1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vma->vm_flags |= VM_USERMAP; 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread(char *buf, char *addr, unsigned long count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) buf + count < count) 206 count = -(unsigned long) buf; 207 208 memcpy(buf, addr, count); 209 return count; 210 } 211 212 /* 213 * vmalloc - allocate virtually contiguous memory 214 * 215 * @size: allocation size 216 * 217 * Allocate enough pages to cover @size from the page level 218 * allocator and map them into contiguous kernel virtual space. 219 * 220 * For tight control over page level allocator and protection flags 221 * use __vmalloc() instead. 222 */ 223 void *vmalloc(unsigned long size) 224 { 225 return __vmalloc(size, GFP_KERNEL); 226 } 227 EXPORT_SYMBOL(vmalloc); 228 229 /* 230 * vzalloc - allocate virtually contiguous memory with zero fill 231 * 232 * @size: allocation size 233 * 234 * Allocate enough pages to cover @size from the page level 235 * allocator and map them into contiguous kernel virtual space. 236 * The memory allocated is set to zero. 237 * 238 * For tight control over page level allocator and protection flags 239 * use __vmalloc() instead. 240 */ 241 void *vzalloc(unsigned long size) 242 { 243 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 244 } 245 EXPORT_SYMBOL(vzalloc); 246 247 /** 248 * vmalloc_node - allocate memory on a specific node 249 * @size: allocation size 250 * @node: numa node 251 * 252 * Allocate enough pages to cover @size from the page level 253 * allocator and map them into contiguous kernel virtual space. 254 * 255 * For tight control over page level allocator and protection flags 256 * use __vmalloc() instead. 257 */ 258 void *vmalloc_node(unsigned long size, int node) 259 { 260 return vmalloc(size); 261 } 262 EXPORT_SYMBOL(vmalloc_node); 263 264 /** 265 * vzalloc_node - allocate memory on a specific node with zero fill 266 * @size: allocation size 267 * @node: numa node 268 * 269 * Allocate enough pages to cover @size from the page level 270 * allocator and map them into contiguous kernel virtual space. 271 * The memory allocated is set to zero. 272 * 273 * For tight control over page level allocator and protection flags 274 * use __vmalloc() instead. 275 */ 276 void *vzalloc_node(unsigned long size, int node) 277 { 278 return vzalloc(size); 279 } 280 EXPORT_SYMBOL(vzalloc_node); 281 282 /** 283 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 284 * @size: allocation size 285 * 286 * Allocate enough 32bit PA addressable pages to cover @size from the 287 * page level allocator and map them into contiguous kernel virtual space. 288 */ 289 void *vmalloc_32(unsigned long size) 290 { 291 return __vmalloc(size, GFP_KERNEL); 292 } 293 EXPORT_SYMBOL(vmalloc_32); 294 295 /** 296 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 297 * @size: allocation size 298 * 299 * The resulting memory area is 32bit addressable and zeroed so it can be 300 * mapped to userspace without leaking data. 301 * 302 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 303 * remap_vmalloc_range() are permissible. 304 */ 305 void *vmalloc_32_user(unsigned long size) 306 { 307 /* 308 * We'll have to sort out the ZONE_DMA bits for 64-bit, 309 * but for now this can simply use vmalloc_user() directly. 310 */ 311 return vmalloc_user(size); 312 } 313 EXPORT_SYMBOL(vmalloc_32_user); 314 315 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 316 { 317 BUG(); 318 return NULL; 319 } 320 EXPORT_SYMBOL(vmap); 321 322 void vunmap(const void *addr) 323 { 324 BUG(); 325 } 326 EXPORT_SYMBOL(vunmap); 327 328 void *vm_map_ram(struct page **pages, unsigned int count, int node) 329 { 330 BUG(); 331 return NULL; 332 } 333 EXPORT_SYMBOL(vm_map_ram); 334 335 void vm_unmap_ram(const void *mem, unsigned int count) 336 { 337 BUG(); 338 } 339 EXPORT_SYMBOL(vm_unmap_ram); 340 341 void vm_unmap_aliases(void) 342 { 343 } 344 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 345 346 void free_vm_area(struct vm_struct *area) 347 { 348 BUG(); 349 } 350 EXPORT_SYMBOL_GPL(free_vm_area); 351 352 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 353 struct page *page) 354 { 355 return -EINVAL; 356 } 357 EXPORT_SYMBOL(vm_insert_page); 358 359 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 360 unsigned long num) 361 { 362 return -EINVAL; 363 } 364 EXPORT_SYMBOL(vm_map_pages); 365 366 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 367 unsigned long num) 368 { 369 return -EINVAL; 370 } 371 EXPORT_SYMBOL(vm_map_pages_zero); 372 373 /* 374 * sys_brk() for the most part doesn't need the global kernel 375 * lock, except when an application is doing something nasty 376 * like trying to un-brk an area that has already been mapped 377 * to a regular file. in this case, the unmapping will need 378 * to invoke file system routines that need the global lock. 379 */ 380 SYSCALL_DEFINE1(brk, unsigned long, brk) 381 { 382 struct mm_struct *mm = current->mm; 383 384 if (brk < mm->start_brk || brk > mm->context.end_brk) 385 return mm->brk; 386 387 if (mm->brk == brk) 388 return mm->brk; 389 390 /* 391 * Always allow shrinking brk 392 */ 393 if (brk <= mm->brk) { 394 mm->brk = brk; 395 return brk; 396 } 397 398 /* 399 * Ok, looks good - let it rip. 400 */ 401 flush_icache_user_range(mm->brk, brk); 402 return mm->brk = brk; 403 } 404 405 /* 406 * initialise the percpu counter for VM and region record slabs 407 */ 408 void __init mmap_init(void) 409 { 410 int ret; 411 412 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 413 