xref: /openbmc/linux/mm/nommu.c (revision 814137768b5a9504f758aa760e7b1ac355539783)
1  /*
2   *  linux/mm/nommu.c
3   *
4   *  Replacement code for mm functions to support CPU's that don't
5   *  have any form of memory management unit (thus no virtual memory).
6   *
7   *  See Documentation/nommu-mmap.txt
8   *
9   *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10   *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11   *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12   *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13   *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14   */
15  
16  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17  
18  #include <linux/export.h>
19  #include <linux/mm.h>
20  #include <linux/sched/mm.h>
21  #include <linux/vmacache.h>
22  #include <linux/mman.h>
23  #include <linux/swap.h>
24  #include <linux/file.h>
25  #include <linux/highmem.h>
26  #include <linux/pagemap.h>
27  #include <linux/slab.h>
28  #include <linux/vmalloc.h>
29  #include <linux/blkdev.h>
30  #include <linux/backing-dev.h>
31  #include <linux/compiler.h>
32  #include <linux/mount.h>
33  #include <linux/personality.h>
34  #include <linux/security.h>
35  #include <linux/syscalls.h>
36  #include <linux/audit.h>
37  #include <linux/printk.h>
38  
39  #include <linux/uaccess.h>
40  #include <asm/tlb.h>
41  #include <asm/tlbflush.h>
42  #include <asm/mmu_context.h>
43  #include "internal.h"
44  
45  void *high_memory;
46  EXPORT_SYMBOL(high_memory);
47  struct page *mem_map;
48  unsigned long max_mapnr;
49  EXPORT_SYMBOL(max_mapnr);
50  unsigned long highest_memmap_pfn;
51  int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52  int heap_stack_gap = 0;
53  
54  atomic_long_t mmap_pages_allocated;
55  
56  EXPORT_SYMBOL(mem_map);
57  
58  /* list of mapped, potentially shareable regions */
59  static struct kmem_cache *vm_region_jar;
60  struct rb_root nommu_region_tree = RB_ROOT;
61  DECLARE_RWSEM(nommu_region_sem);
62  
63  const struct vm_operations_struct generic_file_vm_ops = {
64  };
65  
66  /*
67   * Return the total memory allocated for this pointer, not
68   * just what the caller asked for.
69   *
70   * Doesn't have to be accurate, i.e. may have races.
71   */
72  unsigned int kobjsize(const void *objp)
73  {
74  	struct page *page;
75  
76  	/*
77  	 * If the object we have should not have ksize performed on it,
78  	 * return size of 0
79  	 */
80  	if (!objp || !virt_addr_valid(objp))
81  		return 0;
82  
83  	page = virt_to_head_page(objp);
84  
85  	/*
86  	 * If the allocator sets PageSlab, we know the pointer came from
87  	 * kmalloc().
88  	 */
89  	if (PageSlab(page))
90  		return ksize(objp);
91  
92  	/*
93  	 * If it's not a compound page, see if we have a matching VMA
94  	 * region. This test is intentionally done in reverse order,
95  	 * so if there's no VMA, we still fall through and hand back
96  	 * PAGE_SIZE for 0-order pages.
97  	 */
98  	if (!PageCompound(page)) {
99  		struct vm_area_struct *vma;
100  
101  		vma = find_vma(current->mm, (unsigned long)objp);
102  		if (vma)
103  			return vma->vm_end - vma->vm_start;
104  	}
105  
106  	/*
107  	 * The ksize() function is only guaranteed to work for pointers
108  	 * returned by kmalloc(). So handle arbitrary pointers here.
109  	 */
110  	return PAGE_SIZE << compound_order(page);
111  }
112  
113  static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114  		      unsigned long start, unsigned long nr_pages,
115  		      unsigned int foll_flags, struct page **pages,
116  		      struct vm_area_struct **vmas, int *nonblocking)
117  {
118  	struct vm_area_struct *vma;
119  	unsigned long vm_flags;
120  	int i;
121  
122  	/* calculate required read or write permissions.
123  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124  	 */
125  	vm_flags  = (foll_flags & FOLL_WRITE) ?
126  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127  	vm_flags &= (foll_flags & FOLL_FORCE) ?
128  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129  
130  	for (i = 0; i < nr_pages; i++) {
131  		vma = find_vma(mm, start);
132  		if (!vma)
133  			goto finish_or_fault;
134  
135  		/* protect what we can, including chardevs */
136  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137  		    !(vm_flags & vma->vm_flags))
138  			goto finish_or_fault;
139  
140  		if (pages) {
141  			pages[i] = virt_to_page(start);
142  			if (pages[i])
143  				get_page(pages[i]);
144  		}
145  		if (vmas)
146  			vmas[i] = vma;
147  		start = (start + PAGE_SIZE) & PAGE_MASK;
148  	}
149  
150  	return i;
151  
152  finish_or_fault:
153  	return i ? : -EFAULT;
154  }
155  
156  /*
157   * get a list of pages in an address range belonging to the specified process
158   * and indicate the VMA that covers each page
159   * - this is potentially dodgy as we may end incrementing the page count of a
160   *   slab page or a secondary page from a compound page
161   * - don't permit access to VMAs that don't support it, such as I/O mappings
162   */
163  long get_user_pages(unsigned long start, unsigned long nr_pages,
164  		    unsigned int gup_flags, struct page **pages,
165  		    struct vm_area_struct **vmas)
166  {
167  	return __get_user_pages(current, current->mm, start, nr_pages,
168  				gup_flags, pages, vmas, NULL);
169  }
170  EXPORT_SYMBOL(get_user_pages);
171  
172  long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173  			    unsigned int gup_flags, struct page **pages,
174  			    int *locked)
175  {
176  	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177  }
178  EXPORT_SYMBOL(get_user_pages_locked);
179  
180  static long __get_user_pages_unlocked(struct task_struct *tsk,
181  			struct mm_struct *mm, unsigned long start,
182  			unsigned long nr_pages, struct page **pages,
183  			unsigned int gup_flags)
184  {
185  	long ret;
186  	down_read(&mm->mmap_sem);
187  	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188  				NULL, NULL);
189  	up_read(&mm->mmap_sem);
190  	return ret;
191  }
192  
193  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194  			     struct page **pages, unsigned int gup_flags)
195  {
196  	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197  					 pages, gup_flags);
198  }
199  EXPORT_SYMBOL(get_user_pages_unlocked);
200  
201  /**
202   * follow_pfn - look up PFN at a user virtual address
203   * @vma: memory mapping
204   * @address: user virtual address
205   * @pfn: location to store found PFN
206   *
207   * Only IO mappings and raw PFN mappings are allowed.
208   *
209   * Returns zero and the pfn at @pfn on success, -ve otherwise.
210   */
211  int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212  	unsigned long *pfn)
213  {
214  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215  		return -EINVAL;
216  
217  	*pfn = address >> PAGE_SHIFT;
218  	return 0;
219  }
220  EXPORT_SYMBOL(follow_pfn);
221  
222  LIST_HEAD(vmap_area_list);
223  
224  void vfree(const void *addr)
225  {
226  	kfree(addr);
227  }
228  EXPORT_SYMBOL(vfree);
229  
230  void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231  {
232  	/*
233  	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234  	 * returns only a logical address.
