_page(addr));
288 }
289 EXPORT_SYMBOL(vmalloc_to_pfn);
290 
291 long vread(char *buf, char *addr, unsigned long count)
292 {
293 	memcpy(buf, addr, count);
294 	return count;
295 }
296 
297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 	/* Don't allow overflow */
300 	if ((unsigned long) addr + count < count)
301 		count = -(unsigned long) addr;
302 
303 	memcpy(addr, buf, count);
304 	return(count);
305 }
306 
307 /*
308  *	vmalloc  -  allocate virtually continguos memory
309  *
310  *	@size:		allocation size
311  *
312  *	Allocate enough pages to cover @size from the page level
313  *	allocator and map them into continguos kernel virtual space.
314  *
315  *	For tight control over page level allocator and protection flags
316  *	use __vmalloc() instead.
317  */
318 void *vmalloc(unsigned long size)
319 {
320        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323 
324 void *vmalloc_node(unsigned long size, int node)
325 {
326 	return vmalloc(size);
327 }
328 EXPORT_SYMBOL(vmalloc_node);
329 
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
332 #endif
333 
334 /**
335  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
336  *	@size:		allocation size
337  *
338  *	Kernel-internal function to allocate enough pages to cover @size
339  *	the page level allocator and map them into contiguous and
340  *	executable kernel virtual space.
341  *
342  *	For tight control over page level allocator and protection flags
343  *	use __vmalloc() instead.
344  */
345 
346 void *vmalloc_exec(unsigned long size)
347 {
348 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
349 }
350 
351 /**
352  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
353  *	@size:		allocation size
354  *
355  *	Allocate enough 32bit PA addressable pages to cover @size from the
356  *	page level allocator and map them into continguos kernel virtual space.
357  */
358 void *vmalloc_32(unsigned long size)
359 {
360 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
361 }
362 EXPORT_SYMBOL(vmalloc_32);
363 
364 /**
365  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366  *	@size:		allocation size
367  *
368  * The resulting memory area is 32bit addressable and zeroed so it can be
369  * mapped to userspace without leaking data.
370  *
371  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372  * remap_vmalloc_range() are permissible.
373  */
374 void *vmalloc_32_user(unsigned long size)
375 {
376 	/*
377 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378 	 * but for now this can simply use vmalloc_user() directly.
379 	 */
380 	return vmalloc_user(size);
381 }
382 EXPORT_SYMBOL(vmalloc_32_user);
383 
384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
385 {
386 	BUG();
387 	return NULL;
388 }
389 EXPORT_SYMBOL(vmap);
390 
391 void vunmap(const void *addr)
392 {
393 	BUG();
394 }
395 EXPORT_SYMBOL(vunmap);
396 
397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
398 {
399 	BUG();
400 	return NULL;
401 }
402 EXPORT_SYMBOL(vm_map_ram);
403 
404 void vm_unmap_ram(const void *mem, unsigned int count)
405 {
406 	BUG();
407 }
408 EXPORT_SYMBOL(vm_unmap_ram);
409 
410 void vm_unmap_aliases(void)
411 {
412 }
413 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
414 
415 /*
416  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417  * have one.
418  */
419 void  __attribute__((weak)) vmalloc_sync_all(void)
420 {
421 }
422 
423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424 		   struct page *page)
425 {
426 	return -EINVAL;
427 }
428 EXPORT_SYMBOL(vm_insert_page);
429 
430 /*
431  *  sys_brk() for the most part doesn't need the global kernel
432  *  lock, except when an application is doing something nasty
433  *  like trying to un-brk an area that has already been mapped
434  *  to a regular file.  in this case, the unmapping will need
435  *  to invoke file system routines that need the global lock.
436  */
437 SYSCALL_DEFINE1(brk, unsigned long, brk)
438 {
439 	struct mm_struct *mm = current->mm;
440 
441 	if (brk < mm->start_brk || brk > mm->context.end_brk)
442 		return mm->brk;
443 
444 	if (mm->brk == brk)
445 		return mm->brk;
446 
447 	/*
448 	 * Always allow shrinking brk
449 	 */
450 	if (brk <= mm->brk) {
451 		mm->brk = brk;
452 		return brk;
453 	}
454 
455 	/*
456 	 * Ok, looks good - let it rip.
457 	 */
458 	return mm->brk = brk;
459 }
460 
461 /*
462  * initialise the VMA and region record slabs
463  */
464 void __init mmap_init(void)
465 {
466 	int ret;
467 
468 	ret = percpu_counter_init(&vm_committed_as, 0);
469 	VM_BUG_ON(ret);
470 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
471 }
472 
473 /*
474  * validate the region tree
475  * - the caller must hold the region lock
476  */
477 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
478 static noinline void validate_nommu_regions(void)
479 {
480 	struct vm_region *region, *last;
481 	struct rb_node *p, *lastp;
482 
483 	lastp = rb_first(&nommu_region_tree);
484 	if (!lastp)
485 		return;
486 
487 	last = rb_entry(lastp, struct vm_region, vm_rb);
488 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
489 	BUG_ON(unlikely(last->vm_top < last->vm_end));
490 
491 	while ((p = rb_next(lastp))) {
492 		region = rb_entry(p, struct vm_region, vm_rb);
493 		last = rb_entry(lastp, struct vm_region, vm_rb);
494 
495 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
496 		BUG_ON(unlikely(region->vm_top < region->vm_end));
497 		BUG_ON(unlikely(region->vm_start < last->vm_top));
498 
499 		lastp = p;
500 	}
501 }
502 #else
503 static void validate_nommu_regions(void)
504 {
505 }
506 #endif
507 
508 /*
509  * add a region into the global tree
510  */
511 static void add_nommu_region(struct vm_region *region)
512 {
513 	struct vm_region *pregion;
514 	struct rb_node **p, *parent;