VM_BUG_ON(ret); 414 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 415 } 416 417 /* 418 * validate the region tree 419 * - the caller must hold the region lock 420 */ 421 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 422 static noinline void validate_nommu_regions(void) 423 { 424 struct vm_region *region, *last; 425 struct rb_node *p, *lastp; 426 427 lastp = rb_first(&nommu_region_tree); 428 if (!lastp) 429 return; 430 431 last = rb_entry(lastp, struct vm_region, vm_rb); 432 BUG_ON(last->vm_end <= last->vm_start); 433 BUG_ON(last->vm_top < last->vm_end); 434 435 while ((p = rb_next(lastp))) { 436 region = rb_entry(p, struct vm_region, vm_rb); 437 last = rb_entry(lastp, struct vm_region, vm_rb); 438 439 BUG_ON(region->vm_end <= region->vm_start); 440 BUG_ON(region->vm_top < region->vm_end); 441 BUG_ON(region->vm_start < last->vm_top); 442 443 lastp = p; 444 } 445 } 446 #else 447 static void validate_nommu_regions(void) 448 { 449 } 450 #endif 451 452 /* 453 * add a region into the global tree 454 */ 455 static void add_nommu_region(struct vm_region *region) 456 { 457 struct vm_region *pregion; 458 struct rb_node **p, *parent; 459 460 validate_nommu_regions(); 461 462 parent = NULL; 463 p = &nommu_region_tree.rb_node; 464 while (*p) { 465 parent = *p; 466 pregion = rb_entry(parent, struct vm_region, vm_rb); 467 if (region->vm_start < pregion->vm_start) 468 p = &(*p)->rb_left; 469 else if (region->vm_start > pregion->vm_start) 470 p = &(*p)->rb_right; 471 else if (pregion == region) 472 return; 473 else 474 BUG(); 475 } 476 477 rb_link_node(®ion->vm_rb, parent, p); 478 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 479 480 validate_nommu_regions(); 481 } 482 483 /* 484 * delete a region from the global tree 485 */ 486 static void delete_nommu_region(struct vm_region *region) 487 { 488 BUG_ON(!nommu_region_tree.rb_node); 489 490 validate_nommu_regions(); 491 rb_erase(®ion->vm_rb, &nommu_region_tree); 492 validate_nommu_regions(); 493 } 494 495 /* 496 * free a contiguous series of pages 497 */ 498 static void free_page_series(unsigned long from, unsigned long to) 499 { 500 for (; from < to; from += PAGE_SIZE) { 501 struct page *page = virt_to_page(from); 502 503 atomic_long_dec(&mmap_pages_allocated); 504 put_page(page); 505 } 506 } 507 508 /* 509 * release a reference to a region 510 * - the caller must hold the region semaphore for writing, which this releases 511 * - the region may not have been added to the tree yet, in which case vm_top 512 * will equal vm_start 513 */ 514 static void __put_nommu_region(struct vm_region *region) 515 __releases(nommu_region_sem) 516 { 517 BUG_ON(!nommu_region_tree.rb_node); 518 519 if (--region->vm_usage == 0) { 520 if (region->vm_top > region->vm_start) 521 delete_nommu_region(region); 522 up_write(&nommu_region_sem); 523 524 if (region->vm_file) 525 fput(region->vm_file); 526 527 /* IO memory and memory shared directly out of the pagecache 528 * from ramfs/tmpfs mustn't be released here */ 529 if (region->vm_flags & VM_MAPPED_COPY) 530 free_page_series(region->vm_start, region->vm_top); 531 kmem_cache_free(vm_region_jar, region); 532 } else { 533 up_write(&nommu_region_sem); 534 } 535 } 536 537 /* 538 * release a reference to a region 539 */ 540 static void put_nommu_region(struct vm_region *region) 541 { 542 down_write(&nommu_region_sem); 543 __put_nommu_region(region); 544 } 545 546 /* 547 * add a VMA into a process's mm_struct in the appropriate place in the list 548 * and tree and add to the address space's page tree also if not an anonymous 549 * page 550 * - should be called with mm->mmap_lock held writelocked 551 */ 552 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 553 { 554 struct vm_area_struct *pvma, *prev; 555 struct address_space *mapping; 556 struct rb_node **p, *parent, *rb_prev; 557 558 BUG_ON(!vma->vm_region); 559 560 mm->map_count++; 561 vma->vm_mm = mm; 562 563 /* add the VMA to the mapping */ 564 if (vma->vm_file) { 565 mapping = vma->vm_file->f_mapping; 566 567 i_mmap_lock_write(mapping); 568 flush_dcache_mmap_lock(mapping); 569 vma_interval_tree_insert(vma, &mapping->i_mmap); 570 flush_dcache_mmap_unlock(mapping); 571 i_mmap_unlock_write(mapping); 572 } 573 574 /* add the VMA to the tree */ 575 parent = rb_prev = NULL; 576 p = &mm->mm_rb.rb_node; 577 while (*p) { 578 parent = *p; 579 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 580 581 /* sort by: start addr, end addr, VMA struct addr in that order 582 * (the latter is necessary as we may get identical VMAs) */ 583 if (vma->vm_start < pvma->vm_start) 584 p = &(*p)->rb_left; 585 else if (vma->vm_start > pvma->vm_start) { 586 rb_prev = parent; 587 p = &(*p)->rb_right; 588 } else if (vma->vm_end < pvma->vm_end) 589 p = &(*p)->rb_left; 590 else if (vma->vm_end > pvma->vm_end) { 591 rb_prev = parent; 592 p = &(*p)->rb_right; 593 } else if (vma < pvma) 594 p = &(*p)->rb_left; 595 else if (vma > pvma) { 596 rb_prev = parent; 597 p = &(*p)->rb_right; 598 } else 599 BUG(); 600 } 601 602 rb_link_node(&vma->vm_rb, parent, p); 603 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 604 605 /* add VMA to the VMA list also */ 606 prev = NULL; 607 if (rb_prev) 608 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 609 610 __vma_link_list(mm, vma, prev); 611 } 612 613 /* 614 * delete a VMA from its owning mm_struct and address space 615 */ 616 static void delete_vma_from_mm(struct vm_area_struct *vma) 617 { 618 int i; 619 struct address_space *mapping; 620 struct mm_struct *mm = vma->vm_mm; 621 struct task_struct *curr = current; 622 623 