235  	 */
236  	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237  }
238  EXPORT_SYMBOL(__vmalloc);
239  
240  void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241  {
242  	return __vmalloc(size, flags, PAGE_KERNEL);
243  }
244  
245  void *vmalloc_user(unsigned long size)
246  {
247  	void *ret;
248  
249  	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250  	if (ret) {
251  		struct vm_area_struct *vma;
252  
253  		down_write(&current->mm->mmap_sem);
254  		vma = find_vma(current->mm, (unsigned long)ret);
255  		if (vma)
256  			vma->vm_flags |= VM_USERMAP;
257  		up_write(&current->mm->mmap_sem);
258  	}
259  
260  	return ret;
261  }
262  EXPORT_SYMBOL(vmalloc_user);
263  
264  struct page *vmalloc_to_page(const void *addr)
265  {
266  	return virt_to_page(addr);
267  }
268  EXPORT_SYMBOL(vmalloc_to_page);
269  
270  unsigned long vmalloc_to_pfn(const void *addr)
271  {
272  	return page_to_pfn(virt_to_page(addr));
273  }
274  EXPORT_SYMBOL(vmalloc_to_pfn);
275  
276  long vread(char *buf, char *addr, unsigned long count)
277  {
278  	/* Don't allow overflow */
279  	if ((unsigned long) buf + count < count)
280  		count = -(unsigned long) buf;
281  
282  	memcpy(buf, addr, count);
283  	return count;
284  }
285  
286  long vwrite(char *buf, char *addr, unsigned long count)
287  {
288  	/* Don't allow overflow */
289  	if ((unsigned long) addr + count < count)
290  		count = -(unsigned long) addr;
291  
292  	memcpy(addr, buf, count);
293  	return count;
294  }
295  
296  /*
297   *	vmalloc  -  allocate virtually contiguous memory
298   *
299   *	@size:		allocation size
300   *
301   *	Allocate enough pages to cover @size from the page level
302   *	allocator and map them into contiguous kernel virtual space.
303   *
304   *	For tight control over page level allocator and protection flags
305   *	use __vmalloc() instead.
306   */
307  void *vmalloc(unsigned long size)
308  {
309         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310  }
311  EXPORT_SYMBOL(vmalloc);
312  
313  /*
314   *	vzalloc - allocate virtually contiguous memory with zero fill
315   *
316   *	@size:		allocation size
317   *
318   *	Allocate enough pages to cover @size from the page level
319   *	allocator and map them into contiguous kernel virtual space.
320   *	The memory allocated is set to zero.
321   *
322   *	For tight control over page level allocator and protection flags
323   *	use __vmalloc() instead.
324   */
325  void *vzalloc(unsigned long size)
326  {
327  	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328  			PAGE_KERNEL);
329  }
330  EXPORT_SYMBOL(vzalloc);
331  
332  /**
333   * vmalloc_node - allocate memory on a specific node
334   * @size:	allocation size
335   * @node:	numa node
336   *
337   * Allocate enough pages to cover @size from the page level
338   * allocator and map them into contiguous kernel virtual space.
339   *
340   * For tight control over page level allocator and protection flags
341   * use __vmalloc() instead.
342   */
343  void *vmalloc_node(unsigned long size, int node)
344  {
345  	return vmalloc(size);
346  }
347  EXPORT_SYMBOL(vmalloc_node);
348  
349  /**
350   * vzalloc_node - allocate memory on a specific node with zero fill
351   * @size:	allocation size
352   * @node:	numa node
353   *
354   * Allocate enough pages to cover @size from the page level
355   * allocator and map them into contiguous kernel virtual space.
356   * The memory allocated is set to zero.
357   *
358   * For tight control over page level allocator and protection flags
359   * use __vmalloc() instead.
360   */
361  void *vzalloc_node(unsigned long size, int node)
362  {
363  	return vzalloc(size);
364  }
365  EXPORT_SYMBOL(vzalloc_node);
366  
367  /**
368   *	vmalloc_exec  -  allocate virtually contiguous, executable memory
369   *	@size:		allocation size
370   *
371   *	Kernel-internal function to allocate enough pages to cover @size
372   *	the page level allocator and map them into contiguous and
373   *	executable kernel virtual space.
374   *
375   *	For tight control over page level allocator and protection flags
376   *	use __vmalloc() instead.
377   */
378  
379  void *vmalloc_exec(unsigned long size)
380  {
381  	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382  }
383  
384  /**
385   * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386   *	@size:		allocation size
387   *
388   *	Allocate enough 32bit PA addressable pages to cover @size from the
389   *	page level allocator and map them into contiguous kernel virtual space.
390   */
391  void *vmalloc_32(unsigned long size)
392  {
393  	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394  }
395  EXPORT_SYMBOL(vmalloc_32);
396  
397  /**
398   * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399   *	@size:		allocation size
400   *
401   * The resulting memory area is 32bit addressable and zeroed so it can be
402   * mapped to userspace without leaking data.
403   *
404   * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405   * remap_vmalloc_range() are permissible.
406   */
407  void *vmalloc_32_user(unsigned long size)
408  {
409  	/*
410  	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411  	 * but for now this can simply use vmalloc_user() directly.
412  	 */
413  	return vmalloc_user(size);
414  }
415  EXPORT_SYMBOL(vmalloc_32_user);
416  
417  void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418  {
419  	BUG();
420  	return NULL;
421  }
422  EXPORT_SYMBOL(vmap);
423  
424  void vunmap(const void *addr)
425  {
426  	BUG();
427  }
428  EXPORT_SYMBOL(vunmap);
429  
430  void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431  {
432  	BUG();
433  	return NULL;
434  }
435  EXPORT_SYMBOL(vm_map_ram);
436  
437  void vm_unmap_ram(const void *mem, unsigned int count)
438  {
439  	BUG();
440  }
441  EXPORT_SYMBOL(vm_unmap_ram);
442  
443  void vm_unmap_aliases(void)
444  {
445  }
446  EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447  
448  /*
449   * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450   * have one.
451   */
452  void __weak vmalloc_sync_all(void)
453  {
454  }
455  
456  struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
457  {
458  	BUG();
459  	return NULL;
460  }
461  EXPORT_SYMBOL_GPL(alloc_vm_area);
462  
463  void free_vm_area(struct vm_struct *area)
464  {
465  	BUG();
466  }
467  EXPORT_SYMBOL_GPL(free_vm_area);
468  
469  int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
470  		   struct page *page)
471  {
472  	return -EINVAL;
473  }
474  EXPORT_SYMBOL(vm_insert_page);
475  
476  int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
477  			unsigned long num)
478  {
479  	return -EINVAL;
480  }
481  EXPORT_SYMBOL(vm_map_pages);
482  
483  int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
484  				unsigned long num)
485  {
486  	return -EINVAL;
487  }
488  EXPORT_SYMBOL(vm_map_pages_zero);
489  
490  /*
491   *  sys_brk() for the most part doesn't need the global kernel
492   *  lock, except when an application is doing something nasty
493   *  like trying to un-brk an area that has already been mapped
494   *  to a regular file.  in this case, the unmapping will need
495   *  to invoke file system routines that need the global lock.
496   */
497  SYSCALL_DEFINE1(brk, unsigned long, brk)
498  {
499  	struct mm_struct *mm = current->mm;
500  
501  	if (brk < mm->start_brk || brk > mm->context.end_brk)
502  		return mm->brk;
503  
504  	if (mm->brk == brk)
505  		return mm->brk;
506  
507  	/*
508  	 * Always allow shrinking brk
509  	 */
510  	if (brk <= mm->brk) {
511  		mm->brk = brk;
512  		return brk;
513  	}
514  
515  	/*
516  	 * Ok, looks good - let it rip.