515 
516 	validate_nommu_regions();
517 
518 	parent = NULL;
519 	p = &nommu_region_tree.rb_node;
520 	while (*p) {
521 		parent = *p;
522 		pregion = rb_entry(parent, struct vm_region, vm_rb);
523 		if (region->vm_start < pregion->vm_start)
524 			p = &(*p)->rb_left;
525 		else if (region->vm_start > pregion->vm_start)
526 			p = &(*p)->rb_right;
527 		else if (pregion == region)
528 			return;
529 		else
530 			BUG();
531 	}
532 
533 	rb_link_node(&region->vm_rb, parent, p);
534 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
535 
536 	validate_nommu_regions();
537 }
538 
539 /*
540  * delete a region from the global tree
541  */
542 static void delete_nommu_region(struct vm_region *region)
543 {
544 	BUG_ON(!nommu_region_tree.rb_node);
545 
546 	validate_nommu_regions();
547 	rb_erase(&region->vm_rb, &nommu_region_tree);
548 	validate_nommu_regions();
549 }
550 
551 /*
552  * free a contiguous series of pages
553  */
554 static void free_page_series(unsigned long from, unsigned long to)
555 {
556 	for (; from < to; from += PAGE_SIZE) {
557 		struct page *page = virt_to_page(from);
558 
559 		kdebug("- free %lx", from);
560 		atomic_long_dec(&mmap_pages_allocated);
561 		if (page_count(page) != 1)
562 			kdebug("free page %p: refcount not one: %d",
563 			       page, page_count(page));
564 		put_page(page);
565 	}
566 }
567 
568 /*
569  * release a reference to a region
570  * - the caller must hold the region semaphore for writing, which this releases
571  * - the region may not have been added to the tree yet, in which case vm_top
572  *   will equal vm_start
573  */
574 static void __put_nommu_region(struct vm_region *region)
575 	__releases(nommu_region_sem)
576 {
577 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
578 
579 	BUG_ON(!nommu_region_tree.rb_node);
580 
581 	if (atomic_dec_and_test(&region->vm_usage)) {
582 		if (region->vm_top > region->vm_start)
583 			delete_nommu_region(region);
584 		up_write(&nommu_region_sem);
585 
586 		if (region->vm_file)
587 			fput(region->vm_file);
588 
589 		/* IO memory and memory shared directly out of the pagecache
590 		 * from ramfs/tmpfs mustn't be released here */
591 		if (region->vm_flags & VM_MAPPED_COPY) {
592 			kdebug("free series");
593 			free_page_series(region->vm_start, region->vm_top);
594 		}
595 		kmem_cache_free(vm_region_jar, region);
596 	} else {
597 		up_write(&nommu_region_sem);
598 	}
599 }
600 
601 /*
602  * release a reference to a region
603  */
604 static void put_nommu_region(struct vm_region *region)
605 {
606 	down_write(&nommu_region_sem);
607 	__put_nommu_region(region);
608 }
609 
610 /*
611  * add a VMA into a process's mm_struct in the appropriate place in the list
612  * and tree and add to the address space's page tree also if not an anonymous
613  * page
614  * - should be called with mm->mmap_sem held writelocked
615  */
616 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
617 {
618 	struct vm_area_struct *pvma, **pp;
619 	struct address_space *mapping;
620 	struct rb_node **p, *parent;
621 
622 	kenter(",%p", vma);
623 
624 	BUG_ON(!vma->vm_region);
625 
626 	mm->map_count++;
627 	vma->vm_mm = mm;
628 
629 	/* add the VMA to the mapping */
630 	if (vma->vm_file) {
631 		mapping = vma->vm_file->f_mapping;
632 
633 		flush_dcache_mmap_lock(mapping);
634 		vma_prio_tree_insert(vma, &mapping->i_mmap);
635 		flush_dcache_mmap_unlock(mapping);
636 	}
637 
638 	/* add the VMA to the tree */
639 	parent = NULL;
640 	p = &mm->mm_rb.rb_node;
641 	while (*p) {
642 		parent = *p;
643 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
644 
645 		/* sort by: start addr, end addr, VMA struct addr in that order
646 		 * (the latter is necessary as we may get identical VMAs) */
647 		if (vma->vm_start < pvma->vm_start)
648 			p = &(*p)->rb_left;
649 		else if (vma->vm_start > pvma->vm_start)
650 			p = &(*p)->rb_right;
651 		else if (vma->vm_end < pvma->vm_end)
652 			p = &(*p)->rb_left;
653 		else if (vma->vm_end > pvma->vm_end)
654 			p = &(*p)->rb_right;
655 		else if (vma < pvma)
656 			p = &(*p)->rb_left;
657 		else if (vma > pvma)
658 			p = &(*p)->rb_right;
659 		else
660 			BUG();
661 	}
662 
663 	rb_link_node(&vma->vm_rb, parent, p);
664 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
665 
666 	/* add VMA to the VMA list also */
667 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
668 		if (pvma->vm_start > vma->vm_start)
669 			break;
670 		if (pvma->vm_start < vma->vm_start)
671 			continue;
672 		if (pvma->vm_end < vma->vm_end)
673 			break;
674 	}
675 
676 	vma->vm_next = *pp;
677 	*pp = vma;
678 }
679 
680 /*
681  * delete a VMA from its owning mm_struct and address space
682  */
683 static void delete_vma_from_mm(struct vm_area_struct *vma)
684 {
685 	struct vm_area_struct **pp;
686 	struct address_space *mapping;
687 	struct mm_struct *mm = vma->vm_mm;
688 
689 	kenter("%p", vma);
690 
691 	mm->map_count--;
692 	if (mm->mmap_cache == vma)
693 		mm->mmap_cache = NULL;
694 
695 	/* remove the VMA from the mapping */
696 	if (vma->vm_file) {
697 		mapping = vma->vm_file->f_mapping;
698 
699 		flush_dcache_mmap_lock(mapping);
700 		vma_prio_tree_remove(vma, &mapping->i_mmap);
701 		flush_dcache_mmap_unlock(mapping);
702 	}
703 
704 	/* remove from the MM's tree and list */
705 	rb_erase(&vma->vm_rb, &mm->mm_rb);
706 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
707 		if (*pp == vma) {
708 			*pp = vma->vm_next;
709 			break;
710 		}
711 	}
712 
713 	vma->vm_mm = NULL;
714 }
715 
716 /*
717  * destroy a VMA record
718  */
719 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
720 {
721 	kenter("%p", vma);
722 	if (vma->vm_ops && vma->vm_ops->close)
723 		vma->vm_ops->close(vma);
724 	if (vma->vm_file) {
