1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mmu_context.h> 37 #include "internal.h" 38 39 #if 0 40 #define kenter(FMT, ...) \ 41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 42 #define kleave(FMT, ...) \ 43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 44 #define kdebug(FMT, ...) \ 45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 46 #else 47 #define kenter(FMT, ...) \ 48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 49 #define kleave(FMT, ...) \ 50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 51 #define kdebug(FMT, ...) \ 52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 53 #endif 54 55 void *high_memory; 56 struct page *mem_map; 57 unsigned long max_mapnr; 58 unsigned long num_physpages; 59 unsigned long highest_memmap_pfn; 60 struct percpu_counter vm_committed_as; 61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 62 int sysctl_overcommit_ratio = 50; /* default is 50% */ 63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 65 int heap_stack_gap = 0; 66 67 atomic_long_t mmap_pages_allocated; 68 69 EXPORT_SYMBOL(mem_map); 70 EXPORT_SYMBOL(num_physpages); 71 72 /* list of mapped, potentially shareable regions */ 73 static struct kmem_cache *vm_region_jar; 74 struct rb_root nommu_region_tree = RB_ROOT; 75 DECLARE_RWSEM(nommu_region_sem); 76 77 const struct vm_operations_struct generic_file_vm_ops = { 78 }; 79 80 /* 81 * Return the total memory allocated for this pointer, not 82 * just what the caller asked for. 83 * 84 * Doesn't have to be accurate, i.e. may have races. 85 */ 86 unsigned int kobjsize(const void *objp) 87 { 88 struct page *page; 89 90 /* 91 * If the object we have should not have ksize performed on it, 92 * return size of 0 93 */ 94 if (!objp || !virt_addr_valid(objp)) 95 return 0; 96 97 page = virt_to_head_page(objp); 98 99 /* 100 * If the allocator sets PageSlab, we know the pointer came from 101 * kmalloc(). 102 */ 103 if (PageSlab(page)) 104 return ksize(objp); 105 106 /* 107 * If it's not a compound page, see if we have a matching VMA 108 * region. This test is intentionally done in reverse order, 109 * so if there's no VMA, we still fall through and hand back 110 * PAGE_SIZE for 0-order pages. 111 */ 112 if (!PageCompound(page)) { 113 struct vm_area_struct *vma; 114 115 vma = find_vma(current->mm, (unsigned long)objp); 116 if (vma) 117 return vma->vm_end - vma->vm_start; 118 } 119 120 /* 121 * The ksize() function is only guaranteed to work for pointers 122 * returned by kmalloc(). So handle arbitrary pointers here. 123 */ 124 return PAGE_SIZE << compound_order(page); 125 } 126 127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 128 unsigned long start, int nr_pages, unsigned int foll_flags, 129 struct page **pages, struct vm_area_struct **vmas, 130 int *retry) 131 { 132 struct vm_area_struct *vma; 133 unsigned long vm_flags; 134 int i; 135 136 /* calculate required read or write permissions. 137 * If FOLL_FORCE is set, we only require the "MAY" flags. 138 */ 139 vm_flags = (foll_flags & FOLL_WRITE) ? 140 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 141 vm_flags &= (foll_flags & FOLL_FORCE) ? 142 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 143 144 for (i = 0; i < nr_pages; i++) { 145 vma = find_vma(mm, start); 146 if (!vma) 147 goto finish_or_fault; 148 149 /* protect what we can, including chardevs */ 150 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 151 !(vm_flags & vma->vm_flags)) 152 goto finish_or_fault; 153 154 if (pages) { 155 pages[i] = virt_to_page(start); 156 if (pages[i]) 157 page_cache_get(pages[i]); 158 } 159 if (vmas) 160 vmas[i] = vma; 161 start = (start + PAGE_SIZE) & PAGE_MASK; 162 } 163 164 return i; 165 166 finish_or_fault: 167 return i ? : -EFAULT; 168 } 169 170 /* 171 * get a list of pages in an address range belonging to the specified process 172 * and indicate the VMA that covers each page 173 * - this is potentially dodgy as we may end incrementing the page count of a 174 * slab page or a secondary page from a compound page 175 * - don't permit access to VMAs that don't support it, such as I/O mappings 176 */ 177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 178 unsigned long start, int nr_pages, int write, int force, 179 struct page **pages, struct vm_area_struct **vmas) 180 { 181 int flags = 0; 182 183 if (write) 184 flags |= FOLL_WRITE; 185 if (force) 186 flags |= FOLL_FORCE; 187 188 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 189 NULL); 190 } 191 EXPORT_SYMBOL(get_user_pages); 192 193 /** 194 * follow_pfn - look up PFN at a user virtual address 195 * @vma: memory mapping 196 * @address: user virtual address 197 * @pfn: location to store found PFN 198 * 199 * Only IO mappings and raw PFN mappings are allowed. 200 * 201 * Returns zero and the pfn at @pfn on success, -ve otherwise. 202 */ 203 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 204 unsigned long *pfn) 205 { 206 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 207 return -EINVAL; 208 209 *pfn = address >> PAGE_SHIFT; 210 return 0; 211 } 212 EXPORT_SYMBOL(follow_pfn); 213 214 DEFINE_RWLOCK(vmlist_lock); 215 struct vm_struct *vmlist; 216 217 void vfree(const void *addr) 218 { 219 kfree(addr); 220 } 221 EXPORT_SYMBOL(vfree); 222 223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 224 { 225 /* 226 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 227 * returns only a logical address. 228 */ 229 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 230 } 231 EXPORT_SYMBOL(__vmalloc); 232 233 void *vmalloc_user(unsigned long size) 234 { 235 void *ret; 236 237 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 238 PAGE_KERNEL); 239 if (ret) { 240 struct vm_area_struct *vma; 241 242 down_write(¤t->mm->mmap_sem); 243 vma = find_vma(current->mm, (unsigned long)ret); 244 if (vma) 245 vma->vm_flags |= VM_USERMAP; 246 up_write(¤t->mm->mmap_sem); 247 } 248 249 return ret; 250 } 251 EXPORT_SYMBOL(vmalloc_user); 252 253 struct page *vmalloc_to_page(const void *addr) 254 { 255 return virt_to_page(addr); 256 } 257 EXPORT_SYMBOL(vmalloc_to_page); 258 259 unsigned long vmalloc_to_pfn(const void *addr) 260 { 261 return page_to_pfn(virt_to_page(addr)); 262 } 263 EXPORT_SYMBOL(vmalloc_to_pfn); 264 265 long vread(char *buf, char *addr, unsigned long count) 266 { 267 memcpy(buf, addr, count); 268 return count; 269 } 270 271 long vwrite(char *buf, char *addr, unsigned long count) 272 { 273 /* Don't allow overflow */ 274 if ((unsigned long) addr + count < count) 275 count = -(unsigned long) addr; 276 277 memcpy(addr, buf, count); 278 return(count); 279 } 280 281 /* 282 * vmalloc - allocate virtually continguos memory 283 * 284 * @size: allocation size 285 * 286 * Allocate enough pages to cover @size from the page level 287 * allocator and map them into continguos kernel virtual space. 288 * 289 * For tight control over page level allocator and protection flags 290 * use __vmalloc() instead. 