1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include "internal.h" 37 38 static inline __attribute__((format(printf, 1, 2))) 39 void no_printk(const char *fmt, ...) 40 { 41 } 42 43 #if 0 44 #define kenter(FMT, ...) \ 45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 46 #define kleave(FMT, ...) \ 47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 48 #define kdebug(FMT, ...) \ 49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 50 #else 51 #define kenter(FMT, ...) \ 52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 53 #define kleave(FMT, ...) \ 54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 55 #define kdebug(FMT, ...) \ 56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 57 #endif 58 59 #include "internal.h" 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long num_physpages; 65 struct percpu_counter vm_committed_as; 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 70 int heap_stack_gap = 0; 71 72 atomic_long_t mmap_pages_allocated; 73 74 EXPORT_SYMBOL(mem_map); 75 EXPORT_SYMBOL(num_physpages); 76 77 /* list of mapped, potentially shareable regions */ 78 static struct kmem_cache *vm_region_jar; 79 struct rb_root nommu_region_tree = RB_ROOT; 80 DECLARE_RWSEM(nommu_region_sem); 81 82 struct vm_operations_struct generic_file_vm_ops = { 83 }; 84 85 /* 86 * Handle all mappings that got truncated by a "truncate()" 87 * system call. 88 * 89 * NOTE! We have to be ready to update the memory sharing 90 * between the file and the memory map for a potential last 91 * incomplete page. Ugly, but necessary. 92 */ 93 int vmtruncate(struct inode *inode, loff_t offset) 94 { 95 struct address_space *mapping = inode->i_mapping; 96 unsigned long limit; 97 98 if (inode->i_size < offset) 99 goto do_expand; 100 i_size_write(inode, offset); 101 102 truncate_inode_pages(mapping, offset); 103 goto out_truncate; 104 105 do_expand: 106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 107 if (limit != RLIM_INFINITY && offset > limit) 108 goto out_sig; 109 if (offset > inode->i_sb->s_maxbytes) 110 goto out; 111 i_size_write(inode, offset); 112 113 out_truncate: 114 if (inode->i_op->truncate) 115 inode->i_op->truncate(inode); 116 return 0; 117 out_sig: 118 send_sig(SIGXFSZ, current, 0); 119 out: 120 return -EFBIG; 121 } 122 123 EXPORT_SYMBOL(vmtruncate); 124 125 /* 126 * Return the total memory allocated for this pointer, not 127 * just what the caller asked for. 128 * 129 * Doesn't have to be accurate, i.e. may have races. 130 */ 131 unsigned int kobjsize(const void *objp) 132 { 133 struct page *page; 134 135 /* 136 * If the object we have should not have ksize performed on it, 137 * return size of 0 138 */ 139 if (!objp || !virt_addr_valid(objp)) 140 return 0; 141 142 page = virt_to_head_page(objp); 143 144 /* 145 * If the allocator sets PageSlab, we know the pointer came from 146 * kmalloc(). 147 */ 148 if (PageSlab(page)) 149 return ksize(objp); 150 151 /* 152 * If it's not a compound page, see if we have a matching VMA 153 * region. This test is intentionally done in reverse order, 154 * so if there's no VMA, we still fall through and hand back 155 * PAGE_SIZE for 0-order pages. 156 */ 157 if (!PageCompound(page)) { 158 struct vm_area_struct *vma; 159 160 vma = find_vma(current->mm, (unsigned long)objp); 161 if (vma) 162 return vma->vm_end - vma->vm_start; 163 } 164 165 /* 166 * The ksize() function is only guaranteed to work for pointers 167 * returned by kmalloc(). So handle arbitrary pointers here. 168 */ 169 return PAGE_SIZE << compound_order(page); 170 } 171 172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 173 unsigned long start, int len, int flags, 174 struct page **pages, struct vm_area_struct **vmas) 175 { 176 struct vm_area_struct *vma; 177 unsigned long vm_flags; 178 int i; 179 int write = !!(flags & GUP_FLAGS_WRITE); 180 int force = !!(flags & GUP_FLAGS_FORCE); 181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 182 183 /* calculate required read or write permissions. 184 * - if 'force' is set, we only require the "MAY" flags. 185 */ 186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 188 189 for (i = 0; i < len; i++) { 190 vma = find_vma(mm, start); 191 if (!vma) 192 goto finish_or_fault; 193 194 /* protect what we can, including chardevs */ 195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) || 196 (!ignore && !(vm_flags & vma->vm_flags))) 197 goto finish_or_fault; 198 199 if (pages) { 200 pages[i] = virt_to_page(start); 201 if (pages[i]) 202 page_cache_get(pages[i]); 203 } 204 if (vmas) 205 vmas[i] = vma; 206 start += PAGE_SIZE; 207 } 208 209 return i; 210 211 finish_or_fault: 212 return i ? : -EFAULT; 213 } 214 215 216 /* 217 * get a list of pages in an address range belonging to the specified process 218 * and indicate the VMA that covers each page 219 * - this is potentially dodgy as we may end incrementing the page count of a 220 * slab page or a secondary page from a compound page 221 * - don't permit access to VMAs that don't support it, such as I/O mappings 222 */ 223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 224 unsigned long start, int len, int write, int force, 225 struct page **pages, struct vm_area_struct **vmas) 226 { 227 int flags = 0; 228 229 if (write) 230 flags |= GUP_FLAGS_WRITE; 231 if (force) 232 flags |= GUP_FLAGS_FORCE; 233 234 return __get_user_pages(tsk, mm, 235 start, len, flags, 236 pages, vmas); 237 } 238 EXPORT_SYMBOL(get_user_pages); 239 240 DEFINE_RWLOCK(vmlist_lock); 241 struct vm_struct *vmlist; 242 243 void vfree(const void *addr) 244 { 245 kfree(addr); 246 } 247 EXPORT_SYMBOL(vfree); 248 249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 250 { 251 /* 252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 253 * returns only a logical address. 