1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 if (vma_iter_prealloc(&vmi)) { 587 pr_warn("Allocation of vma tree for process %d failed\n", 588 current->pid); 589 return -ENOMEM; 590 } 591 cleanup_vma_from_mm(vma); 592 593 /* remove from the MM's tree and list */ 594 vma_iter_clear(&vmi, vma->vm_start, vma->vm_end); 595 return 0; 596 } 597 /* 598 * destroy a VMA record 599 */ 600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 601 { 602 if (vma->vm_ops && vma->vm_ops->close) 603 vma->vm_ops->close(vma); 604 if (vma->vm_file) 605 fput(vma->vm_file); 606 put_nommu_region(vma->vm_region); 607 vm_area_free(vma); 608 } 609 610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 611 unsigned long start_addr, 612 unsigned long end_addr) 613 { 614 unsigned long index = start_addr; 615 616 mmap_assert_locked(mm); 617 return mt_find(&mm->mm_mt, &index, end_addr - 1); 618 } 619 EXPORT_SYMBOL(find_vma_intersection); 620 621 /* 622 * look up the first VMA in which addr resides, NULL if none 623 * - should be called with mm->mmap_lock at least held readlocked 624 */ 625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 626 { 627 VMA_ITERATOR(vmi, mm, addr); 628 629 return vma_iter_load(&vmi); 630 } 631 EXPORT_SYMBOL(find_vma); 632 633 /* 634 * find a VMA 635 * - we don't extend stack VMAs under NOMMU conditions 636 */ 637 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 638 { 639 return find_vma(mm, addr); 640 } 641 642 /* 643 * expand a stack to a given address 644 * - not supported under NOMMU conditions 645 */ 646 int expand_stack(struct vm_area_struct *vma, unsigned long address) 647 { 648 return -ENOMEM; 649 } 650 651 /* 652 * look up the first VMA exactly that exactly matches addr 653 * - should be called with mm->mmap_lock at least held readlocked 654 */ 655 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 656 unsigned long addr, 657 unsigned long len) 658 { 659 struct vm_area_struct *vma; 660 unsigned long end = addr + len; 661 VMA_ITERATOR(vmi, mm, addr); 662 663 vma = vma_iter_load(&vmi); 664 if (!vma) 665 return NULL; 666 if (vma->vm_start != addr) 667 return NULL; 668 if (vma->vm_end != end) 669 return NULL; 670 671 return vma; 672 } 673 674 /* 675 * determine whether a mapping should be permitted and, if so, what sort of 676 * mapping we're capable of supporting 677 */ 678 static int validate_mmap_request(struct file *file, 679 unsigned long addr, 680 unsigned long len, 681 unsigned long prot, 682 unsigned long flags, 683 unsigned long pgoff, 684 unsigned long *_capabilities) 685 { 686 unsigned long capabilities, rlen; 687 int ret; 688 689 /* do the simple checks first */ 690 if (flags & MAP_FIXED) 691 return -EINVAL; 692 693 if ((flags & MAP_TYPE) != MAP_PRIVATE && 694 (flags & MAP_TYPE) != MAP_SHARED) 695 return -EINVAL; 696 697 if (!len) 698 return -EINVAL; 699 700 /* Careful about overflows.. */ 701 rlen = PAGE_ALIGN(len); 702 if (!rlen || rlen > TASK_SIZE) 703 return -ENOMEM; 704 705 /* offset overflow? */ 706 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 707 return -EOVERFLOW; 708 709 if (file) { 710 /* files must support mmap */ 711 if (!file->f_op->mmap) 712 return -ENODEV; 713 714 /* work out if what we've got could possibly be shared 715 * - we support chardevs that provide their own "memory" 716 * - we support files/blockdevs that are memory backed 717 */ 718 if (file->f_op->mmap_capabilities) { 719 capabilities = file->f_op->mmap_capabilities(file); 720 } else { 721 /* no explicit capabilities set, so assume some 722 * defaults */ 723 switch (file_inode(file)->i_mode & S_IFMT) { 724 case S_IFREG: 725 case S_IFBLK: 726 capabilities = NOMMU_MAP_COPY; 727 break; 728 729 case S_IFCHR: 730 capabilities = 731 NOMMU_MAP_DIRECT | 732 NOMMU_MAP_READ | 733 NOMMU_MAP_WRITE; 734 break; 735 736 default: 737 return -EINVAL; 738 } 739 } 740 741 /* eliminate any capabilities that we can't support on this 742 * device */ 743 if (!file->f_op->get_unmapped_area) 744 capabilities &= ~NOMMU_MAP_DIRECT; 745 if (!(file->f_mode & FMODE_CAN_READ)) 746 capabilities &= ~NOMMU_MAP_COPY; 747 748 /* The file shall have been opened with read permission. */ 749 if (!(file->f_mode & FMODE_READ)) 750 return -EACCES; 751 752 if (flags & MAP_SHARED) { 753 /* do checks for writing, appending and locking */ 754 if ((prot & PROT_WRITE) && 755 !