1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmacache.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return PAGE_SIZE << compound_order(page); 111 } 112 113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 114 unsigned long start, unsigned long nr_pages, 115 unsigned int foll_flags, struct page **pages, 116 struct vm_area_struct **vmas, int *nonblocking) 117 { 118 struct vm_area_struct *vma; 119 unsigned long vm_flags; 120 int i; 121 122 /* calculate required read or write permissions. 123 * If FOLL_FORCE is set, we only require the "MAY" flags. 124 */ 125 vm_flags = (foll_flags & FOLL_WRITE) ? 126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 127 vm_flags &= (foll_flags & FOLL_FORCE) ? 128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 129 130 for (i = 0; i < nr_pages; i++) { 131 vma = find_vma(mm, start); 132 if (!vma) 133 goto finish_or_fault; 134 135 /* protect what we can, including chardevs */ 136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 137 !(vm_flags & vma->vm_flags)) 138 goto finish_or_fault; 139 140 if (pages) { 141 pages[i] = virt_to_page(start); 142 if (pages[i]) 143 get_page(pages[i]); 144 } 145 if (vmas) 146 vmas[i] = vma; 147 start = (start + PAGE_SIZE) & PAGE_MASK; 148 } 149 150 return i; 151 152 finish_or_fault: 153 return i ? : -EFAULT; 154 } 155 156 /* 157 * get a list of pages in an address range belonging to the specified process 158 * and indicate the VMA that covers each page 159 * - this is potentially dodgy as we may end incrementing the page count of a 160 * slab page or a secondary page from a compound page 161 * - don't permit access to VMAs that don't support it, such as I/O mappings 162 */ 163 long get_user_pages(unsigned long start, unsigned long nr_pages, 164 unsigned int gup_flags, struct page **pages, 165 struct vm_area_struct **vmas) 166 { 167 return __get_user_pages(current, current->mm, start, nr_pages, 168 gup_flags, pages, vmas, NULL); 169 } 170 EXPORT_SYMBOL(get_user_pages); 171 172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 173 unsigned int gup_flags, struct page **pages, 174 int *locked) 175 { 176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages_locked); 179 180 static long __get_user_pages_unlocked(struct task_struct *tsk, 181 struct mm_struct *mm, unsigned long start, 182 unsigned long nr_pages, struct page **pages, 183 unsigned int gup_flags) 184 { 185 long ret; 186 down_read(&mm->mmap_sem); 187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 188 NULL, NULL); 189 up_read(&mm->mmap_sem); 190 return ret; 191 } 192 193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 194 struct page **pages, unsigned int gup_flags) 195 { 196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 197 pages, gup_flags); 198 } 199 EXPORT_SYMBOL(get_user_pages_unlocked); 200 201 /** 202 * follow_pfn - look up PFN at a user virtual address 203 * @vma: memory mapping 204 * @address: user virtual address 205 * @pfn: location to store found PFN 206 * 207 * Only IO mappings and raw PFN mappings are allowed. 208 * 209 * Returns zero and the pfn at @pfn on success, -ve otherwise. 210 */ 211 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 212 unsigned long *pfn) 213 { 214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 215 return -EINVAL; 216 217 *pfn = address >> PAGE_SHIFT; 218 return 0; 219 } 220 EXPORT_SYMBOL(follow_pfn); 221 222 LIST_HEAD(vmap_area_list); 223 224 void vfree(const void *addr) 225 { 226 kfree(addr); 227 } 228 EXPORT_SYMBOL(vfree); 229 230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 231 { 232 /* 233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 234 * returns only a logical address. 235 */ 236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(__vmalloc); 239 240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 241 { 242 return __vmalloc(size, flags, PAGE_KERNEL); 243 } 244 245 void *vmalloc_user(unsigned long size) 246 { 247 void *ret; 248 249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 250 if (ret) { 251 struct vm_area_struct *vma; 252 253 down_write(¤t->mm->mmap_sem); 254 vma = find_vma(current->mm, (unsigned long)ret); 255 if (vma) 256 vma->vm_flags |= VM_USERMAP; 257 up_write(¤t->mm->mmap_sem); 258 } 259 260 return ret; 261 } 262 EXPORT_SYMBOL(vmalloc_user); 263 264 struct page *vmalloc_to_page(const void *addr) 265 { 266 return virt_to_page(addr); 267 } 268 EXPORT_SYMBOL(vmalloc_to_page); 269 270 unsigned long vmalloc_to_pfn(const void *addr) 271 { 272 return page_to_pfn(virt_to_page(addr)); 273 } 274 EXPORT_SYMBOL(vmalloc_to_pfn); 275 276 long vread(char *buf, char *addr, unsigned long count) 277 { 278 /* Don't allow overflow */ 279 if ((unsigned long) buf + count < count) 280 count = -(unsigned long) buf; 281 282 memcpy(buf, addr, count); 283 return count; 284 } 285 286 long vwrite(char *buf, char *addr, unsigned long count) 287 { 288 /* Don't allow overflow */ 289 if ((unsigned long) addr + count < count) 290 count = -(unsigned long) addr; 291 292 memcpy(addr, buf, count); 293 return count; 294 } 295 296 /* 297 * vmalloc - allocate virtually contiguous memory 298 * 299 * @size: allocation size 300 * 301 * Allocate enough pages to cover @size from the page level 302 * allocator and map them into contiguous kernel virtual space. 