mm->map_count--; 624 for (i = 0; i < VMACACHE_SIZE; i++) { 625 /* if the vma is cached, invalidate the entire cache */ 626 if (curr->vmacache.vmas[i] == vma) { 627 vmacache_invalidate(mm); 628 break; 629 } 630 } 631 632 /* remove the VMA from the mapping */ 633 if (vma->vm_file) { 634 mapping = vma->vm_file->f_mapping; 635 636 i_mmap_lock_write(mapping); 637 flush_dcache_mmap_lock(mapping); 638 vma_interval_tree_remove(vma, &mapping->i_mmap); 639 flush_dcache_mmap_unlock(mapping); 640 i_mmap_unlock_write(mapping); 641 } 642 643 /* remove from the MM's tree and list */ 644 rb_erase(&vma->vm_rb, &mm->mm_rb); 645 646 __vma_unlink_list(mm, vma); 647 } 648 649 /* 650 * destroy a VMA record 651 */ 652 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 653 { 654 if (vma->vm_ops && vma->vm_ops->close) 655 vma->vm_ops->close(vma); 656 if (vma->vm_file) 657 fput(vma->vm_file); 658 put_nommu_region(vma->vm_region); 659 vm_area_free(vma); 660 } 661 662 /* 663 * look up the first VMA in which addr resides, NULL if none 664 * - should be called with mm->mmap_lock at least held readlocked 665 */ 666 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 667 { 668 struct vm_area_struct *vma; 669 670 /* check the cache first */ 671 vma = vmacache_find(mm, addr); 672 if (likely(vma)) 673 return vma; 674 675 /* trawl the list (there may be multiple mappings in which addr 676 * resides) */ 677 for (vma = mm->mmap; vma; vma = vma->vm_next) { 678 if (vma->vm_start > addr) 679 return NULL; 680 if (vma->vm_end > addr) { 681 vmacache_update(addr, vma); 682 return vma; 683 } 684 } 685 686 return NULL; 687 } 688 EXPORT_SYMBOL(find_vma); 689 690 /* 691 * find a VMA 692 * - we don't extend stack VMAs under NOMMU conditions 693 */ 694 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 695 { 696 return find_vma(mm, addr); 697 } 698 699 /* 700 * expand a stack to a given address 701 * - not supported under NOMMU conditions 702 */ 703 int expand_stack(struct vm_area_struct *vma, unsigned long address) 704 { 705 return -ENOMEM; 706 } 707 708 /* 709 * look up the first VMA exactly that exactly matches addr 710 * - should be called with mm->mmap_lock at least held readlocked 711 */ 712 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 713 unsigned long addr, 714 unsigned long len) 715 { 716 struct vm_area_struct *vma; 717 unsigned long end = addr + len; 718 719 /* check the cache first */ 720 vma = vmacache_find_exact(mm, addr, end); 721 if (vma) 722 return vma; 723 724 /* trawl the list (there may be multiple mappings in which addr 725 * resides) */ 726 for (vma = mm->mmap; vma; vma = vma->vm_next) { 727 if (vma->vm_start < addr) 728 continue; 729 if (vma->vm_start > addr) 730 return NULL; 731 if (vma->vm_end == end) { 732 vmacache_update(addr, vma); 733 return vma; 734 } 735 } 736 737 return NULL; 738 } 739 740 /* 741 * determine whether a mapping should be permitted and, if so, what sort of 742 * mapping we're capable of supporting 743 */ 744 static int validate_mmap_request(struct file *file, 745 unsigned long addr, 746 unsigned long len, 747 unsigned long prot, 748 unsigned long flags, 749 unsigned long pgoff, 750 unsigned long *_capabilities) 751 { 752 unsigned long capabilities, rlen; 753 int ret; 754 755 /* do the simple checks first */ 756 if (flags & MAP_FIXED) 757 return -EINVAL; 758 759 if ((flags & MAP_TYPE) != MAP_PRIVATE && 760 (flags & MAP_TYPE) != MAP_SHARED) 761 return -EINVAL; 762 763 if (!len) 764 return -EINVAL; 765 766 /* Careful about overflows.. */ 767 rlen = PAGE_ALIGN(len); 768 if (!rlen || rlen > TASK_SIZE) 769 return -ENOMEM; 770 771 /* offset overflow? */ 772 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 773 return -EOVERFLOW; 774 775 if (file) { 776 /* files must support mmap */ 777 if (!file->f_op->mmap) 778 return -ENODEV; 779 780 /* work out if what we've got could possibly be shared 781 * - we support chardevs that provide their own "memory" 782 * - we support files/blockdevs that are memory backed 783 */ 784 if (file->f_op->mmap_capabilities) { 785 capabilities = file->f_op->mmap_capabilities(file); 786 } else { 787 /* no explicit capabilities set, so assume some 788 * defaults */ 789 switch (file_inode(file)->i_mode & S_IFMT) { 790 case S_IFREG: 791 case S_IFBLK: 792 capabilities = NOMMU_MAP_COPY; 793 break; 794 795 case S_IFCHR: 796 capabilities = 797 NOMMU_MAP_DIRECT | 798 NOMMU_MAP_READ | 799 NOMMU_MAP_WRITE; 800 break; 801 802 default: 803 return -EINVAL; 804 } 805 } 806 807 /* eliminate any capabilities that we can't support on this 808 * device */ 809 if (!file->f_op->get_unmapped_area) 810 capabilities &= ~NOMMU_MAP_DIRECT; 811 if (!(file->f_mode & FMODE_CAN_READ)) 812 capabilities &= ~NOMMU_MAP_COPY; 813 814 /* The file shall have been opened with read permission. */ 815 if (!(file->f_mode & FMODE_READ)) 816 return -EACCES; 817 818 if (flags & MAP_SHARED) { 819 /* do checks for writing, appending and locking */ 820 if ((prot & PROT_WRITE) && 821 !(file->f_mode & FMODE_WRITE)) 822 return -EACCES; 823 824 if (IS_APPEND(file_inode(file)) && 825 (file->f_mode & FMODE_WRITE)) 826 return -EACCES; 827 828 if (!(capabilities & NOMMU_MAP_DIRECT)) 829 return -ENODEV; 830 831 /* we mustn't privatise shared mappings */ 832 capabilities &= ~NOMMU_MAP_COPY; 833 } else { 834 /* we're going to read the file into private memory we 835 * allocate */ 836 if (!