517  	 */
518  	flush_icache_range(mm->brk, brk);
519  	return mm->brk = brk;
520  }
521  
522  /*
523   * initialise the percpu counter for VM and region record slabs
524   */
525  void __init mmap_init(void)
526  {
527  	int ret;
528  
529  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
530  	VM_BUG_ON(ret);
531  	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
532  }
533  
534  /*
535   * validate the region tree
536   * - the caller must hold the region lock
537   */
538  #ifdef CONFIG_DEBUG_NOMMU_REGIONS
539  static noinline void validate_nommu_regions(void)
540  {
541  	struct vm_region *region, *last;
542  	struct rb_node *p, *lastp;
543  
544  	lastp = rb_first(&nommu_region_tree);
545  	if (!lastp)
546  		return;
547  
548  	last = rb_entry(lastp, struct vm_region, vm_rb);
549  	BUG_ON(last->vm_end <= last->vm_start);
550  	BUG_ON(last->vm_top < last->vm_end);
551  
552  	while ((p = rb_next(lastp))) {
553  		region = rb_entry(p, struct vm_region, vm_rb);
554  		last = rb_entry(lastp, struct vm_region, vm_rb);
555  
556  		BUG_ON(region->vm_end <= region->vm_start);
557  		BUG_ON(region->vm_top < region->vm_end);
558  		BUG_ON(region->vm_start < last->vm_top);
559  
560  		lastp = p;
561  	}
562  }
563  #else
564  static void validate_nommu_regions(void)
565  {
566  }
567  #endif
568  
569  /*
570   * add a region into the global tree
571   */
572  static void add_nommu_region(struct vm_region *region)
573  {
574  	struct vm_region *pregion;
575  	struct rb_node **p, *parent;
576  
577  	validate_nommu_regions();
578  
579  	parent = NULL;
580  	p = &nommu_region_tree.rb_node;
581  	while (*p) {
582  		parent = *p;
583  		pregion = rb_entry(parent, struct vm_region, vm_rb);
584  		if (region->vm_start < pregion->vm_start)
585  			p = &(*p)->rb_left;
586  		else if (region->vm_start > pregion->vm_start)
587  			p = &(*p)->rb_right;
588  		else if (pregion == region)
589  			return;
590  		else
591  			BUG();
592  	}
593  
594  	rb_link_node(&region->vm_rb, parent, p);
595  	rb_insert_color(&region->vm_rb, &nommu_region_tree);
596  
597  	validate_nommu_regions();
598  }
599  
600  /*
601   * delete a region from the global tree
602   */
603  static void delete_nommu_region(struct vm_region *region)
604  {
605  	BUG_ON(!nommu_region_tree.rb_node);
606  
607  	validate_nommu_regions();
608  	rb_erase(&region->vm_rb, &nommu_region_tree);
609  	validate_nommu_regions();
610  }
611  
612  /*
613   * free a contiguous series of pages
614   */
615  static void free_page_series(unsigned long from, unsigned long to)
616  {
617  	for (; from < to; from += PAGE_SIZE) {
618  		struct page *page = virt_to_page(from);
619  
620  		atomic_long_dec(&mmap_pages_allocated);
621  		put_page(page);
622  	}
623  }
624  
625  /*
626   * release a reference to a region
627   * - the caller must hold the region semaphore for writing, which this releases
628   * - the region may not have been added to the tree yet, in which case vm_top
629   *   will equal vm_start
630   */
631  static void __put_nommu_region(struct vm_region *region)
632  	__releases(nommu_region_sem)
633  {
634  	BUG_ON(!nommu_region_tree.rb_node);
635  
636  	if (--region->vm_usage == 0) {
637  		if (region->vm_top > region->vm_start)
638  			delete_nommu_region(region);
639  		up_write(&nommu_region_sem);
640  
641  		if (region->vm_file)
642  			fput(region->vm_file);
643  
644  		/* IO memory and memory shared directly out of the pagecache
645  		 * from ramfs/tmpfs mustn't be released here */
646  		if (region->vm_flags & VM_MAPPED_COPY)
647  			free_page_series(region->vm_start, region->vm_top);
648  		kmem_cache_free(vm_region_jar, region);
649  	} else {
650  		up_write(&nommu_region_sem);
651  	}
652  }
653  
654  /*
655   * release a reference to a region
656   */
657  static void put_nommu_region(struct vm_region *region)
658  {
659  	down_write(&nommu_region_sem);
660  	__put_nommu_region(region);
661  }
662  
663  /*
664   * add a VMA into a process's mm_struct in the appropriate place in the list
665   * and tree and add to the address space's page tree also if not an anonymous
666   * page
667   * - should be called with mm->mmap_sem held writelocked
668   */
669  static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
670  {
671  	struct vm_area_struct *pvma, *prev;
672  	struct address_space *mapping;
673  	struct rb_node **p, *parent, *rb_prev;
674  
675  	BUG_ON(!vma->vm_region);
676  
677  	mm->map_count++;
678  	vma->vm_mm = mm;
679  
680  	/* add the VMA to the mapping */
681  	if (vma->vm_file) {
682  		mapping = vma->vm_file->f_mapping;
683  
684  		i_mmap_lock_write(mapping);
685  		flush_dcache_mmap_lock(mapping);
686  		vma_interval_tree_insert(vma, &mapping->i_mmap);
687  		flush_dcache_mmap_unlock(mapping);
688  		i_mmap_unlock_write(mapping);
689  	}
690  
691  	/* add the VMA to the tree */
692  	parent = rb_prev = NULL;
693  	p = &mm->mm_rb.rb_node;
694  	while (*p) {
695  		parent = *p;
696  		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
697  
698  		/* sort by: start addr, end addr, VMA struct addr in that order
699  		 * (the latter is necessary as we may get identical VMAs) */
700  		if (vma->vm_start < pvma->vm_start)
701  			p = &(*p)->rb_left;
702  		else if (vma->vm_start > pvma->vm_start) {
703  			rb_prev = parent;
704  			p = &(*p)->rb_right;
705  		} else if (vma->vm_end < pvma->vm_end)
706  			p = &(*p)->rb_left;
707  		else if (vma->vm_end > pvma->vm_end) {
708  			rb_prev = parent;
709  			p = &(*p)->rb_right;
710  		} else if (vma < pvma)
711  			p = &(*p)->rb_left;
712  		else if (vma > pvma) {
713  			rb_prev = parent;
714  			p = &(*p)->rb_right;
715  		} else
716  			BUG();
717  	}
718  
719  	rb_link_node(&vma->vm_rb, parent, p);
720  	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
721  
722  	/* add VMA to the VMA list also */
723  	prev = NULL;
724  	if (rb_prev)
725  		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
726  
727  	__vma_link_list(mm, vma, prev, parent);
728  }
729  
730  /*
731   * delete a VMA from its owning mm_struct and address space
732   */
733  static void delete_vma_from_mm(struct vm_area_struct *vma)
734  {
735  	int i;
736  	struct address_space *mapping;
737  	struct mm_struct *mm = vma->vm_mm;
738  	struct task_struct *curr = current;
739  
740  	mm->map_count--;
741  	for (i = 0; i < VMACACHE_SIZE; i++) {
742  		/* if the vma is cached, invalidate the entire cache */
743  		if (curr->vmacache.vmas[i] == vma) {
744  			vmacache_invalidate(mm);
745  			break;
746  		}
747  	}
748  
749  	/* remove the VMA from the mapping */
750  	if (vma->vm_file) {
751  		mapping = vma->vm_file->f_mapping;
752  
753  		i_mmap_lock_write(mapping);
754  		flush_dcache_mmap_lock(mapping);
755  		vma_interval_tree_remove(vma, &mapping->i_mmap);
756  		flush_dcache_mmap_unlock(mapping);
757  		i_mmap_unlock_write(mapping);
758  	}
759  
760  	/* remove from the MM's tree and list */
761  	rb_erase(&vma->vm_rb, &mm->mm_rb);
762  
763  	if (vma->vm_prev)
764  		vma->vm_prev->vm_next = vma->vm_next;
765  	else
766  		mm->mmap = vma->vm_next;
767  