303 * 304 * For tight control over page level allocator and protection flags 305 * use __vmalloc() instead. 306 */ 307 void *vmalloc(unsigned long size) 308 { 309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 310 } 311 EXPORT_SYMBOL(vmalloc); 312 313 /* 314 * vzalloc - allocate virtually contiguous memory with zero fill 315 * 316 * @size: allocation size 317 * 318 * Allocate enough pages to cover @size from the page level 319 * allocator and map them into contiguous kernel virtual space. 320 * The memory allocated is set to zero. 321 * 322 * For tight control over page level allocator and protection flags 323 * use __vmalloc() instead. 324 */ 325 void *vzalloc(unsigned long size) 326 { 327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 328 PAGE_KERNEL); 329 } 330 EXPORT_SYMBOL(vzalloc); 331 332 /** 333 * vmalloc_node - allocate memory on a specific node 334 * @size: allocation size 335 * @node: numa node 336 * 337 * Allocate enough pages to cover @size from the page level 338 * allocator and map them into contiguous kernel virtual space. 339 * 340 * For tight control over page level allocator and protection flags 341 * use __vmalloc() instead. 342 */ 343 void *vmalloc_node(unsigned long size, int node) 344 { 345 return vmalloc(size); 346 } 347 EXPORT_SYMBOL(vmalloc_node); 348 349 /** 350 * vzalloc_node - allocate memory on a specific node with zero fill 351 * @size: allocation size 352 * @node: numa node 353 * 354 * Allocate enough pages to cover @size from the page level 355 * allocator and map them into contiguous kernel virtual space. 356 * The memory allocated is set to zero. 357 * 358 * For tight control over page level allocator and protection flags 359 * use __vmalloc() instead. 360 */ 361 void *vzalloc_node(unsigned long size, int node) 362 { 363 return vzalloc(size); 364 } 365 EXPORT_SYMBOL(vzalloc_node); 366 367 /** 368 * vmalloc_exec - allocate virtually contiguous, executable memory 369 * @size: allocation size 370 * 371 * Kernel-internal function to allocate enough pages to cover @size 372 * the page level allocator and map them into contiguous and 373 * executable kernel virtual space. 374 * 375 * For tight control over page level allocator and protection flags 376 * use __vmalloc() instead. 377 */ 378 379 void *vmalloc_exec(unsigned long size) 380 { 381 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 382 } 383 384 /** 385 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 386 * @size: allocation size 387 * 388 * Allocate enough 32bit PA addressable pages to cover @size from the 389 * page level allocator and map them into contiguous kernel virtual space. 390 */ 391 void *vmalloc_32(unsigned long size) 392 { 393 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 394 } 395 EXPORT_SYMBOL(vmalloc_32); 396 397 /** 398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 399 * @size: allocation size 400 * 401 * The resulting memory area is 32bit addressable and zeroed so it can be 402 * mapped to userspace without leaking data. 403 * 404 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 405 * remap_vmalloc_range() are permissible. 406 */ 407 void *vmalloc_32_user(unsigned long size) 408 { 409 /* 410 * We'll have to sort out the ZONE_DMA bits for 64-bit, 411 * but for now this can simply use vmalloc_user() directly. 412 */ 413 return vmalloc_user(size); 414 } 415 EXPORT_SYMBOL(vmalloc_32_user); 416 417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 418 { 419 BUG(); 420 return NULL; 421 } 422 EXPORT_SYMBOL(vmap); 423 424 void vunmap(const void *addr) 425 { 426 BUG(); 427 } 428 EXPORT_SYMBOL(vunmap); 429 430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 431 { 432 BUG(); 433 return NULL; 434 } 435 EXPORT_SYMBOL(vm_map_ram); 436 437 void vm_unmap_ram(const void *mem, unsigned int count) 438 { 439 BUG(); 440 } 441 EXPORT_SYMBOL(vm_unmap_ram); 442 443 void vm_unmap_aliases(void) 444 { 445 } 446 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 447 448 /* 449 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 450 * have one. 451 */ 452 void __weak vmalloc_sync_all(void) 453 { 454 } 455 456 