291 */ 292 void *vmalloc(unsigned long size) 293 { 294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 295 } 296 EXPORT_SYMBOL(vmalloc); 297 298 /* 299 * vzalloc - allocate virtually continguos memory with zero fill 300 * 301 * @size: allocation size 302 * 303 * Allocate enough pages to cover @size from the page level 304 * allocator and map them into continguos kernel virtual space. 305 * The memory allocated is set to zero. 306 * 307 * For tight control over page level allocator and protection flags 308 * use __vmalloc() instead. 309 */ 310 void *vzalloc(unsigned long size) 311 { 312 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 313 PAGE_KERNEL); 314 } 315 EXPORT_SYMBOL(vzalloc); 316 317 /** 318 * vmalloc_node - allocate memory on a specific node 319 * @size: allocation size 320 * @node: numa node 321 * 322 * Allocate enough pages to cover @size from the page level 323 * allocator and map them into contiguous kernel virtual space. 324 * 325 * For tight control over page level allocator and protection flags 326 * use __vmalloc() instead. 327 */ 328 void *vmalloc_node(unsigned long size, int node) 329 { 330 return vmalloc(size); 331 } 332 EXPORT_SYMBOL(vmalloc_node); 333 334 /** 335 * vzalloc_node - allocate memory on a specific node with zero fill 336 * @size: allocation size 337 * @node: numa node 338 * 339 * Allocate enough pages to cover @size from the page level 340 * allocator and map them into contiguous kernel virtual space. 341 * The memory allocated is set to zero. 342 * 343 * For tight control over page level allocator and protection flags 344 * use __vmalloc() instead. 345 */ 346 void *vzalloc_node(unsigned long size, int node) 347 { 348 return vzalloc(size); 349 } 350 EXPORT_SYMBOL(vzalloc_node); 351 352 #ifndef PAGE_KERNEL_EXEC 353 # define PAGE_KERNEL_EXEC PAGE_KERNEL 354 #endif 355 356 /** 357 * vmalloc_exec - allocate virtually contiguous, executable memory 358 * @size: allocation size 359 * 360 * Kernel-internal function to allocate enough pages to cover @size 361 * the page level allocator and map them into contiguous and 362 * executable kernel virtual space. 363 * 364 * For tight control over page level allocator and protection flags 365 * use __vmalloc() instead. 366 */ 367 368 void *vmalloc_exec(unsigned long size) 369 { 370 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 371 } 372 373 /** 374 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 375 * @size: allocation size 376 * 377 * Allocate enough 32bit PA addressable pages to cover @size from the 378 * page level allocator and map them into continguos kernel virtual space. 379 */ 380 void *vmalloc_32(unsigned long size) 381 { 382 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 383 } 384 EXPORT_SYMBOL(vmalloc_32); 385 386 /** 387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 388 * @size: allocation size 389 * 390 * The resulting memory area is 32bit addressable and zeroed so it can be 391 * mapped to userspace without leaking data. 392 * 393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 394 * remap_vmalloc_range() are permissible. 395 */ 396 void *vmalloc_32_user(unsigned long size) 397 { 398 /* 399 * We'll have to sort out the ZONE_DMA bits for 64-bit, 400 * but for now this can simply use vmalloc_user() directly. 401 */ 402 return vmalloc_user(size); 403 } 404 EXPORT_SYMBOL(vmalloc_32_user); 405 406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 407 { 408 BUG(); 409 return NULL; 410 } 411 EXPORT_SYMBOL(vmap); 412 413 void vunmap(const void *addr) 414 { 415 BUG(); 416 } 417 EXPORT_SYMBOL(vunmap); 418 419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 420 { 421 BUG(); 422 return NULL; 423 } 424 EXPORT_SYMBOL(vm_map_ram); 425 426 void vm_unmap_ram(const void *mem, unsigned int count) 427 { 428 BUG(); 429 } 430 EXPORT_SYMBOL(vm_unmap_ram); 431 432 void vm_unmap_aliases(void) 433 { 434 } 435 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 436 437 /* 438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 439 * have one. 440 */ 441 void __attribute__((weak)) vmalloc_sync_all(void) 442 { 443 } 444 445 /** 446 * alloc_vm_area - allocate a range of kernel address space 447 * @size: size of the area 448 * 449 * Returns: NULL on failure, vm_struct on success 450 * 451 * This function reserves a range of kernel address space, and 452 * allocates pagetables to map that range. No actual mappings 453 * are created. If the kernel address space is not shared 454 * between processes, it syncs the pagetable across all 455 * processes. 456 */ 457 struct vm_struct *alloc_vm_area(size_t size) 458 { 459 BUG(); 460 return NULL; 461 } 462 EXPORT_SYMBOL_GPL(alloc_vm_area); 463 464 void free_vm_area(struct vm_struct *area) 465 { 466 BUG(); 467 } 468 EXPORT_SYMBOL_GPL(free_vm_area); 469 470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 471 struct page *page) 472 { 473 return -EINVAL; 474 } 475 EXPORT_SYMBOL(vm_insert_page); 476 477 /* 478 * sys_brk() for the most part doesn't need the global kernel 479 * lock, except when an application is doing something nasty 480 * like trying to un-brk an area that has already been mapped 481 * to a regular file. in this case, the unmapping will need 482 * to invoke file system routines that need the global lock. 483 */ 484 SYSCALL_DEFINE1(brk, unsigned long, brk) 485 { 486 struct mm_struct *mm = current->mm; 487 488 if (brk < mm->start_brk || brk > mm->context.end_brk) 489 return mm->brk; 490 491 if (mm->brk == brk) 492 return mm->brk; 493 494 /* 495 * Always allow shrinking brk 496 */ 497 if (brk <= mm->brk) { 498 mm->brk = brk; 499 return brk; 500 } 501 502 /* 503 * Ok, looks good - let it rip. 504 */ 505 flush_icache_range(mm->brk, brk); 506 return mm->brk = brk; 507 } 508 509 /* 510 * initialise the VMA and region record slabs 511 */ 512 void __init mmap_init(void) 513 { 514 int ret; 515 516 ret = percpu_counter_init(&vm_committed_as, 0); 517 VM_BUG_ON(ret); 518 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 519 } 520 521 /* 522 * validate the region tree 523 * - the caller must hold the region lock 524 */ 525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 526 static noinline void validate_nommu_regions(void) 527 { 528 struct vm_region *region, *last; 529 struct rb_node *p, *lastp; 530 531 lastp = rb_first(&nommu_region_tree); 532 if (!lastp) 533 return; 534 535 last = rb_entry(lastp, struct vm_region, vm_rb); 536 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 537 BUG_ON(unlikely(last->vm_top < last->vm_end)); 538 539 while ((p = rb_next(lastp))) { 540 region = rb_entry(p, struct vm_region, vm_rb); 541 last = rb_entry(lastp, struct vm_region, vm_rb); 542 543 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 544 BUG_ON(unlikely(region->vm_top < region->vm_end)); 545 BUG_ON(unlikely(region->vm_start < last->vm_top)); 546 547 lastp = p; 548 } 549 } 550 #else 551 static void validate_nommu_regions(void) 552 { 553 } 554 #endif 555 556 /* 557 * add a region into the global tree 558 */ 559 static void add_nommu_region(struct vm_region *region) 560 { 561 struct