725 		fput(vma->vm_file);
726 		if (vma->vm_flags & VM_EXECUTABLE)
727 			removed_exe_file_vma(mm);
728 	}
729 	put_nommu_region(vma->vm_region);
730 	kmem_cache_free(vm_area_cachep, vma);
731 }
732 
733 /*
734  * look up the first VMA in which addr resides, NULL if none
735  * - should be called with mm->mmap_sem at least held readlocked
736  */
737 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
738 {
739 	struct vm_area_struct *vma;
740 	struct rb_node *n = mm->mm_rb.rb_node;
741 
742 	/* check the cache first */
743 	vma = mm->mmap_cache;
744 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
745 		return vma;
746 
747 	/* trawl the tree (there may be multiple mappings in which addr
748 	 * resides) */
749 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
750 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
751 		if (vma->vm_start > addr)
752 			return NULL;
753 		if (vma->vm_end > addr) {
754 			mm->mmap_cache = vma;
755 			return vma;
756 		}
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(find_vma);
762 
763 /*
764  * find a VMA
765  * - we don't extend stack VMAs under NOMMU conditions
766  */
767 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
768 {
769 	return find_vma(mm, addr);
770 }
771 
772 /*
773  * expand a stack to a given address
774  * - not supported under NOMMU conditions
775  */
776 int expand_stack(struct vm_area_struct *vma, unsigned long address)
777 {
778 	return -ENOMEM;
779 }
780 
781 /*
782  * look up the first VMA exactly that exactly matches addr
783  * - should be called with mm->mmap_sem at least held readlocked
784  */
785 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
786 					     unsigned long addr,
787 					     unsigned long len)
788 {
789 	struct vm_area_struct *vma;
790 	struct rb_node *n = mm->mm_rb.rb_node;
791 	unsigned long end = addr + len;
792 
793 	/* check the cache first */
794 	vma = mm->mmap_cache;
795 	if (vma && vma->vm_start == addr && vma->vm_end == end)
796 		return vma;
797 
798 	/* trawl the tree (there may be multiple mappings in which addr
799 	 * resides) */
800 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
801 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
802 		if (vma->vm_start < addr)
803 			continue;
804 		if (vma->vm_start > addr)
805 			return NULL;
806 		if (vma->vm_end == end) {
807 			mm->mmap_cache = vma;
808 			return vma;
809 		}
810 	}
811 
812 	return NULL;
813 }
814 
815 /*
816  * determine whether a mapping should be permitted and, if so, what sort of
817  * mapping we're capable of supporting
818  */
819 static int validate_mmap_request(struct file *file,
820 				 unsigned long addr,
821 				 unsigned long len,
822 				 unsigned long prot,
823 				 unsigned long flags,
824 				 unsigned long pgoff,
825 				 unsigned long *_capabilities)
826 {
827 	unsigned long capabilities, rlen;
828 	unsigned long reqprot = prot;
829 	int ret;
830 
831 	/* do the simple checks first */
832 	if (flags & MAP_FIXED || addr) {
833 		printk(KERN_DEBUG
834 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
835 		       current->pid);
836 		return -EINVAL;
837 	}
838 
839 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
840 	    (flags & MAP_TYPE) != MAP_SHARED)
841 		return -EINVAL;
842 
843 	if (!len)
844 		return -EINVAL;
845 
846 	/* Careful about overflows.. */
847 	rlen = PAGE_ALIGN(len);
848 	if (!rlen || rlen > TASK_SIZE)
849 		return -ENOMEM;
850 
851 	/* offset overflow? */
852 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
853 		return -EOVERFLOW;
854 
855 	if (file) {
856 		/* validate file mapping requests */
857 		struct address_space *mapping;
858 
859 		/* files must support mmap */
860 		if (!file->f_op || !file->f_op->mmap)
861 			return -ENODEV;
862 
863 		/* work out if what we've got could possibly be shared
864 		 * - we support chardevs that provide their own "memory"
865 		 * - we support files/blockdevs that are memory backed
866 		 */
867 		mapping = file->f_mapping;
868 		if (!mapping)
869 			mapping = file->f_path.dentry->d_inode->i_mapping;
870 
871 		capabilities = 0;
872 		if (mapping && mapping->backing_dev_info)
873 			capabilities = mapping->backing_dev_info->capabilities;
874 
875 		if (!capabilities) {
876 			/* no explicit capabilities set, so assume some
877 			 * defaults */
878 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
879 			case S_IFREG:
880 			case S_IFBLK:
881 				capabilities = BDI_CAP_MAP_COPY;
882 				break;
883 
884 			case S_IFCHR:
885 				capabilities =
886 					BDI_CAP_MAP_DIRECT |
887 					BDI_CAP_READ_MAP |
888 					BDI_CAP_WRITE_MAP;
889 				break;
890 
891 			default:
892 				return -EINVAL;
893 			}
894 		}
895 
896 		/* eliminate any capabilities that we can't support on this
897 		 * device */
898 		if (!file->f_op->get_unmapped_area)
899 			capabilities &= ~BDI_CAP_MAP_DIRECT;
900 		if (!file->f_op->read)
901 			capabilities &= ~BDI_CAP_MAP_COPY;
902 
903 		if (flags & MAP_SHARED) {
904 			/* do checks for writing, appending and locking */
905 			if ((prot & PROT_WRITE) &&
906 			    !(file->f_mode & FMODE_WRITE))
907 				return -EACCES;
908 
909 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
910 			    (file->f_mode & FMODE_WRITE))
911 				return -EACCES;
912 
913 			if (locks_verify_locked(file->f_path.dentry->d_inode))
914 				return -EAGAIN;
915 
916 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
917 				return -ENODEV;
918 
919 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
920 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
921 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
922 			    ) {
923 				printk("MAP_SHARED not completely supported on !MMU\n");
924 				return -EINVAL;
925 			}
926 
927 			/* we mustn't privatise shared mappings */