254 */ 255 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 256 } 257 EXPORT_SYMBOL(__vmalloc); 258 259 void *vmalloc_user(unsigned long size) 260 { 261 void *ret; 262 263 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 264 PAGE_KERNEL); 265 if (ret) { 266 struct vm_area_struct *vma; 267 268 down_write(¤t->mm->mmap_sem); 269 vma = find_vma(current->mm, (unsigned long)ret); 270 if (vma) 271 vma->vm_flags |= VM_USERMAP; 272 up_write(¤t->mm->mmap_sem); 273 } 274 275 return ret; 276 } 277 EXPORT_SYMBOL(vmalloc_user); 278 279 struct page *vmalloc_to_page(const void *addr) 280 { 281 return virt_to_page(addr); 282 } 283 EXPORT_SYMBOL(vmalloc_to_page); 284 285 unsigned long vmalloc_to_pfn(const void *addr) 286 { 287 return page_to_pfn(virt_to_page(addr)); 288 } 289 EXPORT_SYMBOL(vmalloc_to_pfn); 290 291 long vread(char *buf, char *addr, unsigned long count) 292 { 293 memcpy(buf, addr, count); 294 return count; 295 } 296 297 long vwrite(char *buf, char *addr, unsigned long count) 298 { 299 /* Don't allow overflow */ 300 if ((unsigned long) addr + count < count) 301 count = -(unsigned long) addr; 302 303 memcpy(addr, buf, count); 304 return(count); 305 } 306 307 /* 308 * vmalloc - allocate virtually continguos memory 309 * 310 * @size: allocation size 311 * 312 * Allocate enough pages to cover @size from the page level 313 * allocator and map them into continguos kernel virtual space. 314 * 315 * For tight control over page level allocator and protection flags 316 * use __vmalloc() instead. 317 */ 318 void *vmalloc(unsigned long size) 319 { 320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 321 } 322 EXPORT_SYMBOL(vmalloc); 323 324 void *vmalloc_node(unsigned long size, int node) 325 { 326 return vmalloc(size); 327 } 328 EXPORT_SYMBOL(vmalloc_node); 329 330 #ifndef PAGE_KERNEL_EXEC 331 # define PAGE_KERNEL_EXEC PAGE_KERNEL 332 #endif 333 334 /** 335 * vmalloc_exec - allocate virtually contiguous, executable memory 336 * @size: allocation size 337 * 338 * Kernel-internal function to allocate enough pages to cover @size 339 * the page level allocator and map them into contiguous and 340 * executable kernel virtual space. 341 * 342 * For tight control over page level allocator and protection flags 343 * use __vmalloc() instead. 344 */ 345 346 void *vmalloc_exec(unsigned long size) 347 { 348 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 349 } 350 351 /** 352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 353 * @size: allocation size 354 * 355 * Allocate enough 32bit PA addressable pages to cover @size from the 356 * page level allocator and map them into continguos kernel virtual space. 357 */ 358 void *vmalloc_32(unsigned long size) 359 { 360 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 361 } 362 EXPORT_SYMBOL(vmalloc_32); 363 364 /** 365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 366 * @size: allocation size 367 * 368 * The resulting memory area is 32bit addressable and zeroed so it can be 369 * mapped to userspace without leaking data. 370 * 371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 372 * remap_vmalloc_range() are permissible. 373 */ 374 void *vmalloc_32_user(unsigned long size) 375 { 376 /* 377 * We'll have to sort out the ZONE_DMA bits for 64-bit, 378 * but for now this can simply use vmalloc_user() directly. 379 */ 380 return vmalloc_user(size); 381 } 382 EXPORT_SYMBOL(vmalloc_32_user); 383 384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 385 { 386 BUG(); 387 return NULL; 388 } 389 EXPORT_SYMBOL(vmap); 390 391 void vunmap(const void *addr) 392 { 393 BUG(); 394 } 395 EXPORT_SYMBOL(vunmap); 396 397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 398 { 399 BUG(); 400 return NULL; 401 } 402 EXPORT_SYMBOL(vm_map_ram); 403 404 void vm_unmap_ram(const void *mem, unsigned int count) 405 { 406 BUG(); 407 } 408 EXPORT_SYMBOL(vm_unmap_ram); 409 410 void vm_unmap_aliases(void) 411 { 412 } 413 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 414 415 /* 416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 417 * have one. 418 */ 419 void __attribute__((weak)) vmalloc_sync_all(void) 420 { 421 } 422 423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 424 struct page *page) 425 { 426 return -EINVAL; 427 } 428 EXPORT_SYMBOL(vm_insert_page); 429 430 /* 431 * sys_brk() for the most part doesn't need the global kernel 432 * lock, except when an application is doing something nasty 433 * like trying to un-brk an area that has already been mapped 434 * to a regular file. in this case, the unmapping will need 435 * to invoke file system routines that need the global lock. 436 */ 437 SYSCALL_DEFINE1(brk, unsigned long, brk) 438 { 439 struct mm_struct *mm = current->mm; 440 441 if (brk < mm->start_brk || brk > mm->context.end_brk) 442 return mm->brk; 443 444 if (mm->brk == brk) 445 return mm->brk; 446 447 /* 448 * Always allow shrinking brk 449 */ 450 if (brk <= mm->brk) { 451 mm->brk = brk; 452 return brk; 453 } 454 455 /* 456 * Ok, looks good - let it rip. 457 */ 458 return mm->brk = brk; 459 } 460 461 /* 462 * initialise the VMA and region record slabs 463 */ 464 void __init mmap_init(void) 465 { 466 int ret; 467 468 ret = percpu_counter_init(&vm_committed_as, 0); 469 VM_BUG_ON(ret); 470 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 471 } 472 473 /* 474 * validate the region tree 475 * - the caller must hold the region lock 476 */ 477 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 478 static noinline void validate_nommu_regions(void) 479 { 480 struct vm_region *region, *last; 481 struct rb_node *p, *lastp; 482 483 lastp = rb_first(&nommu_region_tree); 484 if (!lastp) 485 return; 486 487 last = rb_entry(lastp, struct vm_region, vm_rb); 488 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 489 BUG_ON(unlikely(last->vm_top < last->vm_end)); 490 491 while ((p = rb_next(lastp))) { 492 region = rb_entry(p, struct vm_region, vm_rb); 493 last = rb_entry(lastp, struct vm_region, vm_rb); 494 495 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 496 BUG_ON(unlikely(region->vm_top < region->vm_end)); 497 BUG_ON(unlikely(region->vm_start < last->vm_top)); 498 499 lastp = p; 500 } 501 } 502 #else 503 static void validate_nommu_regions(void) 504 { 505 } 506 #endif 507 508 /* 509 * add a region into the global tree 510 */ 511 static void add_nommu_region(struct vm_region *region) 512 { 513 struct vm_region *pregion; 514 struct rb_node **p, *parent; 515 516 validate_nommu_regions(); 517 518 parent = NULL; 519 p = &nommu_region_tree.rb_node; 520 while (*p) { 521 parent = *p; 522 pregion = rb_entry(parent, struct vm_region, vm_rb); 523 if (region->vm_start < pregion->vm_start) 524 p = &(*p)->rb_left; 525 else if (region->vm_start > pregion->vm_start) 526 p = &(*p)->rb_right; 527 else if (pregion == region) 528 return; 529 else 530 BUG(); 531 } 532 533 rb_link_node(®ion->vm_rb, parent, p); 534 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 535 536 validate_nommu_regions(); 537 } 538 539 /* 540 * delete a region from the global tree 541 */ 542 static void delete_nommu_region(struct vm_region *region) 543 { 544 BUG_ON(!nommu_region_tree.rb_node); 545 546 validate_nommu_regions(); 547 rb_erase(®ion->vm_rb, &nommu_region_tree); 548 validate_nommu_regions(); 549 } 550 551 /* 552 * free a contiguous series of pages 553 */ 554 static void free_page_series(unsigned long from, unsigned long to) 555 { 556 for (; from < to; from += PAGE_SIZE) { 557 struct page *page = virt_to_page(from); 558 559 kdebug("- free %lx", from); 560 atomic_long_dec(&mmap_pages_allocated); 561 if (page_count(page) != 1) 562 kdebug("free page %p: refcount not one: %d", 563 page, page_count(page)); 564 put_page(page); 565 } 566 } 567 568 /* 569 * release a reference to a region 570 * - the caller must hold the region semaphore for writing, which this releases 571 * - the region may not have been added to the tree yet, in which case vm_top 572 * will equal vm_start 573 */ 574 static void __put_nommu_region(struct vm_region *region) 575 __releases(nommu_region_sem) 576 { 577 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 578 579 BUG_ON(!nommu_region_tree.rb_node); 580 581 if (atomic_dec_and_test(®ion->vm_usage)) { 582 if (region->vm_top > region->vm_start) 583 delete_nommu_region(region); 584 up_write(&nommu_region_sem); 585 586 if (region->vm_file) 587 fput(region->vm_file); 588 589 /* IO memory and memory shared directly out of the pagecache 590 * from ramfs/tmpfs mustn't be released here */ 591 if (region->vm_flags & VM_MAPPED_COPY) { 592 kdebug("free series"); 593 free_page_series(region->vm_start, region->vm_top); 594 } 595 kmem_cache_free(vm_region_jar, region); 596 } else { 597 up_write(&nommu_region_sem); 598 } 599 } 600 601 /* 602 * release a reference to a region 603 */ 604 static void put_nommu_region(struct vm_region *region) 605 { 606 down_write(&nommu_region_sem); 607 __put_nommu_region(region); 608 } 609 610 /* 611 * add a VMA into a process's mm_struct in the appropriate place in the list 612 * and tree and add to the address space's page tree also if not an anonymous 613 * page 614 * - should be called with mm->mmap_sem held writelocked 615 */ 616 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 617 { 618 struct vm_area_struct *pvma, **pp; 619 struct address_space *mapping; 620 struct rb_node **p, *parent; 621 622 kenter(",%p", vma); 623 624 BUG_ON(!vma->vm_region); 625 626 mm->map_count++; 627 vma->vm_mm = mm; 628 629 /* add the VMA to the mapping */ 630 if (vma->vm_file) { 631 mapping = vma->vm_file->f_mapping; 632 633 flush_dcache_mmap_lock(mapping); 634 vma_prio_tree_insert(vma, &mapping->i_mmap); 635 flush_dcache_mmap_unlock(mapping); 636 } 637 638 /* add the VMA to the tree */ 639 parent = NULL; 640 p = &mm->mm_rb.rb_node; 641 while (*p) { 642 parent = *p; 643 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 644 645 /* sort by: start addr, end addr, VMA struct addr in that order 646 * (the latter is necessary as we may get identical VMAs) */ 647 if (vma->vm_start < pvma->vm_start) 648 p = &(*p)->rb_left; 649 else if (vma->vm_start > pvma->vm_start) 650 p = &(*p)->rb_right; 651 else if (vma->vm_end < pvma->vm_end) 652 p = &(*p)->rb_left; 653 else if (vma->vm_end > pvma->vm_end) 654 p = &(*p)->rb_right; 655 else if (vma < pvma) 656 p = &(*p)->rb_left; 657 else if (vma > pvma) 658 p = &(*p)->rb_right; 659 else 660 BUG(); 661 } 662 663 rb_link_node(&vma->vm_rb, parent, p); 664 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 665 666 /* add VMA to the VMA list also */ 667 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 668 if (pvma->vm_start > vma->vm_start) 669 break; 670 if (pvma->vm_start < vma->vm_start) 671 continue; 672 if (pvma->vm_end < vma->vm_end) 673 break; 674 } 675 676 vma->vm_next = *pp; 677 *pp = vma; 678 } 679 680 /* 681 * delete a VMA from its owning mm_struct and address space 682 */ 683 static void delete_vma_from_mm(struct vm_area_struct *vma) 684 { 685 struct vm_area_struct **pp; 686 struct address_space *mapping; 687 struct mm_struct *mm = vma->vm_mm; 688 689 kenter("%p", vma); 690 691 mm->map_count--; 692 if (mm->mmap_cache == vma) 693 mm->mmap_cache = NULL; 694 695 /* remove the VMA from the mapping */ 696 if (vma->vm_file) { 697 mapping = vma->vm_file->f_mapping; 698 699 flush_dcache_mmap_lock(mapping); 700 vma_prio_tree_remove(vma, &mapping->i_mmap); 701 flush_dcache_mmap_unlock(mapping); 702 } 703 704 /* remove from the MM's tree and list */ 705 rb_erase(&vma->vm_rb, &mm->mm_rb); 706 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 707 if (*pp == vma) { 708 *pp = vma->vm_next; 709 break; 710 } 711 } 712 713 vma->vm_mm = NULL; 714 } 715 716 /* 717 * destroy a VMA record 718 */ 719 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 720 { 721 kenter("%p", vma); 722 if (vma->vm_ops && vma->vm_ops->close) 723 vma->vm_ops->close(vma); 724 if (vma->vm_file) { 725 fput(vma->vm_file); 726 if (vma->vm_flags & VM_EXECUTABLE) 727 removed_exe_file_vma(mm); 728 } 729 put_nommu_region(vma->vm_region); 730 kmem_cache_free(vm_area_cachep, vma); 731 } 732 733 /* 734 * look up the first VMA in which addr resides, NULL if none 735 * - should be called with mm->mmap_sem at least held readlocked 736 */ 737 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 738 { 739 struct vm_area_struct *vma; 740 struct rb_node *n = mm->mm_rb.rb_node; 741 742 /* check the cache first */ 743 vma = mm->mmap_cache; 744 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 745 return vma; 746 747 /* trawl the tree (there may be multiple mappings in which addr 748 * resides) */ 749 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 750 vma = rb_entry(n, struct vm_area_struct, vm_rb); 751 if (vma->vm_start > addr) 752 return NULL; 753 if (vma->vm_end > addr) { 754 mm->mmap_cache = vma; 755 return vma; 756 } 757 } 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(find_vma); 762 763 /* 764 * find a VMA 765 * - we don't extend stack VMAs under NOMMU conditions 766 */ 767 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 768 { 769 return