vm_region *pregion; 562 struct rb_node **p, *parent; 563 564 validate_nommu_regions(); 565 566 parent = NULL; 567 p = &nommu_region_tree.rb_node; 568 while (*p) { 569 parent = *p; 570 pregion = rb_entry(parent, struct vm_region, vm_rb); 571 if (region->vm_start < pregion->vm_start) 572 p = &(*p)->rb_left; 573 else if (region->vm_start > pregion->vm_start) 574 p = &(*p)->rb_right; 575 else if (pregion == region) 576 return; 577 else 578 BUG(); 579 } 580 581 rb_link_node(®ion->vm_rb, parent, p); 582 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 583 584 validate_nommu_regions(); 585 } 586 587 /* 588 * delete a region from the global tree 589 */ 590 static void delete_nommu_region(struct vm_region *region) 591 { 592 BUG_ON(!nommu_region_tree.rb_node); 593 594 validate_nommu_regions(); 595 rb_erase(®ion->vm_rb, &nommu_region_tree); 596 validate_nommu_regions(); 597 } 598 599 /* 600 * free a contiguous series of pages 601 */ 602 static void free_page_series(unsigned long from, unsigned long to) 603 { 604 for (; from < to; from += PAGE_SIZE) { 605 struct page *page = virt_to_page(from); 606 607 kdebug("- free %lx", from); 608 atomic_long_dec(&mmap_pages_allocated); 609 if (page_count(page) != 1) 610 kdebug("free page %p: refcount not one: %d", 611 page, page_count(page)); 612 put_page(page); 613 } 614 } 615 616 /* 617 * release a reference to a region 618 * - the caller must hold the region semaphore for writing, which this releases 619 * - the region may not have been added to the tree yet, in which case vm_top 620 * will equal vm_start 621 */ 622 static void __put_nommu_region(struct vm_region *region) 623 __releases(nommu_region_sem) 624 { 625 kenter("%p{%d}", region, region->vm_usage); 626 627 BUG_ON(!nommu_region_tree.rb_node); 628 629 if (--region->vm_usage == 0) { 630 if (region->vm_top > region->vm_start) 631 delete_nommu_region(region); 632 up_write(&nommu_region_sem); 633 634 if (region->vm_file) 635 fput(region->vm_file); 636 637 /* IO memory and memory shared directly out of the pagecache 638 * from ramfs/tmpfs mustn't be released here */ 639 if (region->vm_flags & VM_MAPPED_COPY) { 640 kdebug("free series"); 641 free_page_series(region->vm_start, region->vm_top); 642 } 643 kmem_cache_free(vm_region_jar, region); 644 } else { 645 up_write(&nommu_region_sem); 646 } 647 } 648 649 /* 650 * release a reference to a region 651 */ 652 static void put_nommu_region(struct vm_region *region) 653 { 654 down_write(&nommu_region_sem); 655 __put_nommu_region(region); 656 } 657 658 /* 659 * update protection on a vma 660 */ 661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 662 { 663 #ifdef CONFIG_MPU 664 struct mm_struct *mm = vma->vm_mm; 665 long start = vma->vm_start & PAGE_MASK; 666 while (start < vma->vm_end) { 667 protect_page(mm, start, flags); 668 start += PAGE_SIZE; 669 } 670 update_protections(mm); 671 #endif 672 } 673 674 /* 675 * add a VMA into a process's mm_struct in the appropriate place in the list 676 * and tree and add to the address space's page tree also if not an anonymous 677 * page 678 * - should be called with mm->mmap_sem held writelocked 679 */ 680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 681 { 682 struct vm_area_struct *pvma, *prev; 683 struct address_space *mapping; 684 struct rb_node **p, *parent, *rb_prev; 685 686 kenter(",%p", vma); 687 688 BUG_ON(!vma->vm_region); 689 690 mm->map_count++; 691 vma->vm_mm = mm; 692 693 protect_vma(vma, vma->vm_flags); 694 695 /* add the VMA to the mapping */ 696 if (vma->vm_file) { 697 mapping = vma->vm_file->f_mapping; 698 699 flush_dcache_mmap_lock(mapping); 700 vma_prio_tree_insert(vma, &mapping->i_mmap); 701 flush_dcache_mmap_unlock(mapping); 702 } 703 704 /* add the VMA to the tree */ 705 parent = rb_prev = NULL; 706 p = &mm->mm_rb.rb_node; 707 while (*p) { 708 parent = *p; 709 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 710 711 /* sort by: start addr, end addr, VMA struct addr in that order 712 * (the latter is necessary as we may get identical VMAs) */ 713 if (vma->vm_start < pvma->vm_start) 714 p = &(*p)->rb_left; 715 else if (vma->vm_start > pvma->vm_start) { 716 rb_prev = parent; 717 p = &(*p)->rb_right; 718 } else if (vma->vm_end < pvma->vm_end) 719 p = &(*p)->rb_left; 720 else if (vma->vm_end > pvma->vm_end) { 721 rb_prev = parent; 722 p = &(*p)->rb_right; 723 } else if (vma < pvma) 724 p = &(*p)->rb_left; 725 else if (vma > pvma) { 726 rb_prev = parent; 727 p = &(*p)->rb_right; 728 } else 729 BUG(); 730 } 731 732 rb_link_node(&vma->vm_rb, parent, p); 733 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 734 735 /* add VMA to the VMA list also */ 736 prev = NULL; 737 if (rb_prev) 738 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 739 740 __vma_link_list(mm, vma, prev, parent); 741 } 742 743 /* 744 * delete a VMA from its owning mm_struct and address space 745 */ 746 static void delete_vma_from_mm(struct vm_area_struct *vma) 747 { 748 struct address_space *mapping; 749 struct mm_struct *mm = vma->vm_mm; 750 751 kenter("%p", vma); 752 753 protect_vma(vma, 0); 754 755 mm->map_count--; 756 if (mm->mmap_cache == vma) 757 mm->mmap_cache = NULL; 758 759 /* remove the VMA from the mapping */ 760 if (vma->vm_file) { 761 mapping = vma->vm_file->f_mapping; 762 763 flush_dcache_mmap_lock(mapping); 764 vma_prio_tree_remove(vma, &mapping->i_mmap); 765 flush_dcache_mmap_unlock(mapping); 766 } 767 768 /* remove from the MM's tree and list */ 769 rb_erase(&vma->vm_rb, &mm->mm_rb); 770 771 if (vma->vm_prev) 772 vma->vm_prev->vm_next = vma->vm_next; 773 else 774 mm->mmap = vma->vm_next; 775 776 if (vma->vm_next) 777 vma->vm_next->vm_prev = vma->vm_prev; 778 779 vma->vm_mm = NULL; 780 } 781 782 /* 783 * destroy a VMA record 784 */ 785 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 786 { 787 kenter("%p", vma); 788 if (vma->vm_ops && vma->vm_ops->close) 789 vma->vm_ops->close(vma); 790 if (vma->vm_file) { 791 fput(vma->vm_file); 792 if (vma->vm_flags & VM_EXECUTABLE) 793 removed_exe_file_vma(mm); 794 } 795 put_nommu_region(vma->vm_region); 796 kmem_cache_free(vm_area_cachep, vma); 797 } 798 799 /* 800 * look up the first VMA in which addr resides, NULL if none 801 * - should be called with mm->mmap_sem at least held readlocked 802 */ 803 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 804 { 805 struct vm_area_struct *vma; 806 807 /* check the cache first */ 808 vma = mm->mmap_cache; 809 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 810 return vma; 811 812 /* trawl the list (there may be multiple mappings in which addr 813 * resides) */ 814 for (vma = mm->mmap; vma; vma = vma->vm_next) { 815 if (vma->vm_start > addr) 816 return NULL; 817 if (vma->vm_end > addr) { 818 mm->mmap_cache = vma; 819 return vma; 820 } 821 } 822 823 return NULL; 824 } 825 EXPORT_SYMBOL(find_vma); 826 827 /* 828 * find a VMA 829 * - we don't extend stack VMAs under NOMMU conditions 830 */ 831 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 832 { 833 return find_vma(mm, addr); 