928 			capabilities &= ~BDI_CAP_MAP_COPY;
929 		}
930 		else {
931 			/* we're going to read the file into private memory we
932 			 * allocate */
933 			if (!(capabilities & BDI_CAP_MAP_COPY))
934 				return -ENODEV;
935 
936 			/* we don't permit a private writable mapping to be
937 			 * shared with the backing device */
938 			if (prot & PROT_WRITE)
939 				capabilities &= ~BDI_CAP_MAP_DIRECT;
940 		}
941 
942 		/* handle executable mappings and implied executable
943 		 * mappings */
944 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
945 			if (prot & PROT_EXEC)
946 				return -EPERM;
947 		}
948 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
949 			/* handle implication of PROT_EXEC by PROT_READ */
950 			if (current->personality & READ_IMPLIES_EXEC) {
951 				if (capabilities & BDI_CAP_EXEC_MAP)
952 					prot |= PROT_EXEC;
953 			}
954 		}
955 		else if ((prot & PROT_READ) &&
956 			 (prot & PROT_EXEC) &&
957 			 !(capabilities & BDI_CAP_EXEC_MAP)
958 			 ) {
959 			/* backing file is not executable, try to copy */
960 			capabilities &= ~BDI_CAP_MAP_DIRECT;
961 		}
962 	}
963 	else {
964 		/* anonymous mappings are always memory backed and can be
965 		 * privately mapped
966 		 */
967 		capabilities = BDI_CAP_MAP_COPY;
968 
969 		/* handle PROT_EXEC implication by PROT_READ */
970 		if ((prot & PROT_READ) &&
971 		    (current->personality & READ_IMPLIES_EXEC))
972 			prot |= PROT_EXEC;
973 	}
974 
975 	/* allow the security API to have its say */
976 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
977 	if (ret < 0)
978 		return ret;
979 
980 	/* looks okay */
981 	*_capabilities = capabilities;
982 	return 0;
983 }
984 
985 /*
986  * we've determined that we can make the mapping, now translate what we
987  * now know into VMA flags
988  */
989 static unsigned long determine_vm_flags(struct file *file,
990 					unsigned long prot,
991 					unsigned long flags,
992 					unsigned long capabilities)
993 {
994 	unsigned long vm_flags;
995 
996 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
997 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
998 	/* vm_flags |= mm->def_flags; */
999 
1000 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1001 		/* attempt to share read-only copies of mapped file chunks */
1002 		if (file && !(prot & PROT_WRITE))
1003 			vm_flags |= VM_MAYSHARE;
1004 	}
1005 	else {
1006 		/* overlay a shareable mapping on the backing device or inode
1007 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1008 		 * romfs/cramfs */
1009 		if (flags & MAP_SHARED)
1010 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1011 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1012 			vm_flags |= VM_MAYSHARE;
1013 	}
1014 
1015 	/* refuse to let anyone share private mappings with this process if
1016 	 * it's being traced - otherwise breakpoints set in it may interfere
1017 	 * with another untraced process
1018 	 */
1019 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1020 		vm_flags &= ~VM_MAYSHARE;
1021 
1022 	return vm_flags;
1023 }
1024 
1025 /*
1026  * set up a shared mapping on a file (the driver or filesystem provides and
1027  * pins the storage)
1028  */
1029 static int do_mmap_shared_file(struct vm_area_struct *vma)
1030 {
1031 	int ret;
1032 
1033 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1034 	if (ret == 0) {
1035 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1036 		return ret;
1037 	}
1038 	if (ret != -ENOSYS)
1039 		return ret;
1040 
1041 	/* getting an ENOSYS error indicates that direct mmap isn't
1042 	 * possible (as opposed to tried but failed) so we'll fall
1043 	 * through to making a private copy of the data and mapping
1044 	 * that if we can */
1045 	return -ENODEV;
1046 }
1047 
1048 /*
1049  * set up a private mapping or an anonymous shared mapping
1050  */
1051 static int do_mmap_private(struct vm_area_struct *vma,
1052 			   struct vm_region *region,
1053 			   unsigned long len)
1054 {
1055 	struct page *pages;
1056 	unsigned long total, point, n, rlen;
1057 	void *base;
1058 	int ret, order;
1059 
1060 	/* invoke the file's mapping function so that it can keep track of
1061 	 * shared mappings on devices or memory
1062 	 * - VM_MAYSHARE will be set if it may attempt to share
1063 	 */
1064 	if (vma->vm_file) {
1065 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1066 		if (ret == 0) {
1067 			/* shouldn't return success if we're not sharing */
1068 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1069 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1070 			return ret;
1071 		}
1072 		if (ret != -ENOSYS)
1073 			return ret;
1074 
1075 		/* getting an ENOSYS error indicates that direct mmap isn't
1076 		 * possible (as opposed to tried but failed) so we'll try to
1077 		 * make a private copy of the data and map that instead */
1078 	}
1079 
1080 	rlen = PAGE_ALIGN(len);
1081 
1082 	/* allocate some memory to hold the mapping
1083 	 * - note that this may not return a page-aligned address if the object
1084 	 *   we're allocating is smaller than a page
1085 	 */
1086 	order = get_order(rlen);
1087 	kdebug("alloc order %d for %lx", order, len);
1088 
1089 	pages = alloc_pages(GFP_KERNEL, order);
1090 	if (!pages)
1091 		goto enomem;
1092 
1093 	total = 1 << order;
1094 	atomic_long_add(total, &mmap_pages_allocated);
1095 
1096 	point = rlen >> PAGE_SHIFT;
1097 
1098 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1099 	 * the excess */
1100 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1101 		while (total > point) {
1102 			order = ilog2(total - point);
1103 			n = 1 << order;
1104 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1105 			atomic_long_sub(n, &mmap_pages_allocated);
1106 			total -= n;
1107 			set_page_refcounted(pages + total);