find_vma(mm, addr); 770 } 771 772 /* 773 * expand a stack to a given address 774 * - not supported under NOMMU conditions 775 */ 776 int expand_stack(struct vm_area_struct *vma, unsigned long address) 777 { 778 return -ENOMEM; 779 } 780 781 /* 782 * look up the first VMA exactly that exactly matches addr 783 * - should be called with mm->mmap_sem at least held readlocked 784 */ 785 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 786 unsigned long addr, 787 unsigned long len) 788 { 789 struct vm_area_struct *vma; 790 struct rb_node *n = mm->mm_rb.rb_node; 791 unsigned long end = addr + len; 792 793 /* check the cache first */ 794 vma = mm->mmap_cache; 795 if (vma && vma->vm_start == addr && vma->vm_end == end) 796 return vma; 797 798 /* trawl the tree (there may be multiple mappings in which addr 799 * resides) */ 800 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 801 vma = rb_entry(n, struct vm_area_struct, vm_rb); 802 if (vma->vm_start < addr) 803 continue; 804 if (vma->vm_start > addr) 805 return NULL; 806 if (vma->vm_end == end) { 807 mm->mmap_cache = vma; 808 return vma; 809 } 810 } 811 812 return NULL; 813 } 814 815 /* 816 * determine whether a mapping should be permitted and, if so, what sort of 817 * mapping we're capable of supporting 818 */ 819 static int validate_mmap_request(struct file *file, 820 unsigned long addr, 821 unsigned long len, 822 unsigned long prot, 823 unsigned long flags, 824 unsigned long pgoff, 825 unsigned long *_capabilities) 826 { 827 unsigned long capabilities, rlen; 828 unsigned long reqprot = prot; 829 int ret; 830 831 /* do the simple checks first */ 832 if (flags & MAP_FIXED || addr) { 833 printk(KERN_DEBUG 834 "%d: Can't do fixed-address/overlay mmap of RAM\n", 835 current->pid); 836 return -EINVAL; 837 } 838 839 if ((flags & MAP_TYPE) != MAP_PRIVATE && 840 (flags & MAP_TYPE) != MAP_SHARED) 841 return -EINVAL; 842 843 if (!len) 844 return -EINVAL; 845 846 /* Careful about overflows.. */ 847 rlen = PAGE_ALIGN(len); 848 if (!rlen || rlen > TASK_SIZE) 849 return -ENOMEM; 850 851 /* offset overflow? */ 852 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 853 return -EOVERFLOW; 854 855 if (file) { 856 /* validate file mapping requests */ 857 struct address_space *mapping; 858 859 /* files must support mmap */ 860 if (!file->f_op || !file->f_op->mmap) 861 return -ENODEV; 862 863 /* work out if what we've got could possibly be shared 864 * - we support chardevs that provide their own "memory" 865 * - we support files/blockdevs that are memory backed 866 */ 867 mapping = file->f_mapping; 868 if (!mapping) 869 mapping = file->f_path.dentry->d_inode->i_mapping; 870 871 capabilities = 0; 872 if (mapping && mapping->backing_dev_info) 873 capabilities = mapping->backing_dev_info->capabilities; 874 875 if (!capabilities) { 876 /* no explicit capabilities set, so assume some 877 * defaults */ 878 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 879 case S_IFREG: 880 case S_IFBLK: 881 capabilities = BDI_CAP_MAP_COPY; 882 break; 883 884 case S_IFCHR: 885 capabilities = 886 BDI_CAP_MAP_DIRECT | 887 BDI_CAP_READ_MAP | 888 BDI_CAP_WRITE_MAP; 889 break; 890 891 default: 892 return -EINVAL; 893 } 894 } 895 896 /* eliminate any capabilities that we can't support on this 897 * device */ 898 if (!file->f_op->get_unmapped_area) 899 capabilities &= ~BDI_CAP_MAP_DIRECT; 900 if (!file->f_op->read) 901 capabilities &= ~BDI_CAP_MAP_COPY; 902 903 if (flags & MAP_SHARED) { 904 /* do checks for writing, appending and locking */ 905 if ((prot & PROT_WRITE) && 906 !(file->f_mode & FMODE_WRITE)) 907 return -EACCES; 908 909 if (IS_APPEND(file->f_path.dentry->d_inode) && 910 (file->f_mode & FMODE_WRITE)) 911 return -EACCES; 912 913 if (locks_verify_locked(file->f_path.dentry->d_inode)) 914 return -EAGAIN; 915 916 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 917 return -ENODEV; 918 919 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 920 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 921 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 922 ) { 923 printk("MAP_SHARED not completely supported on !MMU\n"); 924 return -EINVAL; 925 } 926 927 /* we mustn't privatise shared mappings */ 928 capabilities &= ~BDI_CAP_MAP_COPY; 929 } 930 else { 931 /* we're going to read the file into private memory we 932 * allocate */ 933 if (!(capabilities & BDI_CAP_MAP_COPY)) 934 return -ENODEV; 935 936 /* we don't permit a private writable mapping to be 937 * shared with the backing device */ 938 if (prot & PROT_WRITE) 939 capabilities &= ~BDI_CAP_MAP_DIRECT; 940 } 941 942 /* handle executable mappings and implied executable 943 * mappings */ 944 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 945 if (prot & PROT_EXEC) 946 return -EPERM; 947 } 948 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 949 /* handle implication of PROT_EXEC by PROT_READ */ 950 if (current->personality & READ_IMPLIES_EXEC) { 951 if (capabilities & BDI_CAP_EXEC_MAP) 952 prot |= PROT_EXEC; 953 } 954 } 955 else if ((prot & PROT_READ) && 956 (prot & PROT_EXEC) && 957 !(capabilities & BDI_CAP_EXEC_MAP) 958 ) { 959 /* backing file is not executable, try to copy */ 960 capabilities &= ~BDI_CAP_MAP_DIRECT; 961 } 962 } 963 else { 964 /* anonymous mappings are always memory backed and can be 965 * privately mapped 966 */ 967 capabilities = BDI_CAP_MAP_COPY; 968 969 /* handle PROT_EXEC implication by PROT_READ */ 970 if ((prot & PROT_READ) && 971 (current->personality & READ_IMPLIES_EXEC)) 972 prot |= PROT_EXEC; 973 } 974 975 /* allow the security API to have its say */ 976 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 977 if (ret < 0) 978 return ret; 979 980 /* looks okay */ 981 *_capabilities = capabilities; 982 return 0; 983 } 984 985 /* 986 * we've determined that we can make the mapping, now translate what we 987 * now know into VMA flags 988 */ 989 static unsigned long determine_vm_flags(struct file *file, 990 unsigned long prot, 991 unsigned long flags, 992 unsigned long capabilities) 993 { 994 unsigned long vm_flags; 995 996 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 997 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 998 /* vm_flags |= mm->def_flags; */ 999 1000 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1001 /* attempt to share read-only copies of mapped file chunks */ 1002 if (file && !