768  	if (vma->vm_next)
769  		vma->vm_next->vm_prev = vma->vm_prev;
770  }
771  
772  /*
773   * destroy a VMA record
774   */
775  static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
776  {
777  	if (vma->vm_ops && vma->vm_ops->close)
778  		vma->vm_ops->close(vma);
779  	if (vma->vm_file)
780  		fput(vma->vm_file);
781  	put_nommu_region(vma->vm_region);
782  	vm_area_free(vma);
783  }
784  
785  /*
786   * look up the first VMA in which addr resides, NULL if none
787   * - should be called with mm->mmap_sem at least held readlocked
788   */
789  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
790  {
791  	struct vm_area_struct *vma;
792  
793  	/* check the cache first */
794  	vma = vmacache_find(mm, addr);
795  	if (likely(vma))
796  		return vma;
797  
798  	/* trawl the list (there may be multiple mappings in which addr
799  	 * resides) */
800  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
801  		if (vma->vm_start > addr)
802  			return NULL;
803  		if (vma->vm_end > addr) {
804  			vmacache_update(addr, vma);
805  			return vma;
806  		}
807  	}
808  
809  	return NULL;
810  }
811  EXPORT_SYMBOL(find_vma);
812  
813  /*
814   * find a VMA
815   * - we don't extend stack VMAs under NOMMU conditions
816   */
817  struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
818  {
819  	return find_vma(mm, addr);
820  }
821  
822  /*
823   * expand a stack to a given address
824   * - not supported under NOMMU conditions
825   */
826  int expand_stack(struct vm_area_struct *vma, unsigned long address)
827  {
828  	return -ENOMEM;
829  }
830  
831  /*
832   * look up the first VMA exactly that exactly matches addr
833   * - should be called with mm->mmap_sem at least held readlocked
834   */
835  static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
836  					     unsigned long addr,
837  					     unsigned long len)
838  {
839  	struct vm_area_struct *vma;
840  	unsigned long end = addr + len;
841  
842  	/* check the cache first */
843  	vma = vmacache_find_exact(mm, addr, end);
844  	if (vma)
845  		return vma;
846  
847  	/* trawl the list (there may be multiple mappings in which addr
848  	 * resides) */
849  	for (vma = mm->mmap; vma; vma = vma->vm_next) {
850  		if (vma->vm_start < addr)
851  			continue;
852  		if (vma->vm_start > addr)
853  			return NULL;
854  		if (vma->vm_end == end) {
855  			vmacache_update(addr, vma);
856  			return vma;
857  		}
858  	}
859  
860  	return NULL;
861  }
862  
863  /*
864   * determine whether a mapping should be permitted and, if so, what sort of
865   * mapping we're capable of supporting
866   */
867  static int validate_mmap_request(struct file *file,
868  				 unsigned long addr,
869  				 unsigned long len,
870  				 unsigned long prot,
871  				 unsigned long flags,
872  				 unsigned long pgoff,
873  				 unsigned long *_capabilities)
874  {
875  	unsigned long capabilities, rlen;
876  	int ret;
877  
878  	/* do the simple checks first */
879  	if (flags & MAP_FIXED)
880  		return -EINVAL;
881  
882  	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
883  	    (flags & MAP_TYPE) != MAP_SHARED)
884  		return -EINVAL;
885  
886  	if (!len)
887  		return -EINVAL;
888  
889  	/* Careful about overflows.. */
890  	rlen = PAGE_ALIGN(len);
891  	if (!rlen || rlen > TASK_SIZE)
892  		return -ENOMEM;
893  
894  	/* offset overflow? */
895  	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
896  		return -EOVERFLOW;
897  
898  	if (file) {
899  		/* files must support mmap */
900  		if (!file->f_op->mmap)
901  			return -ENODEV;
902  
903  		/* work out if what we've got could possibly be shared
904  		 * - we support chardevs that provide their own "memory"
905  		 * - we support files/blockdevs that are memory backed
906  		 */
907  		if (file->f_op->mmap_capabilities) {
908  			capabilities = file->f_op->mmap_capabilities(file);
909  		} else {
910  			/* no explicit capabilities set, so assume some
911  			 * defaults */
912  			switch (file_inode(file)->i_mode & S_IFMT) {
913  			case S_IFREG:
914  			case S_IFBLK:
915  				capabilities = NOMMU_MAP_COPY;
916  				break;
917  
918  			case S_IFCHR:
919  				capabilities =
920  					NOMMU_MAP_DIRECT |
921  					NOMMU_MAP_READ |
922  					NOMMU_MAP_WRITE;
923  				break;
924  
925  			default:
926  				return -EINVAL;
927  			}
928  		}
929  
930  		/* eliminate any capabilities that we can't support on this
931  		 * device */
932  		if (!file->f_op->get_unmapped_area)
933  			capabilities &= ~NOMMU_MAP_DIRECT;
934  		if (!(file->f_mode & FMODE_CAN_READ))
935  			capabilities &= ~NOMMU_MAP_COPY;
936  
937  		/* The file shall have been opened with read permission. */
938  		if (!(file->f_mode & FMODE_READ))
939  			return -EACCES;
940  
941  		if (flags & MAP_SHARED) {
942  			/* do checks for writing, appending and locking */
943  			if ((prot & PROT_WRITE) &&
944  			    !(file->f_mode & FMODE_WRITE))
945  				return -EACCES;
946  
947  			if (IS_APPEND(file_inode(file)) &&
948  			    (file->f_mode & FMODE_WRITE))
949  				return -EACCES;
950  
951  			if (locks_verify_locked(file))
952  				return -EAGAIN;
953  
954  			if (!(capabilities & NOMMU_MAP_DIRECT))
955  				return -ENODEV;
956  
957  			/* we mustn't privatise shared mappings */
958  			capabilities &= ~NOMMU_MAP_COPY;
959  		} else {
960  			/* we're going to read the file into private memory we
961  			 * allocate */
962  			if (!(capabilities & NOMMU_MAP_COPY))
963  				return -ENODEV;
964  
965  			/* we don't permit a private writable mapping to be
966  			 * shared with the backing device */
967  			if (prot & PROT_WRITE)
968  				capabilities &= ~NOMMU_MAP_DIRECT;
969  		}
970  
971  		if (capabilities & NOMMU_MAP_DIRECT) {
972  			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
973  			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
974  			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
975  			    ) {
976  				capabilities &= ~NOMMU_MAP_DIRECT;
977  				if (flags & MAP_SHARED) {
978  					pr_warn("MAP_SHARED not completely supported on !MMU\n");
979  					return -EINVAL;
980  				}
981  			}
982  		}
983  
984  		/* handle executable mappings and implied executable
985  		 * mappings */
986  		if (path_noexec(&file->f_path)) {
987  			if (prot & PROT_EXEC)
988  				return -EPERM;
989  		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990  			/* handle implication of PROT_EXEC by PROT_READ */
991  			if (current->personality & READ_IMPLIES_EXEC) {
992  				if (capabilities & NOMMU_MAP_EXEC)
993  					prot |= PROT_EXEC;
994  			}
995  		} else if ((prot & PROT_READ) &&
996  			 (prot & PROT_EXEC) &&
997  			 !(capabilities & NOMMU_MAP_EXEC)
998  			 ) {
999  			/* backing file is not executable, try to copy */
1000  			capabilities &= ~NOMMU_MAP_DIRECT;
1001  		}
1002  	} else {
1003  		/* anonymous mappings are always memory backed and can be
1004  		 * privately mapped
1005  		 */
1006  		capabilities = NOMMU_MAP_COPY;
1007  
1008  		/* handle PROT_EXEC implication by PROT_READ */
1009  		if ((prot & PROT_READ) &&
1010  		    (current->personality & READ_IMPLIES_EXEC))