(file->f_mode & FMODE_WRITE)) 756 return -EACCES; 757 758 if (IS_APPEND(file_inode(file)) && 759 (file->f_mode & FMODE_WRITE)) 760 return -EACCES; 761 762 if (!(capabilities & NOMMU_MAP_DIRECT)) 763 return -ENODEV; 764 765 /* we mustn't privatise shared mappings */ 766 capabilities &= ~NOMMU_MAP_COPY; 767 } else { 768 /* we're going to read the file into private memory we 769 * allocate */ 770 if (!(capabilities & NOMMU_MAP_COPY)) 771 return -ENODEV; 772 773 /* we don't permit a private writable mapping to be 774 * shared with the backing device */ 775 if (prot & PROT_WRITE) 776 capabilities &= ~NOMMU_MAP_DIRECT; 777 } 778 779 if (capabilities & NOMMU_MAP_DIRECT) { 780 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 781 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 782 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 783 ) { 784 capabilities &= ~NOMMU_MAP_DIRECT; 785 if (flags & MAP_SHARED) { 786 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 787 return -EINVAL; 788 } 789 } 790 } 791 792 /* handle executable mappings and implied executable 793 * mappings */ 794 if (path_noexec(&file->f_path)) { 795 if (prot & PROT_EXEC) 796 return -EPERM; 797 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 798 /* handle implication of PROT_EXEC by PROT_READ */ 799 if (current->personality & READ_IMPLIES_EXEC) { 800 if (capabilities & NOMMU_MAP_EXEC) 801 prot |= PROT_EXEC; 802 } 803 } else if ((prot & PROT_READ) && 804 (prot & PROT_EXEC) && 805 !(capabilities & NOMMU_MAP_EXEC) 806 ) { 807 /* backing file is not executable, try to copy */ 808 capabilities &= ~NOMMU_MAP_DIRECT; 809 } 810 } else { 811 /* anonymous mappings are always memory backed and can be 812 * privately mapped 813 */ 814 capabilities = NOMMU_MAP_COPY; 815 816 /* handle PROT_EXEC implication by PROT_READ */ 817 if ((prot & PROT_READ) && 818 (current->personality & READ_IMPLIES_EXEC)) 819 prot |= PROT_EXEC; 820 } 821 822 /* allow the security API to have its say */ 823 ret = security_mmap_addr(addr); 824 if (ret < 0) 825 return ret; 826 827 /* looks okay */ 828 *_capabilities = capabilities; 829 return 0; 830 } 831 832 /* 833 * we've determined that we can make the mapping, now translate what we 834 * now know into VMA flags 835 */ 836 static unsigned long determine_vm_flags(struct file *file, 837 unsigned long prot, 838 unsigned long flags, 839 unsigned long capabilities) 840 { 841 unsigned long vm_flags; 842 843 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 844 845 if (!file) { 846 /* 847 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 848 * there is no fork(). 849 */ 850 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 851 } else if (flags & MAP_PRIVATE) { 852 /* MAP_PRIVATE file mapping */ 853 if (capabilities & NOMMU_MAP_DIRECT) 854 vm_flags |= (capabilities & NOMMU_VMFLAGS); 855 else 856 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 857 858 if (!(prot & PROT_WRITE) && !current->ptrace) 859 /* 860 * R/O private file mapping which cannot be used to 861 * modify memory, especially also not via active ptrace 862 * (e.g., set breakpoints) or later by upgrading 863 * permissions (no mprotect()). We can try overlaying 864 * the file mapping, which will work e.g., on chardevs, 865 * ramfs/tmpfs/shmfs and romfs/cramf. 866 */ 867 vm_flags |= VM_MAYOVERLAY; 868 } else { 869 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 870 vm_flags |= VM_SHARED | VM_MAYSHARE | 871 (capabilities & NOMMU_VMFLAGS); 872 } 873 874 return vm_flags; 875 } 876 877 /* 878 * set up a shared mapping on a file (the driver or filesystem provides and 879 * pins the storage) 880 */ 881 static int do_mmap_shared_file(struct vm_area_struct *vma) 882 { 883 int ret; 884 885 ret = call_mmap(vma->vm_file, vma); 886 if (ret == 0) { 887 vma->vm_region->vm_top = vma->vm_region->vm_end; 888 return 0; 889 } 890 if (ret != -ENOSYS) 891 return ret; 892 893 /* getting -ENOSYS indicates that direct mmap isn't possible (as 894 * opposed to tried but failed) so we can only give a suitable error as 895 * it's not possible to make a private copy if MAP_SHARED was given */ 896 return -ENODEV; 897 } 898 899 /* 900 * set up a private mapping or an anonymous shared mapping 901 */ 902 static int do_mmap_private(struct vm_area_struct *vma, 903 struct vm_region *region, 904 unsigned long len, 905 unsigned long capabilities) 906 { 907 unsigned long total, point; 908 void *base; 909 int ret, order; 910 911 /* 912 * Invoke the file's mapping function so that it can keep track of 913 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 914 * it may attempt to share, which will make is_nommu_shared_mapping() 915 * happy. 