1108 			__free_pages(pages + total, order);
1109 		}
1110 	}
1111 
1112 	for (point = 1; point < total; point++)
1113 		set_page_refcounted(&pages[point]);
1114 
1115 	base = page_address(pages);
1116 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1117 	region->vm_start = (unsigned long) base;
1118 	region->vm_end   = region->vm_start + rlen;
1119 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1120 
1121 	vma->vm_start = region->vm_start;
1122 	vma->vm_end   = region->vm_start + len;
1123 
1124 	if (vma->vm_file) {
1125 		/* read the contents of a file into the copy */
1126 		mm_segment_t old_fs;
1127 		loff_t fpos;
1128 
1129 		fpos = vma->vm_pgoff;
1130 		fpos <<= PAGE_SHIFT;
1131 
1132 		old_fs = get_fs();
1133 		set_fs(KERNEL_DS);
1134 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1135 		set_fs(old_fs);
1136 
1137 		if (ret < 0)
1138 			goto error_free;
1139 
1140 		/* clear the last little bit */
1141 		if (ret < rlen)
1142 			memset(base + ret, 0, rlen - ret);
1143 
1144 	} else {
1145 		/* if it's an anonymous mapping, then just clear it */
1146 		memset(base, 0, rlen);
1147 	}
1148 
1149 	return 0;
1150 
1151 error_free:
1152 	free_page_series(region->vm_start, region->vm_end);
1153 	region->vm_start = vma->vm_start = 0;
1154 	region->vm_end   = vma->vm_end = 0;
1155 	region->vm_top   = 0;
1156 	return ret;
1157 
1158 enomem:
1159 	printk("Allocation of length %lu from process %d (%s) failed\n",
1160 	       len, current->pid, current->comm);
1161 	show_free_areas();
1162 	return -ENOMEM;
1163 }
1164 
1165 /*
1166  * handle mapping creation for uClinux
1167  */
1168 unsigned long do_mmap_pgoff(struct file *file,
1169 			    unsigned long addr,
1170 			    unsigned long len,
1171 			    unsigned long prot,
1172 			    unsigned long flags,
1173 			    unsigned long pgoff)
1174 {
1175 	struct vm_area_struct *vma;
1176 	struct vm_region *region;
1177 	struct rb_node *rb;
1178 	unsigned long capabilities, vm_flags, result;
1179 	int ret;
1180 
1181 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1182 
1183 	if (!(flags & MAP_FIXED))
1184 		addr = round_hint_to_min(addr);
1185 
1186 	/* decide whether we should attempt the mapping, and if so what sort of
1187 	 * mapping */
1188 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1189 				    &capabilities);
1190 	if (ret < 0) {
1191 		kleave(" = %d [val]", ret);
1192 		return ret;
1193 	}
1194 
1195 	/* we've determined that we can make the mapping, now translate what we
1196 	 * now know into VMA flags */
1197 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1198 
1199 	/* we're going to need to record the mapping */
1200 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1201 	if (!region)
1202 		goto error_getting_region;
1203 
1204 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1205 	if (!vma)
1206 		goto error_getting_vma;
1207 
1208 	atomic_set(&region->vm_usage, 1);
1209 	region->vm_flags = vm_flags;
1210 	region->vm_pgoff = pgoff;
1211 
1212 	INIT_LIST_HEAD(&vma->anon_vma_node);
1213 	vma->vm_flags = vm_flags;
1214 	vma->vm_pgoff = pgoff;
1215 
1216 	if (file) {
1217 		region->vm_file = file;
1218 		get_file(file);
1219 		vma->vm_file = file;
1220 		get_file(file);
1221 		if (vm_flags & VM_EXECUTABLE) {
1222 			added_exe_file_vma(current->mm);
1223 			vma->vm_mm = current->mm;
1224 		}
1225 	}
1226 
1227 	down_write(&nommu_region_sem);
1228 
1229 	/* if we want to share, we need to check for regions created by other
1230 	 * mmap() calls that overlap with our proposed mapping
1231 	 * - we can only share with a superset match on most regular files
1232 	 * - shared mappings on character devices and memory backed files are
1233 	 *   permitted to overlap inexactly as far as we are concerned for in
1234 	 *   these cases, sharing is handled in the driver or filesystem rather
1235 	 *   than here
1236 	 */
1237 	if (vm_flags & VM_MAYSHARE) {
1238 		struct vm_region *pregion;
1239 		unsigned long pglen, rpglen, pgend, rpgend, start;
1240 
1241 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1242 		pgend = pgoff + pglen;
1243 
1244 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1245 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1246 
1247 			if (!(pregion->vm_flags & VM_MAYSHARE))
1248 				continue;
1249 
1250 			/* search for overlapping mappings on the same file */
1251 			if (pregion->vm_file->f_path.dentry->d_inode !=
1252 			    file->f_path.dentry->d_inode)
1253 				continue;
1254 
1255 			if (pregion->vm_pgoff >= pgend)
1256 				continue;
1257 
1258 			rpglen = pregion->vm_end - pregion->vm_start;
1259 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260 			rpgend = pregion->vm_pgoff + rpglen;
1261 			if (pgoff >= rpgend)
1262 				continue;
1263 
1264 			/* handle inexactly overlapping matches between
1265 			 * mappings */
1266 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1267 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1268 				/* new mapping is not a subset of the region */
1269 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1270 					goto sharing_violation;
1271 				continue;
1272 			}
1273 
1274 			/* we've found a region we can share */
1275 			atomic_inc(&pregion->vm_usage);
1276 			vma->vm_region = pregion;
1277 			start = pregion->vm_start;
1278 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1279 			vma->vm_start = start;
1280 			vma->vm_end = start + len;
1281 
1282 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1283 				kdebug("share copy");
1284 				vma->vm_flags |= VM_MAPPED_COPY;
1285 			} else {
1286 				kdebug("share mmap");
1287 				ret = do_mmap_shared_file(vma);
1288 				if (ret < 0) {
1289 					vma->vm_region = NULL;
1290 					vma->vm_start = 0;
1291 					vma->vm_end = 0;