834 } 835 836 /* 837 * expand a stack to a given address 838 * - not supported under NOMMU conditions 839 */ 840 int expand_stack(struct vm_area_struct *vma, unsigned long address) 841 { 842 return -ENOMEM; 843 } 844 845 /* 846 * look up the first VMA exactly that exactly matches addr 847 * - should be called with mm->mmap_sem at least held readlocked 848 */ 849 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 850 unsigned long addr, 851 unsigned long len) 852 { 853 struct vm_area_struct *vma; 854 unsigned long end = addr + len; 855 856 /* check the cache first */ 857 vma = mm->mmap_cache; 858 if (vma && vma->vm_start == addr && vma->vm_end == end) 859 return vma; 860 861 /* trawl the list (there may be multiple mappings in which addr 862 * resides) */ 863 for (vma = mm->mmap; vma; vma = vma->vm_next) { 864 if (vma->vm_start < addr) 865 continue; 866 if (vma->vm_start > addr) 867 return NULL; 868 if (vma->vm_end == end) { 869 mm->mmap_cache = vma; 870 return vma; 871 } 872 } 873 874 return NULL; 875 } 876 877 /* 878 * determine whether a mapping should be permitted and, if so, what sort of 879 * mapping we're capable of supporting 880 */ 881 static int validate_mmap_request(struct file *file, 882 unsigned long addr, 883 unsigned long len, 884 unsigned long prot, 885 unsigned long flags, 886 unsigned long pgoff, 887 unsigned long *_capabilities) 888 { 889 unsigned long capabilities, rlen; 890 unsigned long reqprot = prot; 891 int ret; 892 893 /* do the simple checks first */ 894 if (flags & MAP_FIXED) { 895 printk(KERN_DEBUG 896 "%d: Can't do fixed-address/overlay mmap of RAM\n", 897 current->pid); 898 return -EINVAL; 899 } 900 901 if ((flags & MAP_TYPE) != MAP_PRIVATE && 902 (flags & MAP_TYPE) != MAP_SHARED) 903 return -EINVAL; 904 905 if (!len) 906 return -EINVAL; 907 908 /* Careful about overflows.. */ 909 rlen = PAGE_ALIGN(len); 910 if (!rlen || rlen > TASK_SIZE) 911 return -ENOMEM; 912 913 /* offset overflow? */ 914 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 915 return -EOVERFLOW; 916 917 if (file) { 918 /* validate file mapping requests */ 919 struct address_space *mapping; 920 921 /* files must support mmap */ 922 if (!file->f_op || !file->f_op->mmap) 923 return -ENODEV; 924 925 /* work out if what we've got could possibly be shared 926 * - we support chardevs that provide their own "memory" 927 * - we support files/blockdevs that are memory backed 928 */ 929 mapping = file->f_mapping; 930 if (!mapping) 931 mapping = file->f_path.dentry->d_inode->i_mapping; 932 933 capabilities = 0; 934 if (mapping && mapping->backing_dev_info) 935 capabilities = mapping->backing_dev_info->capabilities; 936 937 if (!capabilities) { 938 /* no explicit capabilities set, so assume some 939 * defaults */ 940 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 941 case S_IFREG: 942 case S_IFBLK: 943 capabilities = BDI_CAP_MAP_COPY; 944 break; 945 946 case S_IFCHR: 947 capabilities = 948 BDI_CAP_MAP_DIRECT | 949 BDI_CAP_READ_MAP | 950 BDI_CAP_WRITE_MAP; 951 break; 952 953 default: 954 return -EINVAL; 955 } 956 } 957 958 /* eliminate any capabilities that we can't support on this 959 * device */ 960 if (!file->f_op->get_unmapped_area) 961 capabilities &= ~BDI_CAP_MAP_DIRECT; 962 if (!file->f_op->read) 963 capabilities &= ~BDI_CAP_MAP_COPY; 964 965 /* The file shall have been opened with read permission. */ 966 if (!(file->f_mode & FMODE_READ)) 967 return -EACCES; 968 969 if (flags & MAP_SHARED) { 970 /* do checks for writing, appending and locking */ 971 if ((prot & PROT_WRITE) && 972 !(file->f_mode & FMODE_WRITE)) 973 return -EACCES; 974 975 if (IS_APPEND(file->f_path.dentry->d_inode) && 976 (file->f_mode & FMODE_WRITE)) 977 return -EACCES; 978 979 if (locks_verify_locked(file->f_path.dentry->d_inode)) 980 return -EAGAIN; 981 982 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 983 return -ENODEV; 984 985 /* we mustn't privatise shared mappings */ 986 capabilities &= ~BDI_CAP_MAP_COPY; 987 } 988 else { 989 /* we're going to read the file into private memory we 990 * allocate */ 991 if (!(capabilities & BDI_CAP_MAP_COPY)) 992 return -ENODEV; 993 994 /* we don't permit a private writable mapping to be 995 * shared with the backing device */ 996 if (prot & PROT_WRITE) 997 capabilities &= ~BDI_CAP_MAP_DIRECT; 998 } 999 1000 if (capabilities & BDI_CAP_MAP_DIRECT) { 1001 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1002 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1003 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1004 ) { 1005 capabilities &= ~BDI_CAP_MAP_DIRECT; 1006 if (flags & MAP_SHARED) { 1007 printk(KERN_WARNING 1008 "MAP_SHARED not completely supported on !MMU\n"); 1009 return -EINVAL; 1010 } 1011 } 1012 } 1013 1014 /* handle executable mappings and implied executable 1015 * mappings */ 1016 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1017 if (prot & PROT_EXEC) 1018 return -EPERM; 1019 } 1020 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1021 /* handle implication of PROT_EXEC by PROT_READ */ 1022 if (current->personality & READ_IMPLIES_EXEC) { 1023 if (capabilities & BDI_CAP_EXEC_MAP) 1024 prot |= PROT_EXEC; 1025 } 1026 } 1027 else if ((prot & PROT_READ) && 1028 (prot & PROT_EXEC) && 1029 !(capabilities & BDI_CAP_EXEC_MAP) 1030 ) { 1031 /* backing file is not executable, try to copy */ 1032 capabilities &= ~BDI_CAP_MAP_DIRECT; 1033 } 1034 } 1035 else { 1036 /* anonymous mappings are always memory backed and can be 1037 * privately mapped 1038 */ 1039 capabilities = BDI_CAP_MAP_COPY; 1040 1041 /* handle PROT_EXEC implication by PROT_READ */ 1042 if ((prot & PROT_READ) && 1043 (current->personality & READ_IMPLIES_EXEC)) 1044 prot |= PROT_EXEC; 1045 } 1046 1047 /* allow the security API to have its say */ 1048 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1049 if (ret < 0) 1050 return ret; 1051 1052 /* looks okay */ 1053 *_capabilities = capabilities; 1054 return 0; 1055 } 1056 1057 /* 1058 * we've determined that we can make the mapping, now translate what we 1059 * now know into VMA flags 1060 */ 1061 static unsigned long determine_vm_flags(struct file *file, 1062 unsigned long prot, 1063 unsigned long flags, 1064 unsigned long capabilities) 1065 { 1066 unsigned long vm_flags; 1067 1068 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1069 /* vm_flags |= mm->def_flags; */ 1070 1071 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1072 /* attempt to share read-only copies of mapped file chunks */ 1073 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1074 if (file && !