916 */ 917 if (capabilities & NOMMU_MAP_DIRECT) { 918 ret = call_mmap(vma->vm_file, vma); 919 /* shouldn't return success if we're not sharing */ 920 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 921 ret = -ENOSYS; 922 if (ret == 0) { 923 vma->vm_region->vm_top = vma->vm_region->vm_end; 924 return 0; 925 } 926 if (ret != -ENOSYS) 927 return ret; 928 929 /* getting an ENOSYS error indicates that direct mmap isn't 930 * possible (as opposed to tried but failed) so we'll try to 931 * make a private copy of the data and map that instead */ 932 } 933 934 935 /* allocate some memory to hold the mapping 936 * - note that this may not return a page-aligned address if the object 937 * we're allocating is smaller than a page 938 */ 939 order = get_order(len); 940 total = 1 << order; 941 point = len >> PAGE_SHIFT; 942 943 /* we don't want to allocate a power-of-2 sized page set */ 944 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 945 total = point; 946 947 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 948 if (!base) 949 goto enomem; 950 951 atomic_long_add(total, &mmap_pages_allocated); 952 953 vm_flags_set(vma, VM_MAPPED_COPY); 954 region->vm_flags = vma->vm_flags; 955 region->vm_start = (unsigned long) base; 956 region->vm_end = region->vm_start + len; 957 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 958 959 vma->vm_start = region->vm_start; 960 vma->vm_end = region->vm_start + len; 961 962 if (vma->vm_file) { 963 /* read the contents of a file into the copy */ 964 loff_t fpos; 965 966 fpos = vma->vm_pgoff; 967 fpos <<= PAGE_SHIFT; 968 969 ret = kernel_read(vma->vm_file, base, len, &fpos); 970 if (ret < 0) 971 goto error_free; 972 973 /* clear the last little bit */ 974 if (ret < len) 975 memset(base + ret, 0, len - ret); 976 977 } else { 978 vma_set_anonymous(vma); 979 } 980 981 return 0; 982 983 error_free: 984 free_page_series(region->vm_start, region->vm_top); 985 region->vm_start = vma->vm_start = 0; 986 region->vm_end = vma->vm_end = 0; 987 region->vm_top = 0; 988 return ret; 989 990 enomem: 991 pr_err("Allocation of length %lu from process %d (%s) failed\n", 992 len, current->pid, current->comm); 993 show_free_areas(0, NULL); 994 return -ENOMEM; 995 } 996 997 /* 998 * handle mapping creation for uClinux 999 */ 1000 unsigned long do_mmap(struct file *file, 1001 unsigned long addr, 1002 unsigned long len, 1003 unsigned long prot, 1004 unsigned long flags, 1005 unsigned long pgoff, 1006 unsigned long *populate, 1007 struct list_head *uf) 1008 { 1009 struct vm_area_struct *vma; 1010 struct vm_region *region; 1011 struct rb_node *rb; 1012 vm_flags_t vm_flags; 1013 unsigned long capabilities, result; 1014 int ret; 1015 VMA_ITERATOR(vmi, current->mm, 0); 1016 1017 *populate = 0; 1018 1019 /* decide whether we should attempt the mapping, and if so what sort of 1020 * mapping */ 1021 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1022 &capabilities); 1023 if (ret < 0) 1024 return ret; 1025 1026 /* we ignore the address hint */ 1027 addr = 0; 1028 len = PAGE_ALIGN(len); 1029 1030 /* we've determined that we can make the mapping, now translate what we 1031 * now know into VMA flags */ 1032 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1033 1034 1035 /* we're going to need to record the mapping */ 1036 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1037 if (!region) 1038 goto error_getting_region; 1039 1040 vma = vm_area_alloc(current->mm); 1041 if (!vma) 1042 goto error_getting_vma; 1043 1044 if (vma_iter_prealloc(&vmi)) 1045 goto error_vma_iter_prealloc; 1046 1047 region->vm_usage = 1; 1048 region->vm_flags = vm_flags; 1049 region->vm_pgoff = pgoff; 1050 1051 vm_flags_init(vma, vm_flags); 1052 vma->vm_pgoff = pgoff; 1053 1054 if (file) { 1055 region->vm_file = get_file(file); 1056 vma->vm_file = get_file(file); 1057 } 1058 1059 down_write(&nommu_region_sem); 1060 1061 /* if we want to share, we