(prot & PROT_WRITE)) 1003 vm_flags |= VM_MAYSHARE; 1004 } 1005 else { 1006 /* overlay a shareable mapping on the backing device or inode 1007 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1008 * romfs/cramfs */ 1009 if (flags & MAP_SHARED) 1010 vm_flags |= VM_MAYSHARE | VM_SHARED; 1011 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1012 vm_flags |= VM_MAYSHARE; 1013 } 1014 1015 /* refuse to let anyone share private mappings with this process if 1016 * it's being traced - otherwise breakpoints set in it may interfere 1017 * with another untraced process 1018 */ 1019 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1020 vm_flags &= ~VM_MAYSHARE; 1021 1022 return vm_flags; 1023 } 1024 1025 /* 1026 * set up a shared mapping on a file (the driver or filesystem provides and 1027 * pins the storage) 1028 */ 1029 static int do_mmap_shared_file(struct vm_area_struct *vma) 1030 { 1031 int ret; 1032 1033 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1034 if (ret == 0) { 1035 vma->vm_region->vm_top = vma->vm_region->vm_end; 1036 return ret; 1037 } 1038 if (ret != -ENOSYS) 1039 return ret; 1040 1041 /* getting an ENOSYS error indicates that direct mmap isn't 1042 * possible (as opposed to tried but failed) so we'll fall 1043 * through to making a private copy of the data and mapping 1044 * that if we can */ 1045 return -ENODEV; 1046 } 1047 1048 /* 1049 * set up a private mapping or an anonymous shared mapping 1050 */ 1051 static int do_mmap_private(struct vm_area_struct *vma, 1052 struct vm_region *region, 1053 unsigned long len) 1054 { 1055 struct page *pages; 1056 unsigned long total, point, n, rlen; 1057 void *base; 1058 int ret, order; 1059 1060 /* invoke the file's mapping function so that it can keep track of 1061 * shared mappings on devices or memory 1062 * - VM_MAYSHARE will be set if it may attempt to share 1063 */ 1064 if (vma->vm_file) { 1065 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1066 if (ret == 0) { 1067 /* shouldn't return success if we're not sharing */ 1068 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1069 vma->vm_region->vm_top = vma->vm_region->vm_end; 1070 return ret; 1071 } 1072 if (ret != -ENOSYS) 1073 return ret; 1074 1075 /* getting an ENOSYS error indicates that direct mmap isn't 1076 * possible (as opposed to tried but failed) so we'll try to 1077 * make a private copy of the data and map that instead */ 1078 } 1079 1080 rlen = PAGE_ALIGN(len); 1081 1082 /* allocate some memory to hold the mapping 1083 * - note that this may not return a page-aligned address if the object 1084 * we're allocating is smaller than a page 1085 */ 1086 order = get_order(rlen); 1087 kdebug("alloc order %d for %lx", order, len); 1088 1089 pages = alloc_pages(GFP_KERNEL, order); 1090 if (!pages) 1091 goto enomem; 1092 1093 total = 1 << order; 1094 atomic_long_add(total, &mmap_pages_allocated); 1095 1096 point = rlen >> PAGE_SHIFT; 1097 1098 /* we allocated a power-of-2 sized page set, so we may want to trim off 1099 * the excess */ 1100 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1101 while (total > point) { 1102 order = ilog2(total - point); 1103 n = 1 << order; 1104 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1105 atomic_long_sub(n, &mmap_pages_allocated); 1106 total -= n; 1107 set_page_refcounted(pages + total); 1108 __free_pages(pages + total, order); 1109 } 1110 } 1111 1112 for (point = 1; point < total; point++) 1113 set_page_refcounted(&pages[point]); 1114 1115 base = page_address(pages); 1116 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1117 region->vm_start = (unsigned long) base; 1118 region->vm_end = region->vm_start + rlen; 1119 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1120 1121 vma->vm_start = region->vm_start; 1122 vma->vm_end = region->vm_start + len; 1123 1124 if (vma->vm_file) { 1125 /* read the contents of a file into the copy */ 1126 mm_segment_t old_fs; 1127 loff_t fpos; 1128 1129 fpos = vma->vm_pgoff; 1130 fpos <<= PAGE_SHIFT; 1131 1132 old_fs = get_fs(); 1133 set_fs(KERNEL_DS); 1134 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1135 set_fs(old_fs); 1136 1137 if (ret < 0) 1138 goto error_free; 1139 1140 /* clear the last little bit */ 1141 if (ret < rlen) 1142 memset(base + ret, 0, rlen - ret); 1143 1144 } else { 1145 /* if it's an anonymous mapping, then just clear it */ 1146 memset(base, 0, rlen); 1147 } 1148 1149 return 0; 1150 1151 error_free: 1152 free_page_series(region->vm_start, region->vm_end); 1153 region->vm_start = vma->vm_start = 0; 1154 region->vm_end = vma->vm_end = 0; 1155 region->vm_top = 0; 1156 return ret; 1157 1158 enomem: 1159 printk("Allocation of length %lu from process %d (%s) failed\n", 1160 len, current->pid, current->comm); 1161 show_free_areas(); 1162 return -ENOMEM; 1163 } 1164 1165 /* 1166 * handle mapping creation for uClinux 1167 */ 1168 unsigned long do_mmap_pgoff(struct file *file, 1169 unsigned long addr, 1170 unsigned long len, 1171 unsigned long prot, 1172 unsigned long flags, 1173 unsigned long pgoff) 1174 { 1175 struct vm_area_struct *vma; 1176 struct vm_region *region; 1177 struct rb_node *rb; 1178 unsigned long capabilities, vm_flags, result; 1179 int ret; 1180 1181 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1182 1183 if (!