(prot & PROT_WRITE)) 1075 vm_flags |= VM_MAYSHARE; 1076 } else { 1077 /* overlay a shareable mapping on the backing device or inode 1078 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1079 * romfs/cramfs */ 1080 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1081 if (flags & MAP_SHARED) 1082 vm_flags |= VM_SHARED; 1083 } 1084 1085 /* refuse to let anyone share private mappings with this process if 1086 * it's being traced - otherwise breakpoints set in it may interfere 1087 * with another untraced process 1088 */ 1089 if ((flags & MAP_PRIVATE) && current->ptrace) 1090 vm_flags &= ~VM_MAYSHARE; 1091 1092 return vm_flags; 1093 } 1094 1095 /* 1096 * set up a shared mapping on a file (the driver or filesystem provides and 1097 * pins the storage) 1098 */ 1099 static int do_mmap_shared_file(struct vm_area_struct *vma) 1100 { 1101 int ret; 1102 1103 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1104 if (ret == 0) { 1105 vma->vm_region->vm_top = vma->vm_region->vm_end; 1106 return 0; 1107 } 1108 if (ret != -ENOSYS) 1109 return ret; 1110 1111 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1112 * opposed to tried but failed) so we can only give a suitable error as 1113 * it's not possible to make a private copy if MAP_SHARED was given */ 1114 return -ENODEV; 1115 } 1116 1117 /* 1118 * set up a private mapping or an anonymous shared mapping 1119 */ 1120 static int do_mmap_private(struct vm_area_struct *vma, 1121 struct vm_region *region, 1122 unsigned long len, 1123 unsigned long capabilities) 1124 { 1125 struct page *pages; 1126 unsigned long total, point, n; 1127 void *base; 1128 int ret, order; 1129 1130 /* invoke the file's mapping function so that it can keep track of 1131 * shared mappings on devices or memory 1132 * - VM_MAYSHARE will be set if it may attempt to share 1133 */ 1134 if (capabilities & BDI_CAP_MAP_DIRECT) { 1135 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1136 if (ret == 0) { 1137 /* shouldn't return success if we're not sharing */ 1138 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1139 vma->vm_region->vm_top = vma->vm_region->vm_end; 1140 return 0; 1141 } 1142 if (ret != -ENOSYS) 1143 return ret; 1144 1145 /* getting an ENOSYS error indicates that direct mmap isn't 1146 * possible (as opposed to tried but failed) so we'll try to 1147 * make a private copy of the data and map that instead */ 1148 } 1149 1150 1151 /* allocate some memory to hold the mapping 1152 * - note that this may not return a page-aligned address if the object 1153 * we're allocating is smaller than a page 1154 */ 1155 order = get_order(len); 1156 kdebug("alloc order %d for %lx", order, len); 1157 1158 pages = alloc_pages(GFP_KERNEL, order); 1159 if (!pages) 1160 goto enomem; 1161 1162 total = 1 << order; 1163 atomic_long_add(total, &mmap_pages_allocated); 1164 1165 point = len >> PAGE_SHIFT; 1166 1167 /* we allocated a power-of-2 sized page set, so we may want to trim off 1168 * the excess */ 1169 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1170 while (total > point) { 1171 order = ilog2(total - point); 1172 n = 1 << order; 1173 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1174 atomic_long_sub(n, &mmap_pages_allocated); 1175 total -= n; 1176 set_page_refcounted(pages + total); 1177 __free_pages(pages + total, order); 1178 } 1179 } 1180 1181 for (point = 1; point < total; point++) 1182 set_page_refcounted(&pages[point]); 1183 1184 base = page_address(pages); 1185 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1186 region->vm_start = (unsigned long) base; 1187 region->vm_end = region->vm_start + len; 1188 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1189 1190 vma->vm_start = region->vm_start; 1191 vma->vm_end = region->vm_start + len; 1192 1193 if (vma->vm_file) { 1194 /* read the contents of a file into the copy */ 1195 mm_segment_t old_fs; 1196 loff_t fpos; 1197 1198 fpos = vma->vm_pgoff; 1199 fpos <<= PAGE_SHIFT; 1200 1201 old_fs = get_fs(); 1202 set_fs(KERNEL_DS); 1203 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); 1204 set_fs(old_fs); 1205 1206 if (ret < 0) 1207 goto error_free; 1208 1209 /* clear the last little bit */ 1210 if (ret < len) 1211 memset(base + ret, 0, len - ret); 1212 1213 } 1214 1215 return 0; 1216 1217 error_free: 1218 free_page_series(region->vm_start, region->vm_top); 1219 region->vm_start = vma->vm_start = 0; 1220 region->vm_end = vma->vm_end = 0; 1221 region->vm_top = 0; 1222 return ret; 1223 1224 enomem: 1225 printk("Allocation of length %lu from process %d (%s) failed\n", 1226 len, current->pid, current->comm); 1227 show_free_areas(0); 1228 return -ENOMEM; 1229 } 1230 1231 /* 1232 * handle mapping creation for uClinux 1233 */ 1234 unsigned long do_mmap_pgoff(struct file *file, 1235 unsigned long addr, 1236 unsigned long len, 1237 unsigned long prot, 1238 unsigned long flags, 1239 unsigned long pgoff) 1240 { 1241 struct vm_area_struct *vma; 1242 struct vm_region *region; 1243 struct rb_node *rb; 1244 unsigned long capabilities, vm_flags, result; 1245 int ret; 1246 1247 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1248 1249 /* decide whether we should attempt the mapping, and if so what sort of 1250 * mapping */ 1251 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1252 &capabilities); 1253 if (ret < 0) { 1254 kleave(" = %d [val]", ret); 1255 return ret; 1256 } 1257 1258 /* we ignore the address hint */ 1259 addr = 0; 1260 len = PAGE_ALIGN(len); 1261 1262 /* we've determined that we can make the mapping, now translate what we 1263 * now know into VMA flags */ 1264 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1265 1266 /* we're going to need to record the mapping */ 1267 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1268 if (!region) 1269 goto error_getting_region; 1270 1271 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1272 if (!vma) 1273 goto error_getting_vma; 1274 1275 region->vm_usage = 1; 1276 region->vm_flags = vm_flags; 1277 region->vm_pgoff = pgoff; 1278 1279 INIT_LIST_HEAD(&vma->anon_vma_chain); 1280 vma->vm_flags = vm_flags; 1281 vma->vm_pgoff = pgoff; 1282 1283 if (file) { 1284 region->vm_file = file; 1285 get_file(file); 1286 vma->vm_file = file; 1287 get_file(file); 1288 if (vm_flags & VM_EXECUTABLE) { 1289 added_exe_file_vma(current->mm); 1290 vma->vm_mm = current->mm; 1291 } 1292 } 1293 1294 down_write(&nommu_region_sem); 1295 1296 /* if we want to share, we need to check for regions created by other 1297 * mmap() calls that overlap with our proposed mapping 1298 * - we can only share with a superset match on most regular files 1299 * - shared mappings on character devices and memory backed files are 1300 * permitted to overlap inexactly as far as we are concerned for in 1301 * these cases, sharing is handled in the driver or filesystem rather 1302 * than here 1303 */ 1304 if (vm_flags & VM_MAYSHARE) { 1305 struct vm_region *pregion; 1306 unsigned long pglen, rpglen, pgend, rpgend, start; 1307 1308 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1309 pgend = pgoff + pglen; 1310 1311 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1312 pregion = rb_entry(rb, struct vm_region, vm_rb); 1313 1314 if (!