(capabilities & NOMMU_MAP_COPY)) 837 return -ENODEV; 838 839 /* we don't permit a private writable mapping to be 840 * shared with the backing device */ 841 if (prot & PROT_WRITE) 842 capabilities &= ~NOMMU_MAP_DIRECT; 843 } 844 845 if (capabilities & NOMMU_MAP_DIRECT) { 846 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 847 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 848 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 849 ) { 850 capabilities &= ~NOMMU_MAP_DIRECT; 851 if (flags & MAP_SHARED) { 852 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 853 return -EINVAL; 854 } 855 } 856 } 857 858 /* handle executable mappings and implied executable 859 * mappings */ 860 if (path_noexec(&file->f_path)) { 861 if (prot & PROT_EXEC) 862 return -EPERM; 863 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 864 /* handle implication of PROT_EXEC by PROT_READ */ 865 if (current->personality & READ_IMPLIES_EXEC) { 866 if (capabilities & NOMMU_MAP_EXEC) 867 prot |= PROT_EXEC; 868 } 869 } else if ((prot & PROT_READ) && 870 (prot & PROT_EXEC) && 871 !(capabilities & NOMMU_MAP_EXEC) 872 ) { 873 /* backing file is not executable, try to copy */ 874 capabilities &= ~NOMMU_MAP_DIRECT; 875 } 876 } else { 877 /* anonymous mappings are always memory backed and can be 878 * privately mapped 879 */ 880 capabilities = NOMMU_MAP_COPY; 881 882 /* handle PROT_EXEC implication by PROT_READ */ 883 if ((prot & PROT_READ) && 884 (current->personality & READ_IMPLIES_EXEC)) 885 prot |= PROT_EXEC; 886 } 887 888 /* allow the security API to have its say */ 889 ret = security_mmap_addr(addr); 890 if (ret < 0) 891 return ret; 892 893 /* looks okay */ 894 *_capabilities = capabilities; 895 return 0; 896 } 897 898 /* 899 * we've determined that we can make the mapping, now translate what we 900 * now know into VMA flags 901 */ 902 static unsigned long determine_vm_flags(struct file *file, 903 unsigned long prot, 904 unsigned long flags, 905 unsigned long capabilities) 906 { 907 unsigned long vm_flags; 908 909 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 910 /* vm_flags |= mm->def_flags; */ 911 912 if (!(capabilities & NOMMU_MAP_DIRECT)) { 913 /* attempt to share read-only copies of mapped file chunks */ 914 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 915 if (file && !(prot & PROT_WRITE)) 916 vm_flags |= VM_MAYSHARE; 917 } else { 918 /* overlay a shareable mapping on the backing device or inode 919 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 920 * romfs/cramfs */ 921 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 922 if (flags & MAP_SHARED) 923 vm_flags |= VM_SHARED; 924 } 925 926 /* refuse to let anyone share private mappings with this process if 927 * it's being traced - otherwise breakpoints set in it may interfere 928 * with another untraced process 929 */ 930 if ((flags & MAP_PRIVATE) && current->ptrace) 931 vm_flags &= ~VM_MAYSHARE; 932 933 return vm_flags; 934 } 935 936 /* 937 * set up a shared mapping on a file (the driver or filesystem provides and 938 * pins the storage) 939 */ 940 static int do_mmap_shared_file(struct vm_area_struct *vma) 941 { 942 int ret; 943 944 ret = call_mmap(vma->vm_file, vma); 945 if (ret == 0) { 946 vma->vm_region->vm_top = vma->vm_region->vm_end; 947 return 0; 948 } 949 if (ret != -ENOSYS) 950 return ret; 951 952 /* getting -ENOSYS indicates that direct mmap isn't possible (as 953 * opposed to tried but failed) so we can only give a suitable error as 954 * it's not possible to make a private copy if MAP_SHARED was given */ 955 return -ENODEV; 956 } 957 958 /* 959 * set up a private mapping or an anonymous shared mapping 960 */ 961 static int do_mmap_private(struct vm_area_struct *vma, 962 struct vm_region *region, 963 unsigned long len, 964 unsigned long capabilities) 965 { 966 unsigned long total, point; 967 void *base; 968 int ret, order; 969 970 /* invoke the file's mapping function so that it can keep track of 971 * shared mappings on devices or memory 972 * - VM_MAYSHARE will be set if it may attempt to share 973 */ 974 if (capabilities & NOMMU_MAP_DIRECT) { 975 ret = call_mmap(vma->vm_file, vma); 976 if (ret == 0) { 977 /* shouldn't return success if we're not sharing */ 978 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 979 vma->vm_region->vm_top = vma->vm_region->vm_end; 980 return 0; 981 } 982 if (ret != -ENOSYS) 983 return ret; 984 985 /* getting an ENOSYS error indicates that direct mmap isn't 986 * possible (as opposed to tried but failed) so we'll try to 987 * make a private copy of the data and map that instead */ 988 } 989 990 991 /* allocate some memory to hold the mapping 992 * - note that this may not return a page-aligned address if the object 993 * we're allocating is smaller than a page 994 */ 995 order = get_order(len); 996 total = 1 << order; 997 point = len >> PAGE_SHIFT; 998 999 /* we don't want to allocate a power-of-2 sized page set */ 1000 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1001 total = point; 1002 1003 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1004 if (!base) 1005 goto enomem; 1006 1007 atomic_long_add(total, &mmap_pages_allocated); 1008 1009 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1010 region->vm_start = (unsigned long) base; 1011 region->vm_end = region->vm_start + len; 1012 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1013 1014 vma->vm_start = region->vm_start; 1015 vma->vm_end = region->vm_start + len; 1016 1017 if (vma->vm_file) { 1018 /* read the contents of a file into the copy */ 1019 loff_t fpos; 1020 1021 fpos = vma->vm_pgoff; 1022 fpos <<= PAGE_SHIFT; 1023 1024 ret = kernel_read(vma->vm_file, base, len, &fpos); 1025 if (ret < 0) 1026 goto error_free; 1027 1028 /* clear the last little bit */ 1029 if (ret < len) 1030 memset(base + ret, 0, len - ret); 1031 1032 } else { 1033 vma_set_anonymous(vma); 1034 } 1035 1036 return 0; 1037 1038 error_free: 1039 free_page_series(region->vm_start, region->vm_top); 1040 region->vm_start = vma->vm_start = 0; 1041 region->vm_end = vma->vm_end = 0; 1042 region->vm_top = 0; 1043 return ret; 1044 1045 enomem: 1046 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1047 len, current->pid, current->comm); 1048 show_free_areas(0, NULL); 1049 return -ENOMEM; 1050 } 1051 1052 /* 1053 * handle mapping creation for uClinux 1054 */ 1055 unsigned long do_mmap(struct file *file, 1056 unsigned long addr, 1057 unsigned long len, 1058 unsigned long prot, 1059 unsigned long flags, 1060 unsigned long pgoff, 1061 unsigned long *populate, 1062 struct list_head *uf) 1063 { 1064 struct vm_area_struct *vma; 1065 struct vm_region *region; 1066 struct rb_node *rb; 1067 vm_flags_t vm_flags; 1068 unsigned long capabilities, result; 1069 int ret; 1070 1071 *populate = 0; 1072 1073 /* decide whether we should attempt the mapping, and if so what sort of 1074 * mapping */ 1075 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1076 &capabilities); 1077 if (ret < 0) 1078 return ret; 1079 1080 /* we ignore the address hint */ 1081 addr = 0; 1082 len = PAGE_ALIGN(len); 1083 1084 /* we've determined that we can make the mapping, now translate what we 1085 * now know into VMA flags */ 1086 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1087 1088 /* we're going to need to record the mapping */ 1089 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1090 if (!region) 1091 goto error_getting_region; 1092 1093 vma = vm_area_alloc(current->mm); 1094 if (!vma) 1095 goto error_getting_vma; 1096 1097 region->vm_usage = 1; 1098 region->vm_flags = vm_flags; 1099 region->vm_pgoff = pgoff; 1100 1101 vma->vm_flags = vm_flags; 1102 vma->vm_pgoff = pgoff; 1103 1104 if (file) { 1105 region->vm_file = get_file(file); 1106 vma->vm_file = get_file(file); 1107 } 1108 1109 down_write(&nommu_region_sem); 1110 1111 /* if we want to share, we need to check for regions created by other 1112 * mmap() calls that overlap with our proposed mapping 1113 * - we can only share with a superset match on most regular files 1114 * - shared mappings on character devices and memory backed files are 1115 * permitted to overlap inexactly as far as we are concerned for in 1116 * these cases, sharing is handled in the driver or filesystem rather 1117 * than here 1118 */ 1119 if (vm_flags & VM_MAYSHARE) { 1120 struct vm_region *pregion; 1121 unsigned long pglen, rpglen, pgend, rpgend, start; 1122 1123 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1124 pgend = pgoff + pglen; 1125 1126 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1127 pregion = rb_entry(rb, struct vm_region, vm_rb); 1128 1129 if (!(pregion->vm_flags & VM_MAYSHARE)) 1130 continue; 1131 1132 /* search for overlapping mappings on the same file */ 1133 if (file_inode(pregion->vm_file) != 1134 file_inode(file)) 1135 continue; 1136 1137 if (pregion->vm_pgoff >= pgend) 1138 continue; 1139 1140 rpglen = pregion->vm_end - pregion->vm_start; 1141 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1142 rpgend = pregion->vm_pgoff + rpglen; 1143 if (pgoff >= rpgend) 1144 continue; 1145 1146 /* handle inexactly overlapping matches between 1147 * mappings */ 1148 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1149 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1150 /* new mapping is not a subset of the region */ 1151 if (!(capabilities & NOMMU_MAP_DIRECT)) 1152 goto sharing_violation; 1153 continue; 1154 } 1155 1156 /* we've found a region we can share */ 1157 pregion->vm_usage++; 1158 vma->vm_region = pregion; 1159 start = pregion->vm_start; 1160 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1161 vma->vm_start = start; 1162 vma->vm_end = start + len; 1163 1164 if (pregion->vm_flags & VM_MAPPED_COPY) 1165 vma->vm_flags |= VM_MAPPED_COPY; 1166 else { 1167 ret = do_mmap_shared_file(vma); 1168 if (ret < 0) { 1169 vma->vm_region = NULL; 1170 vma->vm_start = 0; 1171 vma->vm_end = 0; 1172 pregion->vm_usage--; 1173 pregion = NULL; 1174 goto error_just_free; 1175 } 1176 } 1177 fput(region->vm_file); 1178 kmem_cache_free(vm_region_jar, region); 1179 region = pregion; 1180 result = start; 1181 goto share; 1182 } 1183 1184 /* obtain the address at which to make a shared mapping 1185 * - this is the hook for quasi-memory character devices to 1186 * tell us the location of a shared mapping 1187 */ 1188 if (capabilities & NOMMU_MAP_DIRECT) { 1189 addr = file->f_op->get_unmapped_area(file, addr, len, 1190 pgoff, flags); 1191 if (IS_ERR_VALUE(addr)) { 1192 ret = addr; 1193 if (ret != -ENOSYS) 1194 goto error_just_free; 1195 1196 /* the driver refused to tell us where to site 1197 * the mapping so we'll have to attempt to copy 1198 * it */ 1199 ret = -ENODEV; 1200 if (!(capabilities & NOMMU_MAP_COPY)) 1201 goto error_just_free; 1202 1203 capabilities &= ~NOMMU_MAP_DIRECT; 1204 } else { 1205 vma->vm_start = region->vm_start = addr; 1206 vma->vm_end = region->vm_end = addr + len; 1207 } 1208 } 1209 } 1210 1211 vma->vm_region = region; 1212 1213 /* set up the mapping 1214 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1215 */ 1216 if (file && vma->vm_flags & VM_SHARED) 1217 ret = do_mmap_shared_file(vma); 1218 else 1219 ret = do_mmap_private(vma, region, len, capabilities); 1220 if (ret < 0) 1221 goto error_just_free; 1222 add_nommu_region(region); 1223 1224 /* clear anonymous mappings that don't ask for uninitialized data */ 1225 if (!vma->vm_file && 1226 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1227 !