need to check for regions created by other 1062 * mmap() calls that overlap with our proposed mapping 1063 * - we can only share with a superset match on most regular files 1064 * - shared mappings on character devices and memory backed files are 1065 * permitted to overlap inexactly as far as we are concerned for in 1066 * these cases, sharing is handled in the driver or filesystem rather 1067 * than here 1068 */ 1069 if (is_nommu_shared_mapping(vm_flags)) { 1070 struct vm_region *pregion; 1071 unsigned long pglen, rpglen, pgend, rpgend, start; 1072 1073 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1074 pgend = pgoff + pglen; 1075 1076 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1077 pregion = rb_entry(rb, struct vm_region, vm_rb); 1078 1079 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1080 continue; 1081 1082 /* search for overlapping mappings on the same file */ 1083 if (file_inode(pregion->vm_file) != 1084 file_inode(file)) 1085 continue; 1086 1087 if (pregion->vm_pgoff >= pgend) 1088 continue; 1089 1090 rpglen = pregion->vm_end - pregion->vm_start; 1091 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1092 rpgend = pregion->vm_pgoff + rpglen; 1093 if (pgoff >= rpgend) 1094 continue; 1095 1096 /* handle inexactly overlapping matches between 1097 * mappings */ 1098 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1099 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1100 /* new mapping is not a subset of the region */ 1101 if (!(capabilities & NOMMU_MAP_DIRECT)) 1102 goto sharing_violation; 1103 continue; 1104 } 1105 1106 /* we've found a region we can share */ 1107 pregion->vm_usage++; 1108 vma->vm_region = pregion; 1109 start = pregion->vm_start; 1110 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1111 vma->vm_start = start; 1112 vma->vm_end = start + len; 1113 1114 if (pregion->vm_flags & VM_MAPPED_COPY) 1115 vm_flags_set(vma, VM_MAPPED_COPY); 1116 else { 1117 ret = do_mmap_shared_file(vma); 1118 if (ret < 0) { 1119 vma->vm_region = NULL; 1120 vma->vm_start = 0; 1121 vma->vm_end = 0; 1122 pregion->vm_usage--; 1123 pregion = NULL; 1124 goto error_just_free; 1125 } 1126 } 1127 fput(region->vm_file); 1128 kmem_cache_free(vm_region_jar, region); 1129 region = pregion; 1130 result = start; 1131 goto share; 1132 } 1133 1134 /* obtain the address at which to make a shared mapping 1135 * - this is the hook for quasi-memory character devices to 1136 * tell us the location of a shared mapping 1137 */ 1138 if (capabilities & NOMMU_MAP_DIRECT) { 1139 addr = file->f_op->get_unmapped_area(file, addr, len, 1140 pgoff, flags); 1141 if (IS_ERR_VALUE(addr)) { 1142 ret = addr; 1143 if (ret != -ENOSYS) 1144 goto error_just_free; 1145 1146 /* the driver refused to tell us where to site 1147 * the mapping so we'll have to attempt to copy 1148 * it */ 1149 ret = -ENODEV; 1150 if (!(capabilities & NOMMU_MAP_COPY)) 1151 goto error_just_free; 1152 1153 capabilities &= ~NOMMU_MAP_DIRECT; 1154 } else { 1155 vma->vm_start = region->vm_start = addr; 1156 vma->vm_end = region->vm_end = addr + len; 1157 } 1158 } 1159 } 1160 1161 vma->vm_region = region; 1162 1163 /* set up the mapping 1164 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1165 */ 1166 if (file && vma->vm_flags & VM_SHARED) 1167 ret = do_mmap_shared_file(vma); 1168 else 1169 ret = do_mmap_private(vma, region, len, capabilities); 1170 if (ret < 0) 1171 goto error_just_free; 1172 add_nommu_region(region); 1173 1174 /* clear anonymous mappings that don't ask for uninitialized data */ 1175 if (!vma->vm_file && 1176 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1177 !(flags & MAP_UNINITIALIZED))) 1178 memset((void *)region->vm_start, 0, 1179 region->vm_end - region->vm_start); 1180 1181 /* okay... we have a mapping; now we have to register it */ 1182 result = vma->vm_start; 1183 1184 current->mm->total_vm += len >> PAGE_SHIFT; 1185 1186 share: 1187 BUG_ON(!vma->vm_region); 1188 setup_vma_to_mm(vma, current->mm); 1189 current->mm->map_count++; 1190 /* add the VMA to the tree */ 1191 vma_iter_store(&vmi, vma); 1192 1193 /* we flush the region from the icache only when the first executable 1194 * mapping of it is made */ 1195 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1196 flush_icache_user_range(region->vm_start, region->vm_end); 