(pregion->vm_flags & VM_MAYSHARE)) 1315 continue; 1316 1317 /* search for overlapping mappings on the same file */ 1318 if (pregion->vm_file->f_path.dentry->d_inode != 1319 file->f_path.dentry->d_inode) 1320 continue; 1321 1322 if (pregion->vm_pgoff >= pgend) 1323 continue; 1324 1325 rpglen = pregion->vm_end - pregion->vm_start; 1326 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1327 rpgend = pregion->vm_pgoff + rpglen; 1328 if (pgoff >= rpgend) 1329 continue; 1330 1331 /* handle inexactly overlapping matches between 1332 * mappings */ 1333 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1334 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1335 /* new mapping is not a subset of the region */ 1336 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1337 goto sharing_violation; 1338 continue; 1339 } 1340 1341 /* we've found a region we can share */ 1342 pregion->vm_usage++; 1343 vma->vm_region = pregion; 1344 start = pregion->vm_start; 1345 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1346 vma->vm_start = start; 1347 vma->vm_end = start + len; 1348 1349 if (pregion->vm_flags & VM_MAPPED_COPY) { 1350 kdebug("share copy"); 1351 vma->vm_flags |= VM_MAPPED_COPY; 1352 } else { 1353 kdebug("share mmap"); 1354 ret = do_mmap_shared_file(vma); 1355 if (ret < 0) { 1356 vma->vm_region = NULL; 1357 vma->vm_start = 0; 1358 vma->vm_end = 0; 1359 pregion->vm_usage--; 1360 pregion = NULL; 1361 goto error_just_free; 1362 } 1363 } 1364 fput(region->vm_file); 1365 kmem_cache_free(vm_region_jar, region); 1366 region = pregion; 1367 result = start; 1368 goto share; 1369 } 1370 1371 /* obtain the address at which to make a shared mapping 1372 * - this is the hook for quasi-memory character devices to 1373 * tell us the location of a shared mapping 1374 */ 1375 if (capabilities & BDI_CAP_MAP_DIRECT) { 1376 addr = file->f_op->get_unmapped_area(file, addr, len, 1377 pgoff, flags); 1378 if (IS_ERR_VALUE(addr)) { 1379 ret = addr; 1380 if (ret != -ENOSYS) 1381 goto error_just_free; 1382 1383 /* the driver refused to tell us where to site 1384 * the mapping so we'll have to attempt to copy 1385 * it */ 1386 ret = -ENODEV; 1387 if (!(capabilities & BDI_CAP_MAP_COPY)) 1388 goto error_just_free; 1389 1390 capabilities &= ~BDI_CAP_MAP_DIRECT; 1391 } else { 1392 vma->vm_start = region->vm_start = addr; 1393 vma->vm_end = region->vm_end = addr + len; 1394 } 1395 } 1396 } 1397 1398 vma->vm_region = region; 1399 1400 /* set up the mapping 1401 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1402 */ 1403 if (file && vma->vm_flags & VM_SHARED) 1404 ret = do_mmap_shared_file(vma); 1405 else 1406 ret = do_mmap_private(vma, region, len, capabilities); 1407 if (ret < 0) 1408 goto error_just_free; 1409 add_nommu_region(region); 1410 1411 /* clear anonymous mappings that don't ask for uninitialized data */ 1412 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1413 memset((void *)region->vm_start, 0, 1414 region->vm_end - region->vm_start); 1415 1416 /* okay... we have a mapping; now we have to register it */ 1417 result = vma->vm_start; 1418 1419 current->mm->total_vm += len >> PAGE_SHIFT; 1420 1421 share: 1422 add_vma_to_mm(current->mm, vma); 1423 1424 /* we flush the region from the icache only when the first executable 1425 * mapping of it is made */ 1426 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1427 flush_icache_range(region->vm_start, region->vm_end); 1428 region->vm_icache_flushed = true; 1429 } 1430 1431 up_write(&nommu_region_sem); 1432 1433 kleave(" = %lx", result); 1434 return result; 1435 1436 error_just_free: 1437 up_write(&nommu_region_sem); 1438 error: 1439 if (region->vm_file) 1440 fput(region->vm_file); 1441 kmem_cache_free(vm_region_jar, region); 1442 if (vma->vm_file) 1443 fput(vma->vm_file); 1444 if (vma->vm_flags & VM_EXECUTABLE) 1445 removed_exe_file_vma(vma->vm_mm); 1446 kmem_cache_free(vm_area_cachep, vma); 1447 kleave(" = %d", ret); 1448 return ret; 1449 1450 sharing_violation: 1451 up_write(&nommu_region_sem); 1452 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1453 ret = -EINVAL; 1454 goto error; 1455 1456 error_getting_vma: 1457 kmem_cache_free(vm_region_jar, region); 1458 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1459 " from process %d failed\n", 1460 len, current->pid); 1461 show_free_areas(0); 1462 return -ENOMEM; 1463 1464 error_getting_region: 1465 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1466 " from process %d failed\n", 1467 len, current->pid); 1468 show_free_areas(0); 1469 return -ENOMEM; 1470 } 1471 EXPORT_SYMBOL(do_mmap_pgoff); 1472 1473 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1474 unsigned long, prot, unsigned long, flags, 1475 unsigned long, fd, unsigned long, pgoff) 1476 { 1477 struct file *file = NULL; 1478 unsigned long retval = -EBADF; 1479 1480 audit_mmap_fd(fd, flags); 1481 if (!(flags & MAP_ANONYMOUS)) { 1482 file = fget(fd); 1483 if (!file) 1484 goto out; 1485 } 1486 1487 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1488 1489 down_write(¤t->mm->mmap_sem); 1490 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1491 up_write(¤t->mm->mmap_sem); 1492 1493 if (file) 1494 fput(file); 1495 out: 1496 return retval; 1497 } 1498 1499 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1500 struct mmap_arg_struct { 1501 unsigned long addr; 1502 unsigned long len; 1503 unsigned long prot; 1504 unsigned long flags; 1505 unsigned long fd; 1506 unsigned long offset; 1507 }; 1508 1509 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1510 { 1511 struct mmap_arg_struct a; 1512 1513 if (copy_from_user(&a, arg, sizeof(a))) 1514 return -EFAULT; 1515 if (a.offset & ~PAGE_MASK) 1516 return -EINVAL; 1517 1518 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1519 a.offset >> PAGE_SHIFT); 1520 } 1521 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1522 1523 /* 1524 * split a vma into two pieces at address 'addr', a new vma is allocated either 1525 * for the first part or the tail. 1526 */ 1527 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1528 unsigned long addr, int new_below) 1529 { 1530 struct vm_area_struct *new; 1531 struct vm_region *region; 1532 unsigned long npages; 1533 1534 kenter(""); 1535 1536 /* we're only permitted to split anonymous regions (these should have 1537 * only a single usage on the region) */ 1538 if (vma->vm_file) 1539 return -ENOMEM; 1540 1541 if (mm->map_count >= sysctl_max_map_count) 1542 return -ENOMEM; 1543 1544 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1545 if (!region) 1546 return -ENOMEM; 1547 1548 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1549 if (!new) { 1550 kmem_cache_free(vm_region_jar, region); 1551 return -ENOMEM; 1552 } 1553 1554 /* most fields are the same, copy all, and then fixup */ 1555 *new = *vma; 1556 *region = *vma->vm_region; 1557 new->vm_region = region; 1558 1559 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1560 1561 if (new_below) { 1562 region->vm_top = region->vm_end = new->vm_end = addr; 1563 } else { 1564 region->vm_start = new->vm_start = addr; 1565 region->vm_pgoff = new->vm_pgoff += npages; 1566 } 1567 1568 if (new->vm_ops && new->vm_ops->open) 1569 new->vm_ops->open(new); 1570 1571 delete_vma_from_mm(vma); 1572 down_write(&nommu_region_sem); 