1292 					atomic_dec(&pregion->vm_usage);
1293 					pregion = NULL;
1294 					goto error_just_free;
1295 				}
1296 			}
1297 			fput(region->vm_file);
1298 			kmem_cache_free(vm_region_jar, region);
1299 			region = pregion;
1300 			result = start;
1301 			goto share;
1302 		}
1303 
1304 		/* obtain the address at which to make a shared mapping
1305 		 * - this is the hook for quasi-memory character devices to
1306 		 *   tell us the location of a shared mapping
1307 		 */
1308 		if (file && file->f_op->get_unmapped_area) {
1309 			addr = file->f_op->get_unmapped_area(file, addr, len,
1310 							     pgoff, flags);
1311 			if (IS_ERR((void *) addr)) {
1312 				ret = addr;
1313 				if (ret != (unsigned long) -ENOSYS)
1314 					goto error_just_free;
1315 
1316 				/* the driver refused to tell us where to site
1317 				 * the mapping so we'll have to attempt to copy
1318 				 * it */
1319 				ret = (unsigned long) -ENODEV;
1320 				if (!(capabilities & BDI_CAP_MAP_COPY))
1321 					goto error_just_free;
1322 
1323 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1324 			} else {
1325 				vma->vm_start = region->vm_start = addr;
1326 				vma->vm_end = region->vm_end = addr + len;
1327 			}
1328 		}
1329 	}
1330 
1331 	vma->vm_region = region;
1332 
1333 	/* set up the mapping */
1334 	if (file && vma->vm_flags & VM_SHARED)
1335 		ret = do_mmap_shared_file(vma);
1336 	else
1337 		ret = do_mmap_private(vma, region, len);
1338 	if (ret < 0)
1339 		goto error_put_region;
1340 
1341 	add_nommu_region(region);
1342 
1343 	/* okay... we have a mapping; now we have to register it */
1344 	result = vma->vm_start;
1345 
1346 	current->mm->total_vm += len >> PAGE_SHIFT;
1347 
1348 share:
1349 	add_vma_to_mm(current->mm, vma);
1350 
1351 	up_write(&nommu_region_sem);
1352 
1353 	if (prot & PROT_EXEC)
1354 		flush_icache_range(result, result + len);
1355 
1356 	kleave(" = %lx", result);
1357 	return result;
1358 
1359 error_put_region:
1360 	__put_nommu_region(region);
1361 	if (vma) {
1362 		if (vma->vm_file) {
1363 			fput(vma->vm_file);
1364 			if (vma->vm_flags & VM_EXECUTABLE)
1365 				removed_exe_file_vma(vma->vm_mm);
1366 		}
1367 		kmem_cache_free(vm_area_cachep, vma);
1368 	}
1369 	kleave(" = %d [pr]", ret);
1370 	return ret;
1371 
1372 error_just_free:
1373 	up_write(&nommu_region_sem);
1374 error:
1375 	fput(region->vm_file);
1376 	kmem_cache_free(vm_region_jar, region);
1377 	fput(vma->vm_file);
1378 	if (vma->vm_flags & VM_EXECUTABLE)
1379 		removed_exe_file_vma(vma->vm_mm);
1380 	kmem_cache_free(vm_area_cachep, vma);
1381 	kleave(" = %d", ret);
1382 	return ret;
1383 
1384 sharing_violation:
1385 	up_write(&nommu_region_sem);
1386 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1387 	ret = -EINVAL;
1388 	goto error;
1389 
1390 error_getting_vma:
1391 	kmem_cache_free(vm_region_jar, region);
1392 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1393 	       " from process %d failed\n",
1394 	       len, current->pid);
1395 	show_free_areas();
1396 	return -ENOMEM;
1397 
1398 error_getting_region:
1399 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1400 	       " from process %d failed\n",
1401 	       len, current->pid);
1402 	show_free_areas();
1403 	return -ENOMEM;
1404 }
1405 EXPORT_SYMBOL(do_mmap_pgoff);
1406 
1407 /*
1408  * split a vma into two pieces at address 'addr', a new vma is allocated either
1409  * for the first part or the tail.
1410  */
1411 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1412 	      unsigned long addr, int new_below)
1413 {
1414 	struct vm_area_struct *new;
1415 	struct vm_region *region;
1416 	unsigned long npages;
1417 
1418 	kenter("");
1419 
1420 	/* we're only permitted to split anonymous regions that have a single
1421 	 * owner */
1422 	if (vma->vm_file ||
1423 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1424 		return -ENOMEM;
1425 
1426 	if (mm->map_count >= sysctl_max_map_count)
1427 		return -ENOMEM;
1428 
1429 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1430 	if (!region)
1431 		return -ENOMEM;
1432 
1433 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1434 	if (!new) {
1435 		kmem_cache_free(vm_region_jar, region);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	/* most fields are the same, copy all, and then fixup */
1440 	*new = *vma;
1441 	*region = *vma->vm_region;
1442 	new->vm_region = region;
1443 
1444 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1445 
1446 	if (new_below) {
1447 		region->vm_top = region->vm_end = new->vm_end = addr;
1448 	} else {
1449 		region->vm_start = new->vm_start = addr;
1450 		region->vm_pgoff = new->vm_pgoff += npages;
1451 	}
1452 
1453 	if (new->vm_ops && new->vm_ops->open)
1454 		new->vm_ops->open(new);
1455 
1456 	delete_vma_from_mm(vma);
1457 	down_write(&nommu_region_sem);
1458 	delete_nommu_region(vma->vm_region);
1459 	if (new_below) {
1460 		vma->vm_region->vm_start = vma->vm_start = addr;
1461 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1462 	} else {
1463 		vma->vm_region->vm_end = vma->vm_end = addr;
1464 		vma->vm_region->vm_top = addr;
1465 	}
1466 	add_nommu_region(vma->vm_region);
1467 	add_nommu_region(new->vm_region);
1468 	up_write(&nommu_region_sem);
1469 	add_vma_to_mm(mm, vma);
1470 	add_vma_to_mm(mm, new);
1471 	return 0;
1472 }
1473 
1474 /*
1475  * shrink a VMA by removing the specified chunk from either the beginning or
1476  * the end
1477  */
1478 static int shrink_vma(struct mm_struct *mm,
1479 		      struct vm_area_struct *vma,
1480 		      unsigned long from, unsigned long to)
1481 {
1482 	struct vm_region *region;
1483 
1484 	kenter("");
1485 
1486 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1487 	 * and list */
1488 	delete_vma_from_mm(vma);
1489 	if (from > vma->vm_start)