1197 region->vm_icache_flushed = true; 1198 } 1199 1200 up_write(&nommu_region_sem); 1201 1202 return result; 1203 1204 error_just_free: 1205 up_write(&nommu_region_sem); 1206 error: 1207 vma_iter_free(&vmi); 1208 if (region->vm_file) 1209 fput(region->vm_file); 1210 kmem_cache_free(vm_region_jar, region); 1211 if (vma->vm_file) 1212 fput(vma->vm_file); 1213 vm_area_free(vma); 1214 return ret; 1215 1216 sharing_violation: 1217 up_write(&nommu_region_sem); 1218 pr_warn("Attempt to share mismatched mappings\n"); 1219 ret = -EINVAL; 1220 goto error; 1221 1222 error_getting_vma: 1223 kmem_cache_free(vm_region_jar, region); 1224 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1225 len, current->pid); 1226 show_free_areas(0, NULL); 1227 return -ENOMEM; 1228 1229 error_getting_region: 1230 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1231 len, current->pid); 1232 show_free_areas(0, NULL); 1233 return -ENOMEM; 1234 1235 error_vma_iter_prealloc: 1236 kmem_cache_free(vm_region_jar, region); 1237 vm_area_free(vma); 1238 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1239 show_free_areas(0, NULL); 1240 return -ENOMEM; 1241 1242 } 1243 1244 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1245 unsigned long prot, unsigned long flags, 1246 unsigned long fd, unsigned long pgoff) 1247 { 1248 struct file *file = NULL; 1249 unsigned long retval = -EBADF; 1250 1251 audit_mmap_fd(fd, flags); 1252 if (!(flags & MAP_ANONYMOUS)) { 1253 file = fget(fd); 1254 if (!file) 1255 goto out; 1256 } 1257 1258 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1259 1260 if (file) 1261 fput(file); 1262 out: 1263 return retval; 1264 } 1265 1266 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1267 unsigned long, prot, unsigned long, flags, 1268 unsigned long, fd, unsigned long, pgoff) 1269 { 1270 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1271 } 1272 1273 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1274 struct mmap_arg_struct { 1275 unsigned long addr; 1276 unsigned long len; 1277 unsigned long prot; 1278 unsigned long flags; 1279 unsigned long fd; 1280 unsigned long offset; 1281 }; 1282 1283 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1284 { 1285 struct mmap_arg_struct a; 1286 1287 if (copy_from_user(&a, arg, sizeof(a))) 1288 return -EFAULT; 1289 if (offset_in_page(a.offset)) 1290 return -EINVAL; 1291 1292 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1293 a.offset >> PAGE_SHIFT); 1294 } 1295 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1296 1297 /* 1298 * split a vma into two pieces at address 'addr', a new vma is allocated either 1299 * for the first part or the tail. 1300 */ 1301 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1302 unsigned long addr, int new_below) 1303 { 1304 struct vm_area_struct *new; 1305 struct vm_region *region; 1306 unsigned long npages; 1307 struct mm_struct *mm; 1308 1309 /* we're only permitted to split anonymous regions (these should have 1310 * only a single usage on the region) */ 1311 if (vma->vm_file) 1312 return -ENOMEM; 1313 1314 mm = vma->vm_mm; 1315 if (mm->map_count >= sysctl_max_map_count) 1316 return -ENOMEM; 1317 1318 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1319 if (!region) 1320 return -ENOMEM; 1321 1322 new = vm_area_dup(vma); 1323 if (!new) 1324 goto err_vma_dup; 1325 1326 if (vma_iter_prealloc(vmi)) { 1327 pr_warn("Allocation of vma tree for process %d failed\n", 1328 current->pid); 1329 goto err_vmi_preallocate; 1330 } 1331 1332 /* most fields are the same, copy all, and then fixup */ 1333 *region = *vma->vm_region; 1334 new->vm_region = region; 1335 1336 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1337 1338 if (new_below) { 1339 region->vm_top = region->vm_end = new->vm_end = addr; 1340 } else { 1341 region->vm_start = new->vm_start = addr; 1342 region->vm_pgoff = new->vm_pgoff += npages; 1343 } 1344 1345 if (new->vm_ops && new->vm_ops->open) 1346 new->vm_ops->open(new); 1347 1348 down_write(&nommu_region_sem); 1349 delete_nommu_region(vma->vm_region); 1350 if (new_below) { 1351 vma->vm_region->vm_start = vma->vm_start = addr; 1352 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1353 } else { 1354 vma->vm_region->vm_end = vma->vm_end = addr; 1355 vma->vm_region->vm_top = addr; 1356 } 1357 