1011  			prot |= PROT_EXEC;
1012  	}
1013  
1014  	/* allow the security API to have its say */
1015  	ret = security_mmap_addr(addr);
1016  	if (ret < 0)
1017  		return ret;
1018  
1019  	/* looks okay */
1020  	*_capabilities = capabilities;
1021  	return 0;
1022  }
1023  
1024  /*
1025   * we've determined that we can make the mapping, now translate what we
1026   * now know into VMA flags
1027   */
1028  static unsigned long determine_vm_flags(struct file *file,
1029  					unsigned long prot,
1030  					unsigned long flags,
1031  					unsigned long capabilities)
1032  {
1033  	unsigned long vm_flags;
1034  
1035  	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1036  	/* vm_flags |= mm->def_flags; */
1037  
1038  	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1039  		/* attempt to share read-only copies of mapped file chunks */
1040  		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1041  		if (file && !(prot & PROT_WRITE))
1042  			vm_flags |= VM_MAYSHARE;
1043  	} else {
1044  		/* overlay a shareable mapping on the backing device or inode
1045  		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1046  		 * romfs/cramfs */
1047  		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1048  		if (flags & MAP_SHARED)
1049  			vm_flags |= VM_SHARED;
1050  	}
1051  
1052  	/* refuse to let anyone share private mappings with this process if
1053  	 * it's being traced - otherwise breakpoints set in it may interfere
1054  	 * with another untraced process
1055  	 */
1056  	if ((flags & MAP_PRIVATE) && current->ptrace)
1057  		vm_flags &= ~VM_MAYSHARE;
1058  
1059  	return vm_flags;
1060  }
1061  
1062  /*
1063   * set up a shared mapping on a file (the driver or filesystem provides and
1064   * pins the storage)
1065   */
1066  static int do_mmap_shared_file(struct vm_area_struct *vma)
1067  {
1068  	int ret;
1069  
1070  	ret = call_mmap(vma->vm_file, vma);
1071  	if (ret == 0) {
1072  		vma->vm_region->vm_top = vma->vm_region->vm_end;
1073  		return 0;
1074  	}
1075  	if (ret != -ENOSYS)
1076  		return ret;
1077  
1078  	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1079  	 * opposed to tried but failed) so we can only give a suitable error as
1080  	 * it's not possible to make a private copy if MAP_SHARED was given */
1081  	return -ENODEV;
1082  }
1083  
1084  /*
1085   * set up a private mapping or an anonymous shared mapping
1086   */
1087  static int do_mmap_private(struct vm_area_struct *vma,
1088  			   struct vm_region *region,
1089  			   unsigned long len,
1090  			   unsigned long capabilities)
1091  {
1092  	unsigned long total, point;
1093  	void *base;
1094  	int ret, order;
1095  
1096  	/* invoke the file's mapping function so that it can keep track of
1097  	 * shared mappings on devices or memory
1098  	 * - VM_MAYSHARE will be set if it may attempt to share
1099  	 */
1100  	if (capabilities & NOMMU_MAP_DIRECT) {
1101  		ret = call_mmap(vma->vm_file, vma);
1102  		if (ret == 0) {
1103  			/* shouldn't return success if we're not sharing */
1104  			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1105  			vma->vm_region->vm_top = vma->vm_region->vm_end;
1106  			return 0;
1107  		}
1108  		if (ret != -ENOSYS)
1109  			return ret;
1110  
1111  		/* getting an ENOSYS error indicates that direct mmap isn't
1112  		 * possible (as opposed to tried but failed) so we'll try to
1113  		 * make a private copy of the data and map that instead */
1114  	}
1115  
1116  
1117  	/* allocate some memory to hold the mapping
1118  	 * - note that this may not return a page-aligned address if the object
1119  	 *   we're allocating is smaller than a page
1120  	 */
1121  	order = get_order(len);
1122  	total = 1 << order;
1123  	point = len >> PAGE_SHIFT;
1124  
1125  	/* we don't want to allocate a power-of-2 sized page set */
1126  	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1127  		total = point;
1128  
1129  	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1130  	if (!base)
1131  		goto enomem;
1132  
1133  	atomic_long_add(total, &mmap_pages_allocated);
1134  
1135  	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1136  	region->vm_start = (unsigned long) base;
1137  	region->vm_end   = region->vm_start + len;
1138  	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1139  
1140  	vma->vm_start = region->vm_start;
1141  	vma->vm_end   = region->vm_start + len;
1142  
1143  	if (vma->vm_file) {
1144  		/* read the contents of a file into the copy */
1145  		loff_t fpos;
1146  
1147  		fpos = vma->vm_pgoff;
1148  		fpos <<= PAGE_SHIFT;
1149  
1150  		ret = kernel_read(vma->vm_file, base, len, &fpos);
1151  		if (ret < 0)
1152  			goto error_free;
1153  
1154  		/* clear the last little bit */
1155  		if (ret < len)
1156  			memset(base + ret, 0, len - ret);
1157  
1158  	} else {
1159  		vma_set_anonymous(vma);
1160  	}
1161  
1162  	return 0;
1163  
1164  error_free:
1165  	free_page_series(region->vm_start, region->vm_top);
1166  	region->vm_start = vma->vm_start = 0;
1167  	region->vm_end   = vma->vm_end = 0;
1168  	region->vm_top   = 0;
1169  	return ret;
1170  
1171  enomem:
1172  	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173  	       len, current->pid, current->comm);
1174  	show_free_areas(0, NULL);
1175  	return -ENOMEM;
1176  }
1177  
1178  /*
1179   * handle mapping creation for uClinux
1180   */
1181  unsigned long do_mmap(struct file *file,
1182  			unsigned long addr,
1183  			unsigned long len,
1184  			unsigned long prot,
1185  			unsigned long flags,
1186  			vm_flags_t vm_flags,
1187  			unsigned long pgoff,
1188  			unsigned long *populate,
1189  			struct list_head *uf)
1190  {
1191  	struct vm_area_struct *vma;
1192  	struct vm_region *region;
1193  	struct rb_node *rb;
1194  	unsigned long capabilities, result;
1195  	int ret;
1196  
1197  	*populate = 0;
1198  
1199  	/* decide whether we should attempt the mapping, and if so what sort of
1200  	 * mapping */
1201  	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202  				    &capabilities);
1203  	if (ret < 0)
1204  		return ret;
1205  
1206  	/* we ignore the address hint */
1207  	addr = 0;
1208  	len = PAGE_ALIGN(len);
1209  
1210  	/* we've determined that we can make the mapping, now translate what we
1211  	 * now know into VMA flags */
1212  	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213  
1214  	/* we're going to need to record the mapping */
1215  	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216  	if (!region)
1217  		goto error_getting_region;
1218  
1219  	vma = vm_area_alloc(current->mm);
1220  	if (!vma)
1221  		goto error_getting_vma;
1222  
1223  	region->vm_usage = 1;
1224  	region->vm_flags = vm_flags;
1225  	region->vm_pgoff = pgoff;
1226  
1227  	vma->vm_flags = vm_flags;
1228  	vma->vm_pgoff = pgoff;
1229  
1230  	if (file) {
1231  		region->vm_file = get_file(file);
1232  		vma->vm_file = get_file(file);
1233  	}
1234  
1235  	down_write(&nommu_region_sem);
1236  
1237  	/* if we want to share, we need to check for regions created by other
1238  	 * mmap() calls that overlap with our proposed mapping