1490 		vma->vm_end = from;
1491 	else
1492 		vma->vm_start = to;
1493 	add_vma_to_mm(mm, vma);
1494 
1495 	/* cut the backing region down to size */
1496 	region = vma->vm_region;
1497 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1498 
1499 	down_write(&nommu_region_sem);
1500 	delete_nommu_region(region);
1501 	if (from > region->vm_start) {
1502 		to = region->vm_top;
1503 		region->vm_top = region->vm_end = from;
1504 	} else {
1505 		region->vm_start = to;
1506 	}
1507 	add_nommu_region(region);
1508 	up_write(&nommu_region_sem);
1509 
1510 	free_page_series(from, to);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * release a mapping
1516  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1517  *   VMA, though it need not cover the whole VMA
1518  */
1519 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1520 {
1521 	struct vm_area_struct *vma;
1522 	struct rb_node *rb;
1523 	unsigned long end = start + len;
1524 	int ret;
1525 
1526 	kenter(",%lx,%zx", start, len);
1527 
1528 	if (len == 0)
1529 		return -EINVAL;
1530 
1531 	/* find the first potentially overlapping VMA */
1532 	vma = find_vma(mm, start);
1533 	if (!vma) {
1534 		static int limit = 0;
1535 		if (limit < 5) {
1536 			printk(KERN_WARNING
1537 			       "munmap of memory not mmapped by process %d"
1538 			       " (%s): 0x%lx-0x%lx\n",
1539 			       current->pid, current->comm,
1540 			       start, start + len - 1);
1541 			limit++;
1542 		}
1543 		return -EINVAL;
1544 	}
1545 
1546 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1547 	if (vma->vm_file) {
1548 		do {
1549 			if (start > vma->vm_start) {
1550 				kleave(" = -EINVAL [miss]");
1551 				return -EINVAL;
1552 			}
1553 			if (end == vma->vm_end)
1554 				goto erase_whole_vma;
1555 			rb = rb_next(&vma->vm_rb);
1556 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1557 		} while (rb);
1558 		kleave(" = -EINVAL [split file]");
1559 		return -EINVAL;
1560 	} else {
1561 		/* the chunk must be a subset of the VMA found */
1562 		if (start == vma->vm_start && end == vma->vm_end)
1563 			goto erase_whole_vma;
1564 		if (start < vma->vm_start || end > vma->vm_end) {
1565 			kleave(" = -EINVAL [superset]");
1566 			return -EINVAL;
1567 		}
1568 		if (start & ~PAGE_MASK) {
1569 			kleave(" = -EINVAL [unaligned start]");
1570 			return -EINVAL;
1571 		}
1572 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1573 			kleave(" = -EINVAL [unaligned split]");
1574 			return -EINVAL;
1575 		}
1576 		if (start != vma->vm_start && end != vma->vm_end) {
1577 			ret = split_vma(mm, vma, start, 1);
1578 			if (ret < 0) {
1579 				kleave(" = %d [split]", ret);
1580 				return ret;
1581 			}
1582 		}
1583 		return shrink_vma(mm, vma, start, end);
1584 	}
1585 
1586 erase_whole_vma:
1587 	delete_vma_from_mm(vma);
1588 	delete_vma(mm, vma);
1589 	kleave(" = 0");
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL(do_munmap);
1593 
1594 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1595 {
1596 	int ret;
1597 	struct mm_struct *mm = current->mm;
1598 
1599 	down_write(&mm->mmap_sem);
1600 	ret = do_munmap(mm, addr, len);
1601 	up_write(&mm->mmap_sem);
1602 	return ret;
1603 }
1604 
1605 /*
1606  * release all the mappings made in a process's VM space
1607  */
1608 void exit_mmap(struct mm_struct *mm)
1609 {
1610 	struct vm_area_struct *vma;
1611 
1612 	if (!mm)
1613 		return;
1614 
1615 	kenter("");
1616 
1617 	mm->total_vm = 0;
1618 
1619 	while ((vma = mm->mmap)) {
1620 		mm->mmap = vma->vm_next;
1621 		delete_vma_from_mm(vma);
1622 		delete_vma(mm, vma);
1623 	}
1624 
1625 	kleave("");
1626 }
1627 
1628 unsigned long do_brk(unsigned long addr, unsigned long len)
1629 {
1630 	return -ENOMEM;
1631 }
1632 
1633 /*
1634  * expand (or shrink) an existing mapping, potentially moving it at the same
1635  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1636  *
1637  * under NOMMU conditions, we only permit changing a mapping's size, and only
1638  * as long as it stays within the region allocated by do_mmap_private() and the
1639  * block is not shareable
1640  *
1641  * MREMAP_FIXED is not supported under NOMMU conditions
1642  */
1643 unsigned long do_mremap(unsigned long addr,
1644 			unsigned long old_len, unsigned long new_len,
1645 			unsigned long flags, unsigned long new_addr)
1646 {
1647 	struct vm_area_struct *vma;
1648 
1649 	/* insanity checks first */
1650 	if (old_len == 0 || new_len == 0)
1651 		return (unsigned long) -EINVAL;
1652 
1653 	if (addr & ~PAGE_MASK)
1654 		return -EINVAL;
1655 
1656 	if (flags & MREMAP_FIXED && new_addr != addr)
1657 		return (unsigned long) -EINVAL;
1658 
1659 	vma = find_vma_exact(current->mm, addr, old_len);
1660 	if (!vma)
1661 		return (unsigned long) -EINVAL;
1662 
1663 	if (vma->vm_end != vma->vm_start + old_len)
1664 		return (unsigned long) -EFAULT;
1665 
1666 	if (vma->vm_flags & VM_MAYSHARE)
1667 		return (unsigned long) -EPERM;
1668 
1669 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1670 		return (unsigned long) -ENOMEM;
1671 
1672 	/* all checks complete - do it */
1673 	vma->vm_end = vma->vm_start + new_len;
1674 	return vma->vm_start;
1675 }
1676 EXPORT_SYMBOL(do_mremap);
1677 
1678 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1679 		unsigned long, new_len, unsigned long, flags,
1680 		unsigned long, new_addr)
1681 {
1682 	unsigned long ret;
1683 
1684 	down_write(&current->mm->mmap_sem);
1685 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1686 	up_write(&current->mm->mmap_sem);
1687 	return ret;
1688 }
1689 
1690 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1691 			unsigned int foll_flags)
1692 {
1693 	return NULL;
1694 }
1695 
1696 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1697 		unsigned long to, unsigned long size, pgprot_t prot)