(flags & MAP_UNINITIALIZED))) 1228 memset((void *)region->vm_start, 0, 1229 region->vm_end - region->vm_start); 1230 1231 /* okay... we have a mapping; now we have to register it */ 1232 result = vma->vm_start; 1233 1234 current->mm->total_vm += len >> PAGE_SHIFT; 1235 1236 share: 1237 add_vma_to_mm(current->mm, vma); 1238 1239 /* we flush the region from the icache only when the first executable 1240 * mapping of it is made */ 1241 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1242 flush_icache_user_range(region->vm_start, region->vm_end); 1243 region->vm_icache_flushed = true; 1244 } 1245 1246 up_write(&nommu_region_sem); 1247 1248 return result; 1249 1250 error_just_free: 1251 up_write(&nommu_region_sem); 1252 error: 1253 if (region->vm_file) 1254 fput(region->vm_file); 1255 kmem_cache_free(vm_region_jar, region); 1256 if (vma->vm_file) 1257 fput(vma->vm_file); 1258 vm_area_free(vma); 1259 return ret; 1260 1261 sharing_violation: 1262 up_write(&nommu_region_sem); 1263 pr_warn("Attempt to share mismatched mappings\n"); 1264 ret = -EINVAL; 1265 goto error; 1266 1267 error_getting_vma: 1268 kmem_cache_free(vm_region_jar, region); 1269 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1270 len, current->pid); 1271 show_free_areas(0, NULL); 1272 return -ENOMEM; 1273 1274 error_getting_region: 1275 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1276 len, current->pid); 1277 show_free_areas(0, NULL); 1278 return -ENOMEM; 1279 } 1280 1281 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1282 unsigned long prot, unsigned long flags, 1283 unsigned long fd, unsigned long pgoff) 1284 { 1285 struct file *file = NULL; 1286 unsigned long retval = -EBADF; 1287 1288 audit_mmap_fd(fd, flags); 1289 if (!(flags & MAP_ANONYMOUS)) { 1290 file = fget(fd); 1291 if (!file) 1292 goto out; 1293 } 1294 1295 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1296 1297 if (file) 1298 fput(file); 1299 out: 1300 return retval; 1301 } 1302 1303 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1304 unsigned long, prot, unsigned long, flags, 1305 unsigned long, fd, unsigned long, pgoff) 1306 { 1307 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1308 } 1309 1310 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1311 struct mmap_arg_struct { 1312 unsigned long addr; 1313 unsigned long len; 1314 unsigned long prot; 1315 unsigned long flags; 1316 unsigned long fd; 1317 unsigned long offset; 1318 }; 1319 1320 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1321 { 1322 struct mmap_arg_struct a; 1323 1324 if (copy_from_user(&a, arg, sizeof(a))) 1325 return -EFAULT; 1326 if (offset_in_page(a.offset)) 1327 return -EINVAL; 1328 1329 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1330 a.offset >> PAGE_SHIFT); 1331 } 1332 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1333 1334 /* 1335 * split a vma into two pieces at address 'addr', a new vma is allocated either 1336 * for the first part or the tail. 1337 */ 1338 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1339 unsigned long addr, int new_below) 1340 { 1341 struct vm_area_struct *new; 1342 struct vm_region *region; 1343 unsigned long npages; 1344 1345 /* we're only permitted to split anonymous regions (these should have 1346 * only a single usage on the region) */ 1347 if (vma->vm_file) 1348 return -ENOMEM; 1349 1350 if (mm->map_count >= sysctl_max_map_count) 1351 return -ENOMEM; 1352 1353 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1354 if (!region) 1355 return -ENOMEM; 1356 1357 new = vm_area_dup(vma); 1358 if (!new) { 1359 kmem_cache_free(vm_region_jar, region); 1360 return -ENOMEM; 1361 } 1362 1363 /* most fields are the same, copy all, and then fixup */ 1364 *region = *vma->vm_region; 1365 new->vm_region = region; 1366 1367 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1368 1369 if (new_below) { 1370 region->vm_top = region->vm_end = new->vm_end = addr; 1371 } else { 1372 region->vm_start = new->vm_start = addr; 1373 region->vm_pgoff = new->vm_pgoff += npages; 1374 } 1375 1376 if (new->vm_ops && new->vm_ops->open) 1377 new->vm_ops->open(new); 1378 1379 delete_vma_from_mm(vma); 1380 down_write(&nommu_region_sem); 1381 delete_nommu_region(vma->vm_region); 1382 if (new_below) { 1383 vma->vm_region->vm_start = vma->vm_start = addr; 1384 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1385 } else { 1386 vma->vm_region->vm_end = vma->vm_end = addr; 1387 vma->vm_region->vm_top = addr; 1388 } 1389 add_nommu_region(vma->vm_region); 1390 add_nommu_region(new->vm_region); 1391 up_write(&nommu_region_sem); 1392 add_vma_to_mm(mm, vma); 1393 add_vma_to_mm(mm, new); 1394 return 0; 1395 } 1396 1397 /* 1398 * shrink a VMA by removing the specified chunk from either the beginning or 1399 * the end 1400 */ 1401 static int shrink_vma(struct mm_struct *mm, 1402 struct vm_area_struct *vma, 1403 unsigned long from, unsigned long to) 1404 { 1405 struct vm_region *region; 1406 1407 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1408 * and list */ 1409 delete_vma_from_mm(vma); 1410 if (from > vma->vm_start) 1411 vma->vm_end = from; 1412 else 1413 vma->vm_start = to; 1414 add_vma_to_mm(mm, vma); 1415 1416 /* cut the backing region down to size */ 1417 region = vma->vm_region; 1418 BUG_ON(region->vm_usage != 1); 1419 1420 down_write(&nommu_region_sem); 1421 delete_nommu_region(region); 1422 if (from > region->vm_start) { 1423 to = region->vm_top; 1424 region->vm_top = region->vm_end = from; 1425 } else { 1426 region->vm_start = to; 