1573 delete_nommu_region(vma->vm_region); 1574 if (new_below) { 1575 vma->vm_region->vm_start = vma->vm_start = addr; 1576 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1577 } else { 1578 vma->vm_region->vm_end = vma->vm_end = addr; 1579 vma->vm_region->vm_top = addr; 1580 } 1581 add_nommu_region(vma->vm_region); 1582 add_nommu_region(new->vm_region); 1583 up_write(&nommu_region_sem); 1584 add_vma_to_mm(mm, vma); 1585 add_vma_to_mm(mm, new); 1586 return 0; 1587 } 1588 1589 /* 1590 * shrink a VMA by removing the specified chunk from either the beginning or 1591 * the end 1592 */ 1593 static int shrink_vma(struct mm_struct *mm, 1594 struct vm_area_struct *vma, 1595 unsigned long from, unsigned long to) 1596 { 1597 struct vm_region *region; 1598 1599 kenter(""); 1600 1601 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1602 * and list */ 1603 delete_vma_from_mm(vma); 1604 if (from > vma->vm_start) 1605 vma->vm_end = from; 1606 else 1607 vma->vm_start = to; 1608 add_vma_to_mm(mm, vma); 1609 1610 /* cut the backing region down to size */ 1611 region = vma->vm_region; 1612 BUG_ON(region->vm_usage != 1); 1613 1614 down_write(&nommu_region_sem); 1615 delete_nommu_region(region); 1616 if (from > region->vm_start) { 1617 to = region->vm_top; 1618 region->vm_top = region->vm_end = from; 1619 } else { 1620 region->vm_start = to; 1621 } 1622 add_nommu_region(region); 1623 up_write(&nommu_region_sem); 1624 1625 free_page_series(from, to); 1626 return 0; 1627 } 1628 1629 /* 1630 * release a mapping 1631 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1632 * VMA, though it need not cover the whole VMA 1633 */ 1634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1635 { 1636 struct vm_area_struct *vma; 1637 unsigned long end; 1638 int ret; 1639 1640 kenter(",%lx,%zx", start, len); 1641 1642 len = PAGE_ALIGN(len); 1643 if (len == 0) 1644 return -EINVAL; 1645 1646 end = start + len; 1647 1648 /* find the first potentially overlapping VMA */ 1649 vma = find_vma(mm, start); 1650 if (!vma) { 1651 static int limit = 0; 1652 if (limit < 5) { 1653 printk(KERN_WARNING 1654 "munmap of memory not mmapped by process %d" 1655 " (%s): 0x%lx-0x%lx\n", 1656 current->pid, current->comm, 1657 start, start + len - 1); 1658 limit++; 1659 } 1660 return -EINVAL; 1661 } 1662 1663 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1664 if (vma->vm_file) { 1665 do { 1666 if (start > vma->vm_start) { 1667 kleave(" = -EINVAL [miss]"); 1668 return -EINVAL; 1669 } 1670 if (end == vma->vm_end) 1671 goto erase_whole_vma; 1672 vma = vma->vm_next; 1673 } while (vma); 1674 kleave(" = -EINVAL [split file]"); 1675 return -EINVAL; 1676 } else { 1677 /* the chunk must be a subset of the VMA found */ 1678 if (start == vma->vm_start && end == vma->vm_end) 1679 goto erase_whole_vma; 1680 if (start < vma->vm_start || end > vma->vm_end) { 1681 kleave(" = -EINVAL [superset]"); 1682 return -EINVAL; 1683 } 1684 if (start & ~PAGE_MASK) { 1685 kleave(" = -EINVAL [unaligned start]"); 1686 return -EINVAL; 1687 } 1688 if (end != vma->vm_end && end & ~PAGE_MASK) { 1689 kleave(" = -EINVAL [unaligned split]"); 1690 return -EINVAL; 1691 } 1692 if (start != vma->vm_start && end != vma->vm_end) { 1693 ret = split_vma(mm, vma, start, 1); 1694 if (ret < 0) { 1695 kleave(" = %d [split]", ret); 1696 return ret; 1697 } 1698 } 1699 return shrink_vma(mm, vma, start, end); 1700 } 1701 1702 erase_whole_vma: 1703 delete_vma_from_mm(vma); 1704 delete_vma(mm, vma); 1705 kleave(" = 0"); 1706 return 0; 1707 } 1708 EXPORT_SYMBOL(do_munmap); 1709 1710 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1711 { 1712 int ret; 1713 struct mm_struct *mm = current->mm; 1714 1715 down_write(&mm->mmap_sem); 1716 ret = do_munmap(mm, addr, len); 1717 up_write(&mm->mmap_sem); 1718 return ret; 1719 } 1720 1721 /* 1722 * release all the mappings made in a process's VM space 1723 */ 1724 void exit_mmap(struct mm_struct *mm) 1725 { 1726 struct vm_area_struct *vma; 1727 1728 if (!mm) 1729 return; 1730 1731 kenter(""); 1732 1733 mm->total_vm = 0; 1734 1735 while ((vma = mm->mmap)) { 1736 mm->mmap = vma->vm_next; 1737 delete_vma_from_mm(vma); 1738 delete_vma(mm, vma); 1739 cond_resched(); 1740 } 1741 1742 kleave(""); 1743 } 1744 1745 unsigned long do_brk(unsigned long addr, unsigned long len) 1746 { 1747 return -ENOMEM; 1748 } 1749 1750 /* 1751 * expand (or shrink) an existing mapping, potentially moving it at the same 1752 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1753 * 1754 * under NOMMU conditions, we only permit changing a mapping's size, and only 1755 * as long as it stays within the region allocated by do_mmap_private() and the 1756 * block is not shareable 1757 * 1758 * MREMAP_FIXED is not supported under NOMMU conditions 1759 */ 1760 unsigned long do_mremap(unsigned long addr, 1761 unsigned long old_len, unsigned long new_len, 1762 unsigned long flags, unsigned long new_addr) 1763 { 1764 struct vm_area_struct *vma; 1765 1766 /* insanity checks first */ 1767 old_len = PAGE_ALIGN(old_len); 1768 new_len = PAGE_ALIGN(new_len); 1769 if (old_len == 0 || new_len == 0) 1770 return (unsigned long) -EINVAL; 1771 1772 if (addr & ~PAGE_MASK) 1773 return -EINVAL; 1774 1775 if (flags & MREMAP_FIXED && new_addr != addr) 1776 return (unsigned long) -EINVAL; 1777 1778 vma = find_vma_exact(current->mm, addr, old_len); 1779 if (!vma) 1780 return (unsigned long) -EINVAL; 1781 1782 if (vma->vm_end != vma->vm_start + old_len) 1783 return (unsigned long) -EFAULT; 1784 1785 if (vma->vm_flags & VM_MAYSHARE) 1786 return (unsigned long) -EPERM; 1787 1788 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1789 return (unsigned long) -ENOMEM; 1790 1791 /* all checks complete - do it */ 1792 vma->vm_end = vma->vm_start + new_len; 1793 return vma->vm_start; 1794 } 1795 EXPORT_SYMBOL(do_mremap); 1796 1797 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1798 unsigned long, new_len, unsigned long, flags, 1799 unsigned long, new_addr) 1800 { 1801 unsigned long ret; 1802 1803 down_write(¤t->mm->mmap_sem); 1804 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1805 up_write(¤t->mm->mmap_sem); 1806 return ret; 1807 } 1808 1809 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1810 unsigned int foll_flags) 1811 { 1812 return NULL; 1813 } 1814 1815 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1816 unsigned long pfn, unsigned long size, pgprot_t prot) 1817 { 1818 if (addr != (pfn << PAGE_SHIFT)) 1819 return -EINVAL; 1820 1821 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1822 return 0; 1823 } 1824 EXPORT_SYMBOL(remap_pfn_range); 1825 1826 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1827 unsigned long pgoff) 1828 { 1829 unsigned int size = vma->vm_end - vma->vm_start; 1830 1831 if (!