add_nommu_region(vma->vm_region); 1358 add_nommu_region(new->vm_region); 1359 up_write(&nommu_region_sem); 1360 1361 setup_vma_to_mm(vma, mm); 1362 setup_vma_to_mm(new, mm); 1363 vma_iter_store(vmi, new); 1364 mm->map_count++; 1365 return 0; 1366 1367 err_vmi_preallocate: 1368 vm_area_free(new); 1369 err_vma_dup: 1370 kmem_cache_free(vm_region_jar, region); 1371 return -ENOMEM; 1372 } 1373 1374 /* 1375 * shrink a VMA by removing the specified chunk from either the beginning or 1376 * the end 1377 */ 1378 static int vmi_shrink_vma(struct vma_iterator *vmi, 1379 struct vm_area_struct *vma, 1380 unsigned long from, unsigned long to) 1381 { 1382 struct vm_region *region; 1383 1384 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1385 * and list */ 1386 if (vma_iter_prealloc(vmi)) { 1387 pr_warn("Allocation of vma tree for process %d failed\n", 1388 current->pid); 1389 return -ENOMEM; 1390 } 1391 1392 if (from > vma->vm_start) { 1393 vma_iter_clear(vmi, from, vma->vm_end); 1394 vma->vm_end = from; 1395 } else { 1396 vma_iter_clear(vmi, vma->vm_start, to); 1397 vma->vm_start = to; 1398 } 1399 1400 /* cut the backing region down to size */ 1401 region = vma->vm_region; 1402 BUG_ON(region->vm_usage != 1); 1403 1404 down_write(&nommu_region_sem); 1405 delete_nommu_region(region); 1406 if (from > region->vm_start) { 1407 to = region->vm_top; 1408 region->vm_top = region->vm_end = from; 1409 } else { 1410 region->vm_start = to; 1411 } 1412 add_nommu_region(region); 1413 up_write(&nommu_region_sem); 1414 1415 free_page_series(from, to); 1416 return 0; 1417 } 1418 1419 /* 1420 * release a mapping 1421 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1422 * VMA, though it need not cover the whole VMA 1423 */ 1424 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1425 { 1426 VMA_ITERATOR(vmi, mm, start); 1427 struct vm_area_struct *vma; 1428 unsigned long end; 1429 int ret = 0; 1430 1431 len = PAGE_ALIGN(len); 1432 if (len == 0) 1433 return -EINVAL; 1434 1435 end = start + len; 1436 1437 /* find the first potentially overlapping VMA */ 1438 vma = vma_find(&vmi, end); 1439 if (!vma) { 1440 static int limit; 1441 if (limit < 5) { 1442 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1443 current->pid, current->comm, 1444 start, start + len - 1); 1445 limit++; 1446 } 1447 return -EINVAL; 1448 } 1449 1450 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1451 if (vma->vm_file) { 1452 do { 1453 if (start > vma->vm_start) 1454 return -EINVAL; 1455 if (end == vma->vm_end) 1456 goto erase_whole_vma; 1457 vma = vma_find(&vmi, end); 1458 } while (vma); 1459 return -EINVAL; 1460 } else { 1461 /* the chunk must be a subset of the VMA found */ 1462 if (start == vma->vm_start && end == vma->vm_end) 1463 goto erase_whole_vma; 1464 if (start < vma->vm_start || end > vma->vm_end) 1465 return -EINVAL; 1466 if (offset_in_page(start)) 1467 return -EINVAL; 1468 if (end != vma->vm_end && offset_in_page(end)) 1469 return -EINVAL; 1470 if (start != vma->vm_start && end != vma->vm_end) { 1471 ret = split_vma(&vmi, vma, start, 1); 1472 if (ret < 0) 1473 return ret; 1474 } 1475 return vmi_shrink_vma(&vmi, vma, start, end); 1476 } 1477 1478 erase_whole_vma: 1479 if (delete_vma_from_mm(vma)) 1480 ret = -ENOMEM; 1481 else 1482 delete_vma(mm, vma); 1483 return ret; 1484 } 1485 1486 int vm_munmap(unsigned long addr, size_t len) 1487 { 1488 struct mm_struct *mm = current->mm; 1489 int ret; 1490 1491 mmap_write_lock(mm); 1492 ret = do_munmap(mm, addr, len, NULL); 1493 mmap_write_unlock(mm); 1494 return ret; 1495 } 1496 EXPORT_SYMBOL(vm_munmap); 1497 1498 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1499 { 1500 return vm_munmap(addr, len); 1501 } 1502 1503 /* 1504 * release all the mappings made in a process's VM space 1505 */ 1506 void exit_mmap(struct mm_struct *mm) 1507 { 1508 VMA_ITERATOR(vmi, mm, 0); 1509 struct vm_area_struct *vma; 1510 1511 if (!mm) 1512 return; 1513 1514 mm->total_vm = 0; 1515 1516 /* 1517 * Lock the mm to avoid assert complaining even though this is the only 1518 * user of the mm 1519 */ 1520 mmap_write_lock(mm); 1521 for_each_vma(vmi, vma) { 1522 cleanup_vma_from_mm(vma); 1523 delete_vma(mm, vma); 1524 cond_resched(); 1525 } 1526 __mt_destroy(&mm->mm_mt); 1527 mmap_write_unlock(mm); 1528 } 1529 1530 int vm_brk(unsigned