1239  	 * - we can only share with a superset match on most regular files
1240  	 * - shared mappings on character devices and memory backed files are
1241  	 *   permitted to overlap inexactly as far as we are concerned for in
1242  	 *   these cases, sharing is handled in the driver or filesystem rather
1243  	 *   than here
1244  	 */
1245  	if (vm_flags & VM_MAYSHARE) {
1246  		struct vm_region *pregion;
1247  		unsigned long pglen, rpglen, pgend, rpgend, start;
1248  
1249  		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1250  		pgend = pgoff + pglen;
1251  
1252  		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1253  			pregion = rb_entry(rb, struct vm_region, vm_rb);
1254  
1255  			if (!(pregion->vm_flags & VM_MAYSHARE))
1256  				continue;
1257  
1258  			/* search for overlapping mappings on the same file */
1259  			if (file_inode(pregion->vm_file) !=
1260  			    file_inode(file))
1261  				continue;
1262  
1263  			if (pregion->vm_pgoff >= pgend)
1264  				continue;
1265  
1266  			rpglen = pregion->vm_end - pregion->vm_start;
1267  			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1268  			rpgend = pregion->vm_pgoff + rpglen;
1269  			if (pgoff >= rpgend)
1270  				continue;
1271  
1272  			/* handle inexactly overlapping matches between
1273  			 * mappings */
1274  			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1275  			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1276  				/* new mapping is not a subset of the region */
1277  				if (!(capabilities & NOMMU_MAP_DIRECT))
1278  					goto sharing_violation;
1279  				continue;
1280  			}
1281  
1282  			/* we've found a region we can share */
1283  			pregion->vm_usage++;
1284  			vma->vm_region = pregion;
1285  			start = pregion->vm_start;
1286  			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1287  			vma->vm_start = start;
1288  			vma->vm_end = start + len;
1289  
1290  			if (pregion->vm_flags & VM_MAPPED_COPY)
1291  				vma->vm_flags |= VM_MAPPED_COPY;
1292  			else {
1293  				ret = do_mmap_shared_file(vma);
1294  				if (ret < 0) {
1295  					vma->vm_region = NULL;
1296  					vma->vm_start = 0;
1297  					vma->vm_end = 0;
1298  					pregion->vm_usage--;
1299  					pregion = NULL;
1300  					goto error_just_free;
1301  				}
1302  			}
1303  			fput(region->vm_file);
1304  			kmem_cache_free(vm_region_jar, region);
1305  			region = pregion;
1306  			result = start;
1307  			goto share;
1308  		}
1309  
1310  		/* obtain the address at which to make a shared mapping
1311  		 * - this is the hook for quasi-memory character devices to
1312  		 *   tell us the location of a shared mapping
1313  		 */
1314  		if (capabilities & NOMMU_MAP_DIRECT) {
1315  			addr = file->f_op->get_unmapped_area(file, addr, len,
1316  							     pgoff, flags);
1317  			if (IS_ERR_VALUE(addr)) {
1318  				ret = addr;
1319  				if (ret != -ENOSYS)
1320  					goto error_just_free;
1321  
1322  				/* the driver refused to tell us where to site
1323  				 * the mapping so we'll have to attempt to copy
1324  				 * it */
1325  				ret = -ENODEV;
1326  				if (!(capabilities & NOMMU_MAP_COPY))
1327  					goto error_just_free;
1328  
1329  				capabilities &= ~NOMMU_MAP_DIRECT;
1330  			} else {
1331  				vma->vm_start = region->vm_start = addr;
1332  				vma->vm_end = region->vm_end = addr + len;
1333  			}
1334  		}
1335  	}
1336  
1337  	vma->vm_region = region;
1338  
1339  	/* set up the mapping
1340  	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1341  	 */
1342  	if (file && vma->vm_flags & VM_SHARED)
1343  		ret = do_mmap_shared_file(vma);
1344  	else
1345  		ret = do_mmap_private(vma, region, len, capabilities);
1346  	if (ret < 0)
1347  		goto error_just_free;
1348  	add_nommu_region(region);
1349  
1350  	/* clear anonymous mappings that don't ask for uninitialized data */
1351  	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1352  		memset((void *)region->vm_start, 0,
1353  		       region->vm_end - region->vm_start);
1354  
1355  	/* okay... we have a mapping; now we have to register it */
1356  	result = vma->vm_start;
1357  
1358  	current->mm->total_vm += len >> PAGE_SHIFT;
1359  
1360  share:
1361  	add_vma_to_mm(current->mm, vma);
1362  
1363  	/* we flush the region from the icache only when the first executable
1364  	 * mapping of it is made  */
1365  	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1366  		flush_icache_range(region->vm_start, region->vm_end);
1367  		region->vm_icache_flushed = true;
1368  	}
1369  
1370  	up_write(&nommu_region_sem);
1371  
1372  	return result;
1373  
1374  error_just_free:
1375  	up_write(&nommu_region_sem);
1376  error:
1377  	if (region->vm_file)
1378  		fput(region->vm_file);
1379  	kmem_cache_free(vm_region_jar, region);
1380  	if (vma->vm_file)
1381  		fput(vma->vm_file);
1382  	vm_area_free(vma);
1383  	return ret;
1384  
1385  sharing_violation:
1386  	up_write(&nommu_region_sem);
1387  	pr_warn("Attempt to share mismatched mappings\n");
1388  	ret = -EINVAL;
1389  	goto error;
1390  
1391  error_getting_vma:
1392  	kmem_cache_free(vm_region_jar, region);
1393  	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1394  			len, current->pid);
1395  	show_free_areas(0, NULL);
1396  	return -ENOMEM;
1397  
1398  error_getting_region:
1399  	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1400  			len, current->pid);
1401  	show_free_areas(0, NULL);
1402  	return -ENOMEM;
1403  }
1404  
1405  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406  			      unsigned long prot, unsigned long flags,
1407  			      unsigned long fd, unsigned long pgoff)
1408  {
1409  	struct file *file = NULL;
1410  	unsigned long retval = -EBADF;
1411  
1412  	audit_mmap_fd(fd, flags);
1413  	if (!(flags & MAP_ANONYMOUS)) {
1414  		file = fget(fd);
1415  		if (!file)
1416  			goto out;
1417  	}
1418  
1419  	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1420  
1421  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1422  
1423  	if (file)
1424  		fput(file);
1425  out:
1426  	return retval;
1427  }
1428  
1429  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1430  		unsigned long, prot, unsigned long, flags,
1431  		unsigned long, fd, unsigned long, pgoff)
1432  {
1433  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1434  }
1435  
1436  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1437  struct mmap_arg_struct {
1438  	unsigned long addr;
1439  	unsigned long len;
1440  	unsigned long prot;
1441  	unsigned long flags;
1442  	unsigned long fd;
1443  	unsigned long offset;
1444  };
1445  
1446  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1447  {
1448  	struct mmap_arg_struct a;
1449  
1450  	if (copy_from_user(&a, arg, sizeof(a)))
1451  		return -EFAULT;
1452  	if (offset_in_page(a.offset))
1453  		return -EINVAL;
1454  
1455  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1456  			       a.offset >> PAGE_SHIFT);
1457  }
1458  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459  
1460  /*
1461   * split a vma into two pieces at address 'addr', a new vma is allocated either
1462   * for the first part or the tail.