(vma->vm_flags & VM_USERMAP)) 1832 return -EINVAL; 1833 1834 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1835 vma->vm_end = vma->vm_start + size; 1836 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(remap_vmalloc_range); 1840 1841 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1842 unsigned long len, unsigned long pgoff, unsigned long flags) 1843 { 1844 return -ENOMEM; 1845 } 1846 1847 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1848 { 1849 } 1850 1851 void unmap_mapping_range(struct address_space *mapping, 1852 loff_t const holebegin, loff_t const holelen, 1853 int even_cows) 1854 { 1855 } 1856 EXPORT_SYMBOL(unmap_mapping_range); 1857 1858 /* 1859 * Check that a process has enough memory to allocate a new virtual 1860 * mapping. 0 means there is enough memory for the allocation to 1861 * succeed and -ENOMEM implies there is not. 1862 * 1863 * We currently support three overcommit policies, which are set via the 1864 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1865 * 1866 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1867 * Additional code 2002 Jul 20 by Robert Love. 1868 * 1869 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1870 * 1871 * Note this is a helper function intended to be used by LSMs which 1872 * wish to use this logic. 1873 */ 1874 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1875 { 1876 unsigned long free, allowed; 1877 1878 vm_acct_memory(pages); 1879 1880 /* 1881 * Sometimes we want to use more memory than we have 1882 */ 1883 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1884 return 0; 1885 1886 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1887 unsigned long n; 1888 1889 free = global_page_state(NR_FILE_PAGES); 1890 free += nr_swap_pages; 1891 1892 /* 1893 * Any slabs which are created with the 1894 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1895 * which are reclaimable, under pressure. The dentry 1896 * cache and most inode caches should fall into this 1897 */ 1898 free += global_page_state(NR_SLAB_RECLAIMABLE); 1899 1900 /* 1901 * Leave the last 3% for root 1902 */ 1903 if (!cap_sys_admin) 1904 free -= free / 32; 1905 1906 if (free > pages) 1907 return 0; 1908 1909 /* 1910 * nr_free_pages() is very expensive on large systems, 1911 * only call if we're about to fail. 1912 */ 1913 n = nr_free_pages(); 1914 1915 /* 1916 * Leave reserved pages. The pages are not for anonymous pages. 1917 */ 1918 if (n <= totalreserve_pages) 1919 goto error; 1920 else 1921 n -= totalreserve_pages; 1922 1923 /* 1924 * Leave the last 3% for root 1925 */ 1926 if (!cap_sys_admin) 1927 n -= n / 32; 1928 free += n; 1929 1930 if (free > pages) 1931 return 0; 1932 1933 goto error; 1934 } 1935 1936 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1937 /* 1938 * Leave the last 3% for root 1939 */ 1940 if (!cap_sys_admin) 1941 allowed -= allowed / 32; 1942 allowed += total_swap_pages; 1943 1944 /* Don't let a single process grow too big: 1945 leave 3% of the size of this process for other processes */ 1946 if (mm) 1947 allowed -= mm->total_vm / 32; 1948 1949 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1950 return 0; 1951 1952 error: 1953 vm_unacct_memory(pages); 1954 1955 return -ENOMEM; 1956 } 1957 1958 int in_gate_area_no_mm(unsigned long addr) 1959 { 1960 return 0; 1961 } 1962 1963 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1964 { 1965 BUG(); 1966 return 0; 1967 } 1968 EXPORT_SYMBOL(filemap_fault); 1969 1970 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1971 unsigned long addr, void *buf, int len, int write) 1972 { 1973 struct vm_area_struct *vma; 1974 1975 down_read(&mm->mmap_sem); 1976 1977 /* the access must start within one of the target process's mappings */ 1978 vma = find_vma(mm, addr); 1979 if (vma) { 1980 /* don't overrun this mapping */ 1981 if (addr + len >= vma->vm_end) 1982 len = vma->vm_end - addr; 1983 1984 /* only read or write mappings where it is permitted */ 1985 if (write && vma->vm_flags & VM_MAYWRITE) 1986 copy_to_user_page(vma, NULL, addr, 1987 (void *) addr, buf, len); 1988 else if (!write && vma->vm_flags & VM_MAYREAD) 1989 copy_from_user_page(vma, NULL, addr, 1990 buf, (void *) addr, len); 1991 else 1992 len = 0; 1993 } else { 1994 len = 0; 1995 } 1996 1997 up_read(&mm->mmap_sem); 1998 1999 return len; 2000 } 2001 2002 /** 2003 * @access_remote_vm - access another process' address space 2004 * @mm: the mm_struct of the target address space 2005 * @addr: start address to access 2006 * @buf: source or destination buffer 2007 * @len: number of bytes to transfer 2008 * @write: whether the access is a write 2009 * 2010 * The caller must hold a reference on @mm. 2011 */ 2012 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2013 void *buf, int len, int write) 2014 { 2015 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2016 } 2017 2018 /* 2019 * Access another process' address space. 2020 * - source/target buffer must be kernel space 2021 */ 2022 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2023 { 2024 struct mm_struct *mm; 2025 2026 if (addr + len < addr) 2027 return 0; 2028 2029 mm = get_task_mm(tsk); 2030 if (!mm) 2031 return 0; 2032 2033 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2034 2035 mmput(mm); 2036 return len; 2037 } 2038 2039 /** 2040 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2041 * @inode: The inode to check 2042 * @size: The current filesize of the inode 2043 * @newsize: The proposed filesize of the inode 2044 * 2045 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2046 * make sure that that any outstanding VMAs aren't broken and then shrink the 2047 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2048 * automatically grant mappings that are too large. 2049 */ 2050 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2051 size_t newsize) 2052 { 2053 struct vm_area_struct *vma; 2054 struct prio_tree_iter iter; 2055 struct vm_region *region; 2056 pgoff_t low, high; 2057 size_t r_size, r_top; 2058 2059 low = newsize >> PAGE_SHIFT; 2060 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2061 2062 down_write(&nommu_region_sem); 2063 2064 /* search for VMAs that fall within the dead zone */ 2065 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2066 low, high) { 2067 /* found one - only interested if it's shared out of the page 2068 * cache */ 2069 if (vma->vm_flags & VM_SHARED) { 2070 up_write(&nommu_region_sem); 2071 return -ETXTBSY; /* not quite true, but near enough */ 2072 } 2073 } 2074 2075 /* reduce any regions that overlap the dead zone - if in existence, 2076 * these will be pointed to by VMAs that don't overlap the dead zone 2077 * 2078 * we don't check for any regions that start beyond the EOF as there 2079 * shouldn't be any 2080 */ 2081 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2082 0, ULONG_MAX) { 2083 if (!(vma->vm_flags & VM_SHARED)) 2084 continue; 2085 2086 region = vma->vm_region; 2087 r_size = region->vm_top - region->vm_start; 2088 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2089 2090 if (r_top > newsize) { 2091 region->vm_top -= r_top - newsize; 2092 if (region->vm_end > region->vm_top) 2093 region->vm_end = region->vm_top; 2094 } 2095 } 2096 2097 up_write(&nommu_region_sem); 2098 return 0; 2099 } 2100