1698 {
1699 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL(remap_pfn_range);
1703 
1704 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1705 			unsigned long pgoff)
1706 {
1707 	unsigned int size = vma->vm_end - vma->vm_start;
1708 
1709 	if (!(vma->vm_flags & VM_USERMAP))
1710 		return -EINVAL;
1711 
1712 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1713 	vma->vm_end = vma->vm_start + size;
1714 
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(remap_vmalloc_range);
1718 
1719 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1720 {
1721 }
1722 
1723 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1724 	unsigned long len, unsigned long pgoff, unsigned long flags)
1725 {
1726 	return -ENOMEM;
1727 }
1728 
1729 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1730 {
1731 }
1732 
1733 void unmap_mapping_range(struct address_space *mapping,
1734 			 loff_t const holebegin, loff_t const holelen,
1735 			 int even_cows)
1736 {
1737 }
1738 EXPORT_SYMBOL(unmap_mapping_range);
1739 
1740 /*
1741  * ask for an unmapped area at which to create a mapping on a file
1742  */
1743 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1744 				unsigned long len, unsigned long pgoff,
1745 				unsigned long flags)
1746 {
1747 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1748 				  unsigned long, unsigned long);
1749 
1750 	get_area = current->mm->get_unmapped_area;
1751 	if (file && file->f_op && file->f_op->get_unmapped_area)
1752 		get_area = file->f_op->get_unmapped_area;
1753 
1754 	if (!get_area)
1755 		return -ENOSYS;
1756 
1757 	return get_area(file, addr, len, pgoff, flags);
1758 }
1759 EXPORT_SYMBOL(get_unmapped_area);
1760 
1761 /*
1762  * Check that a process has enough memory to allocate a new virtual
1763  * mapping. 0 means there is enough memory for the allocation to
1764  * succeed and -ENOMEM implies there is not.
1765  *
1766  * We currently support three overcommit policies, which are set via the
1767  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1768  *
1769  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1770  * Additional code 2002 Jul 20 by Robert Love.
1771  *
1772  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1773  *
1774  * Note this is a helper function intended to be used by LSMs which
1775  * wish to use this logic.
1776  */
1777 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1778 {
1779 	unsigned long free, allowed;
1780 
1781 	vm_acct_memory(pages);
1782 
1783 	/*
1784 	 * Sometimes we want to use more memory than we have
1785 	 */
1786 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1787 		return 0;
1788 
1789 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1790 		unsigned long n;
1791 
1792 		free = global_page_state(NR_FILE_PAGES);
1793 		free += nr_swap_pages;
1794 
1795 		/*
1796 		 * Any slabs which are created with the
1797 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1798 		 * which are reclaimable, under pressure.  The dentry
1799 		 * cache and most inode caches should fall into this
1800 		 */
1801 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1802 
1803 		/*
1804 		 * Leave the last 3% for root
1805 		 */
1806 		if (!cap_sys_admin)
1807 			free -= free / 32;
1808 
1809 		if (free > pages)
1810 			return 0;
1811 
1812 		/*
1813 		 * nr_free_pages() is very expensive on large systems,
1814 		 * only call if we're about to fail.
1815 		 */
1816 		n = nr_free_pages();
1817 
1818 		/*
1819 		 * Leave reserved pages. The pages are not for anonymous pages.
1820 		 */
1821 		if (n <= totalreserve_pages)
1822 			goto error;
1823 		else
1824 			n -= totalreserve_pages;
1825 
1826 		/*
1827 		 * Leave the last 3% for root
1828 		 */
1829 		if (!cap_sys_admin)
1830 			n -= n / 32;
1831 		free += n;
1832 
1833 		if (free > pages)
1834 			return 0;
1835 
1836 		goto error;
1837 	}
1838 
1839 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1840 	/*
1841 	 * Leave the last 3% for root
1842 	 */
1843 	if (!cap_sys_admin)
1844 		allowed -= allowed / 32;
1845 	allowed += total_swap_pages;
1846 
1847 	/* Don't let a single process grow too big:
1848 	   leave 3% of the size of this process for other processes */
1849 	if (mm)
1850 		allowed -= mm->total_vm / 32;
1851 
1852 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1853 		return 0;
1854 
1855 error:
1856 	vm_unacct_memory(pages);
1857 
1858 	return -ENOMEM;
1859 }
1860 
1861 int in_gate_area_no_task(unsigned long addr)
1862 {
1863 	return 0;
1864 }
1865 
1866 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1867 {
1868 	BUG();
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(filemap_fault);
1872 
1873 /*
1874  * Access another process' address space.
1875  * - source/target buffer must be kernel space
1876  */
1877 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1878 {
1879 	struct vm_area_struct *vma;
1880 	struct mm_struct *mm;
1881 
1882 	if (addr + len < addr)
1883 		return 0;
1884 
1885 	mm = get_task_mm(tsk);
1886 	if (!mm)
1887 		return 0;
1888 
1889 	down_read(&mm->mmap_sem);
1890 
1891 	/* the access must start within one of the target process's mappings */
1892 	vma = find_vma(mm, addr);
1893 	if (vma) {
1894 		/* don't overrun this mapping */
1895 		if (addr + len >= vma->vm_end)
1896 			len = vma->vm_end - addr;
1897 
1898 		/* only read or write mappings where it is permitted */
1899 		if (write && vma->vm_flags & VM_MAYWRITE)
1900 			len -= copy_to_user((void *) addr, buf, len);
1901 		else if (!write && vma->vm_flags & VM_MAYREAD)
1902 			len -= copy_from_user(buf, (void *) addr, len);
1903 		else
1904 			len = 0;
1905 	} else {
1906 		len = 0;
1907 	}
1908 
1909 	up_read(&mm->mmap_sem);
1910 	mmput(mm);
1911 	return len;
1912 }
1913