1463   */
1464  int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1465  	      unsigned long addr, int new_below)
1466  {
1467  	struct vm_area_struct *new;
1468  	struct vm_region *region;
1469  	unsigned long npages;
1470  
1471  	/* we're only permitted to split anonymous regions (these should have
1472  	 * only a single usage on the region) */
1473  	if (vma->vm_file)
1474  		return -ENOMEM;
1475  
1476  	if (mm->map_count >= sysctl_max_map_count)
1477  		return -ENOMEM;
1478  
1479  	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480  	if (!region)
1481  		return -ENOMEM;
1482  
1483  	new = vm_area_dup(vma);
1484  	if (!new) {
1485  		kmem_cache_free(vm_region_jar, region);
1486  		return -ENOMEM;
1487  	}
1488  
1489  	/* most fields are the same, copy all, and then fixup */
1490  	*region = *vma->vm_region;
1491  	new->vm_region = region;
1492  
1493  	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1494  
1495  	if (new_below) {
1496  		region->vm_top = region->vm_end = new->vm_end = addr;
1497  	} else {
1498  		region->vm_start = new->vm_start = addr;
1499  		region->vm_pgoff = new->vm_pgoff += npages;
1500  	}
1501  
1502  	if (new->vm_ops && new->vm_ops->open)
1503  		new->vm_ops->open(new);
1504  
1505  	delete_vma_from_mm(vma);
1506  	down_write(&nommu_region_sem);
1507  	delete_nommu_region(vma->vm_region);
1508  	if (new_below) {
1509  		vma->vm_region->vm_start = vma->vm_start = addr;
1510  		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1511  	} else {
1512  		vma->vm_region->vm_end = vma->vm_end = addr;
1513  		vma->vm_region->vm_top = addr;
1514  	}
1515  	add_nommu_region(vma->vm_region);
1516  	add_nommu_region(new->vm_region);
1517  	up_write(&nommu_region_sem);
1518  	add_vma_to_mm(mm, vma);
1519  	add_vma_to_mm(mm, new);
1520  	return 0;
1521  }
1522  
1523  /*
1524   * shrink a VMA by removing the specified chunk from either the beginning or
1525   * the end
1526   */
1527  static int shrink_vma(struct mm_struct *mm,
1528  		      struct vm_area_struct *vma,
1529  		      unsigned long from, unsigned long to)
1530  {
1531  	struct vm_region *region;
1532  
1533  	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1534  	 * and list */
1535  	delete_vma_from_mm(vma);
1536  	if (from > vma->vm_start)
1537  		vma->vm_end = from;
1538  	else
1539  		vma->vm_start = to;
1540  	add_vma_to_mm(mm, vma);
1541  
1542  	/* cut the backing region down to size */
1543  	region = vma->vm_region;
1544  	BUG_ON(region->vm_usage != 1);
1545  
1546  	down_write(&nommu_region_sem);
1547  	delete_nommu_region(region);
1548  	if (from > region->vm_start) {
1549  		to = region->vm_top;
1550  		region->vm_top = region->vm_end = from;
1551  	} else {
1552  		region->vm_start = to;
1553  	}
1554  	add_nommu_region(region);
1555  	up_write(&nommu_region_sem);
1556  
1557  	free_page_series(from, to);
1558  	return 0;
1559  }
1560  
1561  /*
1562   * release a mapping
1563   * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1564   *   VMA, though it need not cover the whole VMA
1565   */
1566  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1567  {
1568  	struct vm_area_struct *vma;
1569  	unsigned long end;
1570  	int ret;
1571  
1572  	len = PAGE_ALIGN(len);
1573  	if (len == 0)
1574  		return -EINVAL;
1575  
1576  	end = start + len;
1577  
1578  	/* find the first potentially overlapping VMA */
1579  	vma = find_vma(mm, start);
1580  	if (!vma) {
1581  		static int limit;
1582  		if (limit < 5) {
1583  			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1584  					current->pid, current->comm,
1585  					start, start + len - 1);
1586  			limit++;
1587  		}
1588  		return -EINVAL;
1589  	}
1590  
1591  	/* we're allowed to split an anonymous VMA but not a file-backed one */
1592  	if (vma->vm_file) {
1593  		do {
1594  			if (start > vma->vm_start)
1595  				return -EINVAL;
1596  			if (end == vma->vm_end)
1597  				goto erase_whole_vma;
1598  			vma = vma->vm_next;
1599  		} while (vma);
1600  		return -EINVAL;
1601  	} else {
1602  		/* the chunk must be a subset of the VMA found */
1603  		if (start == vma->vm_start && end == vma->vm_end)
1604  			goto erase_whole_vma;
1605  		if (start < vma->vm_start || end > vma->vm_end)
1606  			return -EINVAL;
1607  		if (offset_in_page(start))
1608  			return -EINVAL;
1609  		if (end != vma->vm_end && offset_in_page(end))
1610  			return -EINVAL;
1611  		if (start != vma->vm_start && end != vma->vm_end) {
1612  			ret = split_vma(mm, vma, start, 1);
1613  			if (ret < 0)
1614  				return ret;
1615  		}
1616  		return shrink_vma(mm, vma, start, end);
1617  	}
1618  
1619  erase_whole_vma:
1620  	delete_vma_from_mm(vma);
1621  	delete_vma(mm, vma);
1622  	return 0;
1623  }
1624  EXPORT_SYMBOL(do_munmap);
1625  
1626  int vm_munmap(unsigned long addr, size_t len)
1627  {
1628  	struct mm_struct *mm = current->mm;
1629  	int ret;
1630  
1631  	down_write(&mm->mmap_sem);
1632  	ret = do_munmap(mm, addr, len, NULL);
1633  	up_write(&mm->mmap_sem);
1634  	return ret;
1635  }
1636  EXPORT_SYMBOL(vm_munmap);
1637  
1638  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1639  {
1640  	return vm_munmap(addr, len);
1641  }
1642  
1643  /*
1644   * release all the mappings made in a process's VM space
1645   */
1646  void exit_mmap(struct mm_struct *mm)
1647  {
1648  	struct vm_area_struct *vma;
1649  
1650  	if (!mm)
1651  		return;
1652  
1653  	mm->total_vm = 0;
1654  
1655  	while ((vma = mm->mmap)) {
1656  		mm->mmap = vma->vm_next;
1657  		delete_vma_from_mm(vma);
1658  		delete_vma(mm, vma);
1659  		cond_resched();
1660  	}
1661  }
1662  
1663  int vm_brk(unsigned long addr, unsigned long len)
1664  {
1665  	return -ENOMEM;
1666  }
1667  
1668  /*
1669   * expand (or shrink) an existing mapping, potentially moving it at the same
1670   * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1671   *
1672   * under NOMMU conditions, we only permit changing a mapping's size, and only
1673   * as long as it stays within the region allocated by do_mmap_private() and the
1674   * block is not shareable
1675   *
1676   * MREMAP_FIXED is not supported under NOMMU conditions
1677   */
1678  static unsigned long do_mremap(unsigned long addr,
1679  			unsigned long old_len, unsigned long new_len,
1680  			unsigned long flags, unsigned long new_addr)
1681  {
1682  	struct vm_area_struct *vma;
1683  
1684  	/* insanity checks first */
1685  	old_len = PAGE_ALIGN(old_len);
1686  	new_len = PAGE_ALIGN(new_len);
1687  	if (old_len == 0 || new_len == 0)
1688  		return (unsigned long) -EINVAL;
1689  
1690  	if (offset_in_page(addr))
1691  		return -EINVAL;
1692  
1693  	if (flags & MREMAP_FIXED && new_addr != addr)
1694  		return (unsigned long) -EINVAL;
1695  
1696  	vma = find_vma_exact(current->mm, addr, old_len);
1697  	if (!vma)
1698  		return (unsigned long) -EINVAL;
1699  
1700  	if (vma->vm_end != vma->vm_start + old_len)
1701  		return (unsigned long) -EFAULT;
1702  
1703  	if (vma->vm_flags & VM_MAYSHARE)
1704  		return (unsigned long) -EPERM;
1705  
1706  	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1707  		return (unsigned long) -ENOMEM;
1708  
1709  	/* all checks complete - do it */
1710  	vma->vm_end = vma->vm_start + new_len;
1711  	return vma->vm_start;
1712  }
1713  
1714  SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1715  		unsigned long, new_len, unsigned long, flags,
1716  		unsigned long, new_addr)
1717  {
1718  	unsigned long ret;
1719  
1720  	down_write(&current->mm->mmap_sem);