1427 } 1428 add_nommu_region(region); 1429 up_write(&nommu_region_sem); 1430 1431 free_page_series(from, to); 1432 return 0; 1433 } 1434 1435 /* 1436 * release a mapping 1437 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1438 * VMA, though it need not cover the whole VMA 1439 */ 1440 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1441 { 1442 struct vm_area_struct *vma; 1443 unsigned long end; 1444 int ret; 1445 1446 len = PAGE_ALIGN(len); 1447 if (len == 0) 1448 return -EINVAL; 1449 1450 end = start + len; 1451 1452 /* find the first potentially overlapping VMA */ 1453 vma = find_vma(mm, start); 1454 if (!vma) { 1455 static int limit; 1456 if (limit < 5) { 1457 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1458 current->pid, current->comm, 1459 start, start + len - 1); 1460 limit++; 1461 } 1462 return -EINVAL; 1463 } 1464 1465 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1466 if (vma->vm_file) { 1467 do { 1468 if (start > vma->vm_start) 1469 return -EINVAL; 1470 if (end == vma->vm_end) 1471 goto erase_whole_vma; 1472 vma = vma->vm_next; 1473 } while (vma); 1474 return -EINVAL; 1475 } else { 1476 /* the chunk must be a subset of the VMA found */ 1477 if (start == vma->vm_start && end == vma->vm_end) 1478 goto erase_whole_vma; 1479 if (start < vma->vm_start || end > vma->vm_end) 1480 return -EINVAL; 1481 if (offset_in_page(start)) 1482 return -EINVAL; 1483 if (end != vma->vm_end && offset_in_page(end)) 1484 return -EINVAL; 1485 if (start != vma->vm_start && end != vma->vm_end) { 1486 ret = split_vma(mm, vma, start, 1); 1487 if (ret < 0) 1488 return ret; 1489 } 1490 return shrink_vma(mm, vma, start, end); 1491 } 1492 1493 erase_whole_vma: 1494 delete_vma_from_mm(vma); 1495 delete_vma(mm, vma); 1496 return 0; 1497 } 1498 1499 int vm_munmap(unsigned long addr, size_t len) 1500 { 1501 struct mm_struct *mm = current->mm; 1502 int ret; 1503 1504 mmap_write_lock(mm); 1505 ret = do_munmap(mm, addr, len, NULL); 1506 mmap_write_unlock(mm); 1507 return ret; 1508 } 1509 EXPORT_SYMBOL(vm_munmap); 1510 1511 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1512 { 1513 return vm_munmap(addr, len); 1514 } 1515 1516 /* 1517 * release all the mappings made in a process's VM space 1518 */ 1519 void exit_mmap(struct mm_struct *mm) 1520 { 1521 struct vm_area_struct *vma; 1522 1523 if (!mm) 1524 return; 1525 1526 mm->total_vm = 0; 1527 1528 while ((vma = mm->mmap)) { 1529 mm->mmap = vma->vm_next; 1530 delete_vma_from_mm(vma); 1531 delete_vma(mm, vma); 1532 cond_resched(); 1533 } 1534 } 1535 1536 int vm_brk(unsigned long addr, unsigned long len) 1537 { 1538 return -ENOMEM; 1539 } 1540 1541 /* 1542 * expand (or shrink) an existing mapping, potentially moving it at the same 1543 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1544 * 1545 * under NOMMU conditions, we only permit changing a mapping's size, and only 1546 * as long as it stays within the region allocated by do_mmap_private() and the 1547 * block is not shareable 1548 * 1549 * MREMAP_FIXED is not supported under NOMMU conditions 1550 */ 1551 static unsigned long do_mremap(unsigned long addr, 1552 unsigned long old_len, unsigned long new_len, 1553 unsigned long flags, unsigned long new_addr) 1554 { 1555 struct vm_area_struct *vma; 1556 1557 /* insanity checks first */ 1558 old_len = PAGE_ALIGN(old_len); 1559 new_len = PAGE_ALIGN(new_len); 1560 if (old_len == 0 || new_len == 0) 1561 return (unsigned long) -EINVAL; 1562 1563 if (offset_in_page(addr)) 1564 return -EINVAL; 1565 1566 if (flags & MREMAP_FIXED && new_addr != addr) 1567 return (unsigned long) -EINVAL; 1568 1569 vma = find_vma_exact(current->mm, addr, old_len); 1570 if (!vma) 1571 return (unsigned long) -EINVAL; 1572 1573 if (vma->vm_end != vma->vm_start + old_len) 1574 return (unsigned long) -EFAULT; 1575 1576 if (vma->vm_flags & VM_MAYSHARE) 1577 return (unsigned long) -EPERM; 1578 1579 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1580 return (unsigned long) -ENOMEM; 1581 1582 /* all checks complete - do it */ 1583 vma->vm_end = vma->vm_start + new_len; 1584 return vma->vm_start; 1585 } 1586 1587 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1588 unsigned long, new_len, unsigned long, flags, 1589 unsigned long, new_addr) 1590 { 1591 unsigned long ret; 1592 1593 mmap_write_lock(current->mm); 1594 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1595 mmap_write_unlock(current->mm); 1596 return ret; 1597 } 1598 1599 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1600 unsigned int foll_flags) 1601 { 1602 return NULL; 1603 } 1604 1605 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1606 unsigned long pfn, unsigned long size, pgprot_t prot) 1607 { 1608 if (addr != (pfn << PAGE_SHIFT)) 1609 return -EINVAL; 1610 1611 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(remap_pfn_range); 1615 1616 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1617 { 1618 unsigned long pfn = start >> PAGE_SHIFT; 1619 unsigned long vm_len = vma->vm_end - vma->vm_start; 1620 1621 pfn += vma->vm_pgoff; 1622 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1623 } 1624 EXPORT_SYMBOL(vm_iomap_memory); 1625 1626 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1627 unsigned long pgoff) 1628 { 1629 unsigned int size = vma->vm_end - vma->vm_start; 1630 1631 if (!