long addr, unsigned long len) 1531 { 1532 return -ENOMEM; 1533 } 1534 1535 /* 1536 * expand (or shrink) an existing mapping, potentially moving it at the same 1537 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1538 * 1539 * under NOMMU conditions, we only permit changing a mapping's size, and only 1540 * as long as it stays within the region allocated by do_mmap_private() and the 1541 * block is not shareable 1542 * 1543 * MREMAP_FIXED is not supported under NOMMU conditions 1544 */ 1545 static unsigned long do_mremap(unsigned long addr, 1546 unsigned long old_len, unsigned long new_len, 1547 unsigned long flags, unsigned long new_addr) 1548 { 1549 struct vm_area_struct *vma; 1550 1551 /* insanity checks first */ 1552 old_len = PAGE_ALIGN(old_len); 1553 new_len = PAGE_ALIGN(new_len); 1554 if (old_len == 0 || new_len == 0) 1555 return (unsigned long) -EINVAL; 1556 1557 if (offset_in_page(addr)) 1558 return -EINVAL; 1559 1560 if (flags & MREMAP_FIXED && new_addr != addr) 1561 return (unsigned long) -EINVAL; 1562 1563 vma = find_vma_exact(current->mm, addr, old_len); 1564 if (!vma) 1565 return (unsigned long) -EINVAL; 1566 1567 if (vma->vm_end != vma->vm_start + old_len) 1568 return (unsigned long) -EFAULT; 1569 1570 if (is_nommu_shared_mapping(vma->vm_flags)) 1571 return (unsigned long) -EPERM; 1572 1573 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1574 return (unsigned long) -ENOMEM; 1575 1576 /* all checks complete - do it */ 1577 vma->vm_end = vma->vm_start + new_len; 1578 return vma->vm_start; 1579 } 1580 1581 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1582 unsigned long, new_len, unsigned long, flags, 1583 unsigned long, new_addr) 1584 { 1585 unsigned long ret; 1586 1587 mmap_write_lock(current->mm); 1588 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1589 mmap_write_unlock(current->mm); 1590 return ret; 1591 } 1592 1593 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1594 unsigned int foll_flags) 1595 { 1596 return NULL; 1597 } 1598 1599 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1600 unsigned long pfn, unsigned long size, pgprot_t prot) 1601 { 1602 if (addr != (pfn << PAGE_SHIFT)) 1603 return -EINVAL; 1604 1605 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1606 return 0; 1607 } 1608 EXPORT_SYMBOL(remap_pfn_range); 1609 1610 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1611 { 1612 unsigned long pfn = start >> PAGE_SHIFT; 1613 unsigned long vm_len = vma->vm_end - vma->vm_start; 1614 1615 pfn += vma->vm_pgoff; 1616 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1617 } 1618 EXPORT_SYMBOL(vm_iomap_memory); 1619 1620 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1621 unsigned long pgoff) 1622 { 1623 unsigned int size = vma->vm_end - vma->vm_start; 1624 1625 if (!(vma->vm_flags & VM_USERMAP)) 1626 return -EINVAL; 1627 1628 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1629 vma->vm_end = vma->vm_start + size; 1630 1631 return 0; 1632 } 1633 EXPORT_SYMBOL(remap_vmalloc_range); 1634 1635 vm_fault_t filemap_fault(struct vm_fault *vmf) 1636 { 1637 BUG(); 1638 return 0; 1639 } 1640 EXPORT_SYMBOL(filemap_fault); 1641 1642 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1643 pgoff_t start_pgoff, pgoff_t end_pgoff) 1644 { 1645 BUG(); 1646 return 0; 1647 } 1648 EXPORT_SYMBOL(filemap_map_pages); 1649 1650 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1651 int len, unsigned int gup_flags) 1652 { 1653 struct vm_area_struct *vma; 1654 int write = gup_flags & FOLL_WRITE; 1655 1656 if (mmap_read_lock_killable(mm)) 1657 return 0; 1658 1659 /* the access must start within one of the target process's mappings */ 1660 vma = find_vma(mm, addr); 1661 if (vma) { 1662 /* don't overrun this mapping */ 1663 if (addr + len >= vma->vm_end) 1664 len = vma->vm_end - addr; 1665 1666 /* only read or write mappings where it is permitted */ 1667 if (write && vma->vm_flags & VM_MAYWRITE) 1668 copy_to_user_page(vma, NULL, addr, 1669 (void *) addr, buf, len); 1670 else if (!write && vma->vm_flags & VM_MAYREAD) 1671 copy_from_user_page(vma, NULL, addr, 1672 buf, (void *) addr, len); 1673 else 1674 len = 0; 1675 } else { 1676 len = 0; 1677 } 1678 1679 mmap_read_unlock(mm); 1680 1681 return len; 1682 } 1683 1684 /** 1685 * access_remote_vm - access another process' address space 1686 * @mm: the mm_struct of the target address space 1687 * @addr: start address to access 1688 * @buf: source or destination buffer 1689 * @len: number of bytes to transfer 1690 * @gup_flags: flags modifying lookup behaviour 1691 * 1692 * The caller must hold a reference on @mm. 1693 */ 1694 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1695 void *buf, int len, unsigned int gup_flags) 1696 { 1697 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1698 } 1699 1700 /* 1701 * Access another process' address space. 