1721  	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1722  	up_write(&current->mm->mmap_sem);
1723  	return ret;
1724  }
1725  
1726  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1727  			 unsigned int foll_flags)
1728  {
1729  	return NULL;
1730  }
1731  
1732  int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1733  		unsigned long pfn, unsigned long size, pgprot_t prot)
1734  {
1735  	if (addr != (pfn << PAGE_SHIFT))
1736  		return -EINVAL;
1737  
1738  	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1739  	return 0;
1740  }
1741  EXPORT_SYMBOL(remap_pfn_range);
1742  
1743  int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1744  {
1745  	unsigned long pfn = start >> PAGE_SHIFT;
1746  	unsigned long vm_len = vma->vm_end - vma->vm_start;
1747  
1748  	pfn += vma->vm_pgoff;
1749  	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1750  }
1751  EXPORT_SYMBOL(vm_iomap_memory);
1752  
1753  int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1754  			unsigned long pgoff)
1755  {
1756  	unsigned int size = vma->vm_end - vma->vm_start;
1757  
1758  	if (!(vma->vm_flags & VM_USERMAP))
1759  		return -EINVAL;
1760  
1761  	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1762  	vma->vm_end = vma->vm_start + size;
1763  
1764  	return 0;
1765  }
1766  EXPORT_SYMBOL(remap_vmalloc_range);
1767  
1768  unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1769  	unsigned long len, unsigned long pgoff, unsigned long flags)
1770  {
1771  	return -ENOMEM;
1772  }
1773  
1774  vm_fault_t filemap_fault(struct vm_fault *vmf)
1775  {
1776  	BUG();
1777  	return 0;
1778  }
1779  EXPORT_SYMBOL(filemap_fault);
1780  
1781  void filemap_map_pages(struct vm_fault *vmf,
1782  		pgoff_t start_pgoff, pgoff_t end_pgoff)
1783  {
1784  	BUG();
1785  }
1786  EXPORT_SYMBOL(filemap_map_pages);
1787  
1788  int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1789  		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1790  {
1791  	struct vm_area_struct *vma;
1792  	int write = gup_flags & FOLL_WRITE;
1793  
1794  	down_read(&mm->mmap_sem);
1795  
1796  	/* the access must start within one of the target process's mappings */
1797  	vma = find_vma(mm, addr);
1798  	if (vma) {
1799  		/* don't overrun this mapping */
1800  		if (addr + len >= vma->vm_end)
1801  			len = vma->vm_end - addr;
1802  
1803  		/* only read or write mappings where it is permitted */
1804  		if (write && vma->vm_flags & VM_MAYWRITE)
1805  			copy_to_user_page(vma, NULL, addr,
1806  					 (void *) addr, buf, len);
1807  		else if (!write && vma->vm_flags & VM_MAYREAD)
1808  			copy_from_user_page(vma, NULL, addr,
1809  					    buf, (void *) addr, len);
1810  		else
1811  			len = 0;
1812  	} else {
1813  		len = 0;
1814  	}
1815  
1816  	up_read(&mm->mmap_sem);
1817  
1818  	return len;
1819  }
1820  
1821  /**
1822   * access_remote_vm - access another process' address space
1823   * @mm:		the mm_struct of the target address space
1824   * @addr:	start address to access
1825   * @buf:	source or destination buffer
1826   * @len:	number of bytes to transfer
1827   * @gup_flags:	flags modifying lookup behaviour
1828   *
1829   * The caller must hold a reference on @mm.
1830   */
1831  int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1832  		void *buf, int len, unsigned int gup_flags)
1833  {
1834  	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1835  }
1836  
1837  /*
1838   * Access another process' address space.
1839   * - source/target buffer must be kernel space
1840   */
1841  int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1842  		unsigned int gup_flags)
1843  {
1844  	struct mm_struct *mm;
1845  
1846  	if (addr + len < addr)
1847  		return 0;
1848  
1849  	mm = get_task_mm(tsk);
1850  	if (!mm)
1851  		return 0;
1852  
1853  	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1854  
1855  	mmput(mm);
1856  	return len;
1857  }
1858  EXPORT_SYMBOL_GPL(access_process_vm);
1859  
1860  /**
1861   * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1862   * @inode: The inode to check
1863   * @size: The current filesize of the inode
1864   * @newsize: The proposed filesize of the inode
1865   *
1866   * Check the shared mappings on an inode on behalf of a shrinking truncate to
1867   * make sure that that any outstanding VMAs aren't broken and then shrink the
1868   * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1869   * automatically grant mappings that are too large.
1870   */
1871  int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1872  				size_t newsize)
1873  {
1874  	struct vm_area_struct *vma;
1875  	struct vm_region *region;
1876  	pgoff_t low, high;
1877  	size_t r_size, r_top;
1878  
1879  	low = newsize >> PAGE_SHIFT;
1880  	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1881  
1882  	down_write(&nommu_region_sem);
1883  	i_mmap_lock_read(inode->i_mapping);
1884  
1885  	/* search for VMAs that fall within the dead zone */
1886  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1887  		/* found one - only interested if it's shared out of the page
1888  		 * cache */
1889  		if (vma->vm_flags & VM_SHARED) {
1890  			i_mmap_unlock_read(inode->i_mapping);
1891  			up_write(&nommu_region_sem);
1892  			return -ETXTBSY; /* not quite true, but near enough */
1893  		}
1894  	}
1895  
1896  	/* reduce any regions that overlap the dead zone - if in existence,
1897  	 * these will be pointed to by VMAs that don't overlap the dead zone
1898  	 *
1899  	 * we don't check for any regions that start beyond the EOF as there
1900  	 * shouldn't be any
1901  	 */
1902  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1903  		if (!(vma->vm_flags & VM_SHARED))
1904  			continue;
1905  
1906  		region = vma->vm_region;
1907  		r_size = region->vm_top - region->vm_start;
1908  		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1909  
1910  		if (r_top > newsize) {
1911  			region->vm_top -= r_top - newsize;
1912  			if (region->vm_end > region->vm_top)
1913  				region->vm_end = region->vm_top;
1914  		}
1915  	}
1916  
1917  	i_mmap_unlock_read(inode->i_mapping);
1918  	up_write(&nommu_region_sem);
1919  	return 0;
1920  }
1921  
1922  /*
1923   * Initialise sysctl_user_reserve_kbytes.
1924   *
1925   * This is intended to prevent a user from starting a single memory hogging
1926   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1927   * mode.
1928   *
1929   * The default value is min(3% of free memory, 128MB)
1930   * 128MB is enough to recover with sshd/login, bash, and top/kill.
1931   */
1932  static int __meminit init_user_reserve(void)
1933  {
1934  	unsigned long free_kbytes;
1935  
1936  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1937  
1938  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1939  	return 0;
1940  }
1941  subsys_initcall(init_user_reserve);
1942  
1943  /*
1944   * Initialise sysctl_admin_reserve_kbytes.
1945   *
1946   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1947   * to log in and kill a memory hogging process.
1948   *
1949   * Systems with more than 256MB will reserve 8MB, enough to recover
1950   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1951   * only reserve 3% of free pages by default.
1952   */
1953  static int __meminit init_admin_reserve(void)
1954  {
1955  	unsigned long free_kbytes;
1956  
1957  	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1958  
1959  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1960  	return 0;
1961  }
1962  subsys_initcall(init_admin_reserve);
1963