(flags & MAP_FIXED)) 1184 addr = round_hint_to_min(addr); 1185 1186 /* decide whether we should attempt the mapping, and if so what sort of 1187 * mapping */ 1188 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1189 &capabilities); 1190 if (ret < 0) { 1191 kleave(" = %d [val]", ret); 1192 return ret; 1193 } 1194 1195 /* we've determined that we can make the mapping, now translate what we 1196 * now know into VMA flags */ 1197 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1198 1199 /* we're going to need to record the mapping */ 1200 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1201 if (!region) 1202 goto error_getting_region; 1203 1204 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1205 if (!vma) 1206 goto error_getting_vma; 1207 1208 atomic_set(®ion->vm_usage, 1); 1209 region->vm_flags = vm_flags; 1210 region->vm_pgoff = pgoff; 1211 1212 INIT_LIST_HEAD(&vma->anon_vma_node); 1213 vma->vm_flags = vm_flags; 1214 vma->vm_pgoff = pgoff; 1215 1216 if (file) { 1217 region->vm_file = file; 1218 get_file(file); 1219 vma->vm_file = file; 1220 get_file(file); 1221 if (vm_flags & VM_EXECUTABLE) { 1222 added_exe_file_vma(current->mm); 1223 vma->vm_mm = current->mm; 1224 } 1225 } 1226 1227 down_write(&nommu_region_sem); 1228 1229 /* if we want to share, we need to check for regions created by other 1230 * mmap() calls that overlap with our proposed mapping 1231 * - we can only share with a superset match on most regular files 1232 * - shared mappings on character devices and memory backed files are 1233 * permitted to overlap inexactly as far as we are concerned for in 1234 * these cases, sharing is handled in the driver or filesystem rather 1235 * than here 1236 */ 1237 if (vm_flags & VM_MAYSHARE) { 1238 struct vm_region *pregion; 1239 unsigned long pglen, rpglen, pgend, rpgend, start; 1240 1241 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1242 pgend = pgoff + pglen; 1243 1244 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1245 pregion = rb_entry(rb, struct vm_region, vm_rb); 1246 1247 if (!(pregion->vm_flags & VM_MAYSHARE)) 1248 continue; 1249 1250 /* search for overlapping mappings on the same file */ 1251 if (pregion->vm_file->f_path.dentry->d_inode != 1252 file->f_path.dentry->d_inode) 1253 continue; 1254 1255 if (pregion->vm_pgoff >= pgend) 1256 continue; 1257 1258 rpglen = pregion->vm_end - pregion->vm_start; 1259 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1260 rpgend = pregion->vm_pgoff + rpglen; 1261 if (pgoff >= rpgend) 1262 continue; 1263 1264 /* handle inexactly overlapping matches between 1265 * mappings */ 1266 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1267 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1268 /* new mapping is not a subset of the region */ 1269 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1270 goto sharing_violation; 1271 continue; 1272 } 1273 1274 /* we've found a region we can share */ 1275 atomic_inc(&pregion->vm_usage); 1276 vma->vm_region = pregion; 1277 start = pregion->vm_start; 1278 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1279 vma->vm_start = start; 1280 vma->vm_end = start + len; 1281 1282 if (pregion->vm_flags & VM_MAPPED_COPY) { 1283 kdebug("share copy"); 1284 vma->vm_flags |= VM_MAPPED_COPY; 1285 } else { 1286 kdebug("share mmap"); 1287 ret = do_mmap_shared_file(vma); 1288 if (ret < 0) { 1289 vma->vm_region = NULL; 1290 vma->vm_start = 0; 1291 vma->vm_end = 0; 1292 atomic_dec(&pregion->vm_usage); 1293 pregion = NULL; 1294 goto error_just_free; 1295 } 1296 } 1297 fput(region->vm_file); 1298 kmem_cache_free(vm_region_jar, region); 1299 region = pregion; 1300 result = start; 1301 goto share; 1302 } 1303 1304 /* obtain the address at which to make a shared mapping 1305 * - this is the hook for quasi-memory character devices to 1306 * tell us the location of a shared mapping 1307 */ 1308 if (file && file->f_op->get_unmapped_area) { 1309 addr = file->f_op->get_unmapped_area(file, addr, len, 1310 pgoff, flags); 1311 if (IS_ERR((void *) addr)) { 1312 ret = addr; 1313 if (ret != (unsigned long) -ENOSYS) 1314 goto error_just_free; 1315 1316 /* the driver refused to tell us where to site 1317 * the mapping so we'll have to attempt to copy 1318 * it */ 1319 ret = (unsigned long) -ENODEV; 1320 if (!(capabilities & BDI_CAP_MAP_COPY)) 1321 goto error_just_free; 1322 1323 capabilities &= ~BDI_CAP_MAP_DIRECT; 1324 } else { 1325 vma->vm_start = region->vm_start = addr; 1326 vma->vm_end = region->vm_end = addr + len; 1327 } 1328 } 1329 } 1330 1331 vma->vm_region = region; 1332 1333 /* set up the mapping */ 1334 if (file && vma->vm_flags & VM_SHARED) 1335 ret = do_mmap_shared_file(vma); 1336 else 1337 ret = do_mmap_private(vma, region, len); 1338 if (ret < 0) 1339 goto error_put_region; 1340 1341 add_nommu_region(region); 1342 1343 /* okay... we have a mapping; now we have to register it */ 1344 result = vma->vm_start; 1345 1346 current->mm->total_vm += len >> PAGE_SHIFT; 1347 1348 share: 1349 add_vma_to_mm(current->mm, vma); 1350 1351 up_write(&nommu_region_sem); 1352 1353 if (prot & PROT_EXEC) 1354 flush_icache_range(result, result + len); 1355 1356 kleave(" = %lx", result); 1357 return result; 1358 1359 error_put_region: 1360 __put_nommu_region(region); 1361 if (vma) { 1362 if (vma->vm_file) { 1363 fput(vma->vm_file); 1364 if (vma->vm_flags & VM_EXECUTABLE) 1365 removed_exe_file_vma(vma->vm_mm); 1366 } 1367 kmem_cache_free(vm_area_cachep, vma); 1368 } 1369 kleave(" = %d [pr]", ret); 1370 return ret; 1371 1372 error_just_free: 1373 up_write(&nommu_region_sem); 1374 error: 1375 fput(region->vm_file); 1376 kmem_cache_free(vm_region_jar, region); 1377 fput(vma->vm_file); 1378 if (vma->vm_flags & VM_EXECUTABLE) 1379 removed_exe_file_vma(vma->vm_mm); 1380 kmem_cache_free(vm_area_cachep, vma); 1381 kleave(" = %d", ret); 1382 return ret; 1383 1384 sharing_violation: 1385 up_write(&nommu_region_sem); 1386 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1387 ret = -EINVAL; 1388 goto error; 1389 1390 error_getting_vma: 1391 kmem_cache_free(vm_region_jar, region); 1392 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1393 " from process %d failed\n", 1394 len, current->pid); 1395 show_free_areas(); 1396 return -ENOMEM; 1397 1398 error_getting_region: 1399 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1400 " from process %d failed\n", 1401 len, current->pid); 1402 show_free_areas(); 1403 return -ENOMEM; 1404 } 1405 EXPORT_SYMBOL(do_mmap_pgoff); 1406 1407 /* 1408 * split a vma into two pieces at address 'addr', a new vma is allocated either 1409 * for the first part or the tail. 1410 */ 1411 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1412 unsigned long addr, int new_below) 1413 { 1414 struct vm_area_struct *new; 1415 struct vm_region *region; 1416 unsigned long npages; 1417 1418 kenter(""); 1419 1420 /* we're only permitted to split anonymous regions that have a single 1421 * owner */ 1422 if (vma->vm_file || 1423 atomic_read(&vma->vm_region->vm_usage) != 1) 1424 return -ENOMEM; 1425 1426 if (mm->map_count >= sysctl_max_map_count) 1427 return -ENOMEM; 1428 1429 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1430 if (!region) 1431 return -ENOMEM; 1432 1433 