1702 * - source/target buffer must be kernel space 1703 */ 1704 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1705 unsigned int gup_flags) 1706 { 1707 struct mm_struct *mm; 1708 1709 if (addr + len < addr) 1710 return 0; 1711 1712 mm = get_task_mm(tsk); 1713 if (!mm) 1714 return 0; 1715 1716 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1717 1718 mmput(mm); 1719 return len; 1720 } 1721 EXPORT_SYMBOL_GPL(access_process_vm); 1722 1723 /** 1724 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1725 * @inode: The inode to check 1726 * @size: The current filesize of the inode 1727 * @newsize: The proposed filesize of the inode 1728 * 1729 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1730 * make sure that any outstanding VMAs aren't broken and then shrink the 1731 * vm_regions that extend beyond so that do_mmap() doesn't 1732 * automatically grant mappings that are too large. 1733 */ 1734 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1735 size_t newsize) 1736 { 1737 struct vm_area_struct *vma; 1738 struct vm_region *region; 1739 pgoff_t low, high; 1740 size_t r_size, r_top; 1741 1742 low = newsize >> PAGE_SHIFT; 1743 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1744 1745 down_write(&nommu_region_sem); 1746 i_mmap_lock_read(inode->i_mapping); 1747 1748 /* search for VMAs that fall within the dead zone */ 1749 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1750 /* found one - only interested if it's shared out of the page 1751 * cache */ 1752 if (vma->vm_flags & VM_SHARED) { 1753 i_mmap_unlock_read(inode->i_mapping); 1754 up_write(&nommu_region_sem); 1755 return -ETXTBSY; /* not quite true, but near enough */ 1756 } 1757 } 1758 1759 /* reduce any regions that overlap the dead zone - if in existence, 1760 * these will be pointed to by VMAs that don't overlap the dead zone 1761 * 1762 * we don't check for any regions that start beyond the EOF as there 1763 * shouldn't be any 1764 */ 1765 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1766 if (!(vma->vm_flags & VM_SHARED)) 1767 continue; 1768 1769 region = vma->vm_region; 1770 r_size = region->vm_top - region->vm_start; 1771 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1772 1773 if (r_top > newsize) { 1774 region->vm_top -= r_top - newsize; 1775 if (region->vm_end > region->vm_top) 1776 region->vm_end = region->vm_top; 1777 } 1778 } 1779 1780 i_mmap_unlock_read(inode->i_mapping); 1781 up_write(&nommu_region_sem); 1782 return 0; 1783 } 1784 1785 /* 1786 * Initialise sysctl_user_reserve_kbytes. 1787 * 1788 * This is intended to prevent a user from starting a single memory hogging 1789 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1790 * mode. 1791 * 1792 * The default value is min(3% of free memory, 128MB) 1793 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1794 */ 1795 static int __meminit init_user_reserve(void) 1796 { 1797 unsigned long free_kbytes; 1798 1799 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1800 1801 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1802 return 0; 1803 } 1804 subsys_initcall(init_user_reserve); 1805 1806 /* 1807 * Initialise sysctl_admin_reserve_kbytes. 1808 * 1809 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1810 * to log in and kill a memory hogging process. 1811 * 1812 * Systems with more than 256MB will reserve 8MB, enough to recover 1813 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1814 * only reserve 3% of free pages by default. 1815 */ 1816 static int __meminit init_admin_reserve(void) 1817 { 1818 unsigned long free_kbytes; 1819 1820 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1821 1822 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1823 return 0; 1824 } 1825 subsys_initcall(init_admin_reserve); 1826