(vma->vm_flags & VM_USERMAP)) 1632 return -EINVAL; 1633 1634 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1635 vma->vm_end = vma->vm_start + size; 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(remap_vmalloc_range); 1640 1641 vm_fault_t filemap_fault(struct vm_fault *vmf) 1642 { 1643 BUG(); 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(filemap_fault); 1647 1648 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1649 pgoff_t start_pgoff, pgoff_t end_pgoff) 1650 { 1651 BUG(); 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(filemap_map_pages); 1655 1656 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1657 int len, unsigned int gup_flags) 1658 { 1659 struct vm_area_struct *vma; 1660 int write = gup_flags & FOLL_WRITE; 1661 1662 if (mmap_read_lock_killable(mm)) 1663 return 0; 1664 1665 /* the access must start within one of the target process's mappings */ 1666 vma = find_vma(mm, addr); 1667 if (vma) { 1668 /* don't overrun this mapping */ 1669 if (addr + len >= vma->vm_end) 1670 len = vma->vm_end - addr; 1671 1672 /* only read or write mappings where it is permitted */ 1673 if (write && vma->vm_flags & VM_MAYWRITE) 1674 copy_to_user_page(vma, NULL, addr, 1675 (void *) addr, buf, len); 1676 else if (!write && vma->vm_flags & VM_MAYREAD) 1677 copy_from_user_page(vma, NULL, addr, 1678 buf, (void *) addr, len); 1679 else 1680 len = 0; 1681 } else { 1682 len = 0; 1683 } 1684 1685 mmap_read_unlock(mm); 1686 1687 return len; 1688 } 1689 1690 /** 1691 * access_remote_vm - access another process' address space 1692 * @mm: the mm_struct of the target address space 1693 * @addr: start address to access 1694 * @buf: source or destination buffer 1695 * @len: number of bytes to transfer 1696 * @gup_flags: flags modifying lookup behaviour 1697 * 1698 * The caller must hold a reference on @mm. 1699 */ 1700 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1701 void *buf, int len, unsigned int gup_flags) 1702 { 1703 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1704 } 1705 1706 /* 1707 * Access another process' address space. 1708 * - source/target buffer must be kernel space 1709 */ 1710 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1711 unsigned int gup_flags) 1712 { 1713 struct mm_struct *mm; 1714 1715 if (addr + len < addr) 1716 return 0; 1717 1718 mm = get_task_mm(tsk); 1719 if (!mm) 1720 return 0; 1721 1722 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1723 1724 mmput(mm); 1725 return len; 1726 } 1727 EXPORT_SYMBOL_GPL(access_process_vm); 1728 1729 /** 1730 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1731 * @inode: The inode to check 1732 * @size: The current filesize of the inode 1733 * @newsize: The proposed filesize of the inode 1734 * 1735 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1736 * make sure that any outstanding VMAs aren't broken and then shrink the 1737 * vm_regions that extend beyond so that do_mmap() doesn't 1738 * automatically grant mappings that are too large. 1739 */ 1740 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1741 size_t newsize) 1742 { 1743 struct vm_area_struct *vma; 1744 struct vm_region *region; 1745 pgoff_t low, high; 1746 size_t r_size, r_top; 1747 1748 low = newsize >> PAGE_SHIFT; 1749 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1750 1751 down_write(&nommu_region_sem); 1752 i_mmap_lock_read(inode->i_mapping); 1753 1754 /* search for VMAs that fall within the dead zone */ 1755 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1756 /* found one - only interested if it's shared out of the page 1757 * cache */ 1758 if (vma->vm_flags & VM_SHARED) { 1759 i_mmap_unlock_read(inode->i_mapping); 1760 up_write(&nommu_region_sem); 1761 return -ETXTBSY; /* not quite true, but near enough */ 1762 } 1763 } 1764 1765 /* reduce any regions that overlap the dead zone - if in existence, 1766 * these will be pointed to by VMAs that don't overlap the dead zone 1767 * 1768 * we don't check for any regions that start beyond the EOF as there 1769 * shouldn't be any 1770 */ 1771 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1772 if (!(vma->vm_flags & VM_SHARED)) 1773 continue; 1774 1775 region = vma->vm_region; 1776 r_size = region->vm_top - region->vm_start; 1777 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1778 1779 if (r_top > newsize) { 1780 region->vm_top -= r_top - newsize; 1781 if (region->vm_end > region->vm_top) 1782 region->vm_end = region->vm_top; 1783 } 1784 } 1785 1786 i_mmap_unlock_read(inode->i_mapping); 1787 up_write(&nommu_region_sem); 1788 return 0; 1789 } 1790 1791 /* 1792 * Initialise sysctl_user_reserve_kbytes. 1793 * 1794 * This is intended to prevent a user from starting a single memory hogging 1795 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1796 * mode. 1797 * 1798 * The default value is min(3% of free memory, 128MB) 1799 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1800 */ 1801 static int __meminit init_user_reserve(void) 1802 { 1803 unsigned long free_kbytes; 1804 1805 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1806 1807 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1808 return 0; 1809 } 1810 subsys_initcall(init_user_reserve); 1811 1812 /* 1813 * Initialise sysctl_admin_reserve_kbytes. 1814 * 1815 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1816 * to log in and kill a memory hogging process. 1817 * 1818 * Systems with more than 256MB will reserve 8MB, enough to recover 1819 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1820 * only reserve 3% of free pages by default. 1821 */ 1822 static int __meminit init_admin_reserve(void) 1823 { 1824 unsigned long free_kbytes; 1825 1826 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1827 1828 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1829 return 0; 1830 } 1831 subsys_initcall(init_admin_reserve); 1832