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1434 if (!new) { 1435 kmem_cache_free(vm_region_jar, region); 1436 return -ENOMEM; 1437 } 1438 1439 /* most fields are the same, copy all, and then fixup */ 1440 *new = *vma; 1441 *region = *vma->vm_region; 1442 new->vm_region = region; 1443 1444 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1445 1446 if (new_below) { 1447 region->vm_top = region->vm_end = new->vm_end = addr; 1448 } else { 1449 region->vm_start = new->vm_start = addr; 1450 region->vm_pgoff = new->vm_pgoff += npages; 1451 } 1452 1453 if (new->vm_ops && new->vm_ops->open) 1454 new->vm_ops->open(new); 1455 1456 delete_vma_from_mm(vma); 1457 down_write(&nommu_region_sem); 1458 delete_nommu_region(vma->vm_region); 1459 if (new_below) { 1460 vma->vm_region->vm_start = vma->vm_start = addr; 1461 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1462 } else { 1463 vma->vm_region->vm_end = vma->vm_end = addr; 1464 vma->vm_region->vm_top = addr; 1465 } 1466 add_nommu_region(vma->vm_region); 1467 add_nommu_region(new->vm_region); 1468 up_write(&nommu_region_sem); 1469 add_vma_to_mm(mm, vma); 1470 add_vma_to_mm(mm, new); 1471 return 0; 1472 } 1473 1474 /* 1475 * shrink a VMA by removing the specified chunk from either the beginning or 1476 * the end 1477 */ 1478 static int shrink_vma(struct mm_struct *mm, 1479 struct vm_area_struct *vma, 1480 unsigned long from, unsigned long to) 1481 { 1482 struct vm_region *region; 1483 1484 kenter(""); 1485 1486 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1487 * and list */ 1488 delete_vma_from_mm(vma); 1489 if (from > vma->vm_start) 1490 vma->vm_end = from; 1491 else 1492 vma->vm_start = to; 1493 add_vma_to_mm(mm, vma); 1494 1495 /* cut the backing region down to size */ 1496 region = vma->vm_region; 1497 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1498 1499 down_write(&nommu_region_sem); 1500 delete_nommu_region(region); 1501 if (from > region->vm_start) { 1502 to = region->vm_top; 1503 region->vm_top = region->vm_end = from; 1504 } else { 1505 region->vm_start = to; 1506 } 1507 add_nommu_region(region); 1508 up_write(&nommu_region_sem); 1509 1510 free_page_series(from, to); 1511 return 0; 1512 } 1513 1514 /* 1515 * release a mapping 1516 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1517 * VMA, though it need not cover the whole VMA 1518 */ 1519 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1520 { 1521 struct vm_area_struct *vma; 1522 struct rb_node *rb; 1523 unsigned long end = start + len; 1524 int ret; 1525 1526 kenter(",%lx,%zx", start, len); 1527 1528 if (len == 0) 1529 return -EINVAL; 1530 1531 /* find the first potentially overlapping VMA */ 1532 vma = find_vma(mm, start); 1533 if (!vma) { 1534 static int limit = 0; 1535 if (limit < 5) { 1536 printk(KERN_WARNING 1537 "munmap of memory not mmapped by process %d" 1538 " (%s): 0x%lx-0x%lx\n", 1539 current->pid, current->comm, 1540 start, start + len - 1); 1541 limit++; 1542 } 1543 return -EINVAL; 1544 } 1545 1546 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1547 if (vma->vm_file) { 1548 do { 1549 if (start > vma->vm_start) { 1550 kleave(" = -EINVAL [miss]"); 1551 return -EINVAL; 1552 } 1553 if (end == vma->vm_end) 1554 goto erase_whole_vma; 1555 rb = rb_next(&vma->vm_rb); 1556 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1557 } while (rb); 1558 kleave(" = -EINVAL [split file]"); 1559 return -EINVAL; 1560 } else { 1561 /* the chunk must be a subset of the VMA found */ 1562 if (start == vma->vm_start && end == vma->vm_end) 1563 goto erase_whole_vma; 1564 if (start < vma->vm_start || end > vma->vm_end) { 1565 kleave(" = -EINVAL [superset]"); 1566 return -EINVAL; 1567 } 1568 if (start & ~PAGE_MASK) { 1569 kleave(" = -EINVAL [unaligned start]"); 1570 return -EINVAL; 1571 } 1572 if (end != vma->vm_end && end & ~PAGE_MASK) { 1573 kleave(" = -EINVAL [unaligned split]"); 1574 return -EINVAL; 1575 } 1576 if (start != vma->vm_start && end != vma->vm_end) { 1577 ret = split_vma(mm, vma, start, 1); 1578 if (ret < 0) { 1579 kleave(" = %d [split]", ret); 1580 return ret; 1581 } 1582 } 1583 return shrink_vma(mm, vma, start, end); 1584 } 1585 1586 erase_whole_vma: 1587 delete_vma_from_mm(vma); 1588 delete_vma(mm, vma); 1589 kleave(" = 0"); 1590 return 0; 1591 } 1592 EXPORT_SYMBOL(do_munmap); 1593 1594 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1595 { 1596 int ret; 1597 struct mm_struct *mm = current->mm; 1598 1599 down_write(&mm->mmap_sem); 1600 ret = do_munmap(mm, addr, len); 1601 up_write(&mm->mmap_sem); 1602 return ret; 1603 } 1604 1605 /* 1606 * release all the mappings made in a process's VM space 1607 */ 1608 void exit_mmap(struct mm_struct *mm) 1609 { 1610 struct vm_area_struct *vma; 1611 1612 if (!mm) 1613 return; 1614 1615 kenter(""); 1616 1617 mm->total_vm = 0; 1618 1619 while ((vma = mm->mmap)) { 1620 mm->mmap = vma->vm_next; 1621 delete_vma_from_mm(vma); 1622 delete_vma(mm, vma); 1623 } 1624 1625 kleave(""); 1626 } 1627 1628 unsigned long do_brk(unsigned long addr, unsigned long len) 1629 { 1630 return -ENOMEM; 1631 } 1632 1633 /* 1634 * expand (or shrink) an existing mapping, potentially moving it at the same 1635 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1636 * 1637 * under NOMMU conditions, we only permit changing a mapping's size, and only 1638 * as long as it stays within the region allocated by do_mmap_private() and the 1639 * block is not shareable 1640 * 1641 * MREMAP_FIXED is not supported under NOMMU conditions 1642 */ 1643 unsigned long do_mremap(unsigned long addr, 1644 unsigned long old_len, unsigned long new_len, 1645 unsigned long flags, unsigned long new_addr) 1646 { 1647 struct vm_area_struct *vma; 1648 1649 /* insanity checks first */ 1650 if (old_len == 0 || new_len == 0) 1651 return (unsigned long) -EINVAL; 1652 1653 if (addr & ~PAGE_MASK) 1654 return -EINVAL; 1655 1656 if (flags & MREMAP_FIXED && new_addr != addr) 1657 return (unsigned long) -EINVAL; 1658 1659 vma = find_vma_exact(current->mm, addr, old_len); 1660 if (!vma) 1661 return (unsigned long) -EINVAL; 1662 1663 if (vma->vm_end != vma->vm_start + old_len) 1664 return (unsigned long) -EFAULT; 1665 1666 if (vma->vm_flags & VM_MAYSHARE) 1667 return (unsigned long) -EPERM; 1668 1669 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1670 return (unsigned long) -ENOMEM; 1671 1672 /* all checks complete - do it */ 1673 vma->vm_end = vma->vm_start + new_len; 1674 return vma->vm_start; 1675 } 1676 EXPORT_SYMBOL(do_mremap); 1677 1678 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1679 unsigned long, new_len, unsigned long, flags, 1680 unsigned long, new_addr) 1681 { 1682 unsigned long ret; 1683 1684 down_write(¤t->mm->mmap_sem); 1685 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1686 up_write(¤t->mm->mmap_sem); 1687 return ret; 1688 } 1689 1690 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1691 unsigned int foll_flags) 1692 { 1693 return NULL; 1694 } 1695 1696 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1697 unsigned long to, unsigned long size, pgprot_t prot) 1698 { 1699 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1700 return 0; 1701 } 1702 EXPORT_SYMBOL(remap_pfn_range); 1703 1704 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1705 unsigned long pgoff) 1706 { 1707 unsigned int size = vma->vm_end - vma->vm_start; 1708 1709 if (!(vma->vm_flags & VM_USERMAP)) 1710 return -EINVAL; 1711 1712 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1713 vma->vm_end = vma->vm_start + size; 1714 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(remap_vmalloc_range); 1718 1719 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1720 { 1721 } 1722 1723 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1724 unsigned long len, unsigned long pgoff, unsigned long flags) 1725 { 1726 return -ENOMEM; 1727 } 1728 1729 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1730 { 1731 } 1732 1733 void unmap_mapping_range(struct address_space *mapping, 1734 loff_t const holebegin, loff_t const holelen, 1735 int even_cows) 1736 { 1737 } 1738 EXPORT_SYMBOL(unmap_mapping_range); 1739 1740 /* 1741 * ask for an unmapped area at which to create a mapping on a file 1742 */ 1743 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1744 unsigned long len, unsigned long pgoff, 1745 unsigned long flags) 1746 { 1747 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1748 unsigned long, unsigned long); 1749 1750 get_area = current->mm->get_unmapped_area; 1751 if (file && file->f_op && file->f_op->get_unmapped_area) 1752 get_area = file->f_op->get_unmapped_area; 1753 1754 if (!get_area) 1755 return -ENOSYS; 1756 1757 return get_area(file, addr, len, pgoff, flags); 1758 } 1759 EXPORT_SYMBOL(get_unmapped_area); 1760 1761 /* 1762 * Check that a process has enough memory to allocate a new virtual 1763 * mapping. 0 means there is enough memory for the allocation to 1764 * succeed and -ENOMEM implies there is not. 1765 * 1766 * We currently support three overcommit policies, which are set via the 1767 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1768 * 1769 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1770 * Additional code 2002 Jul 20 by Robert Love. 1771 * 1772 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1773 * 1774 * Note this is a helper function intended to be used by LSMs which 1775 * wish to use this logic. 1776 */ 1777 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1778 { 1779 unsigned long free, allowed; 1780 1781 vm_acct_memory(pages); 1782 1783 /* 1784 * Sometimes we want to use more memory than we have 1785 */ 1786 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1787 return 0; 1788 1789 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1790 unsigned long n; 1791 1792 free = global_page_state(NR_FILE_PAGES); 1793 free += nr_swap_pages; 1794 1795 /* 1796 * Any slabs which are created with the 1797 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1798 * which are reclaimable, under pressure. The dentry 1799 * cache and most inode caches should fall into this 1800 */ 1801 free += global_page_state(NR_SLAB_RECLAIMABLE); 1802 1803 /* 1804 * Leave the last 3% for root 1805 */ 1806 if (!cap_sys_admin) 1807 free -= free / 32; 1808 1809 if (free > pages) 1810 return 0; 1811 1812 /* 1813 * nr_free_pages() is very expensive on large systems, 1814 * only call if we're about to fail. 1815 */ 1816 n = nr_free_pages(); 1817 1818 /* 1819 * Leave reserved pages. The pages are not for anonymous pages. 1820 */ 1821 if (n <= totalreserve_pages) 1822 goto error; 1823 else 1824 n -= totalreserve_pages; 1825 1826 /* 1827 * Leave the last 3% for root 1828 */ 1829 if (!cap_sys_admin) 1830 n -= n / 32; 1831 free += n; 1832 1833 if (free > pages) 1834 return 0; 1835 1836 goto error; 1837 } 1838 1839 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1840 /* 1841 * Leave the last 3% for root 1842 */ 1843 if (!cap_sys_admin) 1844 allowed -= allowed / 32; 1845 allowed += total_swap_pages; 1846 1847 /* Don't let a single process grow too big: 1848 leave 3% of the size of this process for other processes */ 1849 if (mm) 1850 allowed -= mm->total_vm / 32; 1851 1852 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1853 return 0; 1854 1855 error: 1856 vm_unacct_memory(pages); 1857 1858 return -ENOMEM; 1859 } 1860 1861 int in_gate_area_no_task(unsigned long addr) 1862 { 1863 return 0; 1864 } 1865 1866 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1867 { 1868 BUG(); 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(filemap_fault); 1872 1873 /* 1874 * Access another process' address space. 1875 * - source/target buffer must be kernel space 1876 */ 1877 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1878 { 1879 struct vm_area_struct *vma; 1880 struct mm_struct *mm; 1881 1882 if (addr + len < addr) 1883 return 0; 1884 1885 mm = get_task_mm(tsk); 1886 if (!mm) 1887 return 0; 1888 1889 down_read(&mm->mmap_sem); 1890 1891 /* the access must start within one of the target process's mappings */ 1892 vma = find_vma(mm, addr); 1893 if (vma) { 1894 /* don't overrun this mapping */ 1895 if (addr + len >= vma->vm_end) 1896 len = vma->vm_end - addr; 1897 1898 /* only read or write mappings where it is permitted */ 1899 if (write && vma->vm_flags & VM_MAYWRITE) 1900 len -= copy_to_user((void *) addr, buf, len); 1901 else if (!write && vma->vm_flags & VM_MAYREAD) 1902 len -= copy_from_user(buf, (void *) addr, len); 1903 else 1904 len = 0; 1905 } else { 1906 len = 0; 1907 } 1908 1909 up_read(&mm->mmap_sem); 1910 mmput(mm); 1911 return len; 1912 } 1913