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 457 { 458 BUG(); 459 return NULL; 460 } 461 EXPORT_SYMBOL_GPL(alloc_vm_area); 462 463 void free_vm_area(struct vm_struct *area) 464 { 465 BUG(); 466 } 467 EXPORT_SYMBOL_GPL(free_vm_area); 468 469 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 470 struct page *page) 471 { 472 return -EINVAL; 473 } 474 EXPORT_SYMBOL(vm_insert_page); 475 476 /* 477 * sys_brk() for the most part doesn't need the global kernel 478 * lock, except when an application is doing something nasty 479 * like trying to un-brk an area that has already been mapped 480 * to a regular file. in this case, the unmapping will need 481 * to invoke file system routines that need the global lock. 482 */ 483 SYSCALL_DEFINE1(brk, unsigned long, brk) 484 { 485 struct mm_struct *mm = current->mm; 486 487 if (brk < mm->start_brk || brk > mm->context.end_brk) 488 return mm->brk; 489 490 if (mm->brk == brk) 491 return mm->brk; 492 493 /* 494 * Always allow shrinking brk 495 */ 496 if (brk <= mm->brk) { 497 mm->brk = brk; 498 return brk; 499 } 500 501 /* 502 * Ok, looks good - let it rip. 503 */ 504 flush_icache_range(mm->brk, brk); 505 return mm->brk = brk; 506 } 507 508 /* 509 * initialise the percpu counter for VM and region record slabs 510 */ 511 void __init mmap_init(void) 512 { 513 int ret; 514 515 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 516 VM_BUG_ON(ret); 517 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 518 } 519 520 /* 521 * validate the region tree 522 * - the caller must hold the region lock 523 */ 524 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 525 static noinline void validate_nommu_regions(void) 526 { 527 struct vm_region *region, *last; 528 struct rb_node *p, *lastp; 529 530 lastp = rb_first(&nommu_region_tree); 531 if (!lastp) 532 return; 533 534 last = rb_entry(lastp, struct vm_region, vm_rb); 535 BUG_ON(last->vm_end <= last->vm_start); 536 BUG_ON(last->vm_top < last->vm_end); 537 538 while ((p = rb_next(lastp))) { 539 region = rb_entry(p, struct vm_region, vm_rb); 540 last = rb_entry(lastp, struct vm_region, vm_rb); 541 542 BUG_ON(region->vm_end <= region->vm_start); 543 BUG_ON(region->vm_top < region->vm_end); 544 BUG_ON(region->vm_start < last->vm_top); 545 546 lastp = p; 547 } 548 } 549 #else 550 static void validate_nommu_regions(void) 551 { 552 } 553 #endif 554 555 /* 556 * add a region into the global tree 557 */ 558 static void add_nommu_region(struct vm_region *region) 559 { 560 struct vm_region *pregion; 561 struct rb_node **p, *parent; 562 563 validate_nommu_regions(); 564 565 parent = NULL; 566 p = &nommu_region_tree.rb_node; 567 while (*p) { 568 parent = *p; 569 pregion = rb_entry(parent, struct vm_region, vm_rb); 570 if (region->vm_start < pregion->vm_start) 571 p = &(*p)->rb_left; 572 else if (region->vm_start > pregion->vm_start) 573 p = &(*p)->rb_right; 574 else if (pregion == region) 575 return; 576 else 577 BUG(); 578 } 579 580 rb_link_node(®ion->vm_rb, parent, p); 581 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 582 583 validate_nommu_regions(); 584 } 585 586 /* 587 * delete a region from the global tree 588 */ 589 static void delete_nommu_region(struct vm_region *region) 590 { 591 BUG_ON(!nommu_region_tree.rb_node); 592 593 validate_nommu_regions(); 594 rb_erase(®ion->vm_rb, &nommu_region_tree); 595 validate_nommu_regions(); 596 } 597 598 /* 599 * free a contiguous series of pages 600 */ 601 static void free_page_series(unsigned long from, unsigned long to) 602 { 603 for (; from < to; from += PAGE_SIZE) { 604 struct page *page = virt_to_page(from); 605 606 atomic_long_dec(&mmap_pages_allocated); 607 put_page(page); 608 } 609 } 610 611 /* 612 * release a reference to a region 613 * - the caller must hold the region semaphore for writing, which this releases 614 * - the region may not have been added to the tree yet, in which case vm_top 615 * will equal vm_start 616 */ 617 static void __put_nommu_region(struct vm_region *region) 618 __releases(nommu_region_sem) 619 { 620 BUG_ON(!nommu_region_tree.rb_node); 621 622 if (--region->vm_usage == 0) { 623 if (region->vm_top > region->vm_start) 624 delete_nommu_region(region); 625 up_write(&nommu_region_sem); 626 627 if (region->vm_file) 628 fput(region->vm_file); 629 630 /* IO memory and memory shared directly out of the pagecache 631 * from ramfs/tmpfs mustn't be released here */ 632 if (region->vm_flags & VM_MAPPED_COPY) 633 free_page_series(region->vm_start, region->vm_top); 634 kmem_cache_free(vm_region_jar, region); 635 } else { 636 up_write(&nommu_region_sem); 637 } 638 } 639 640 /* 641 * release a reference to a region 642 */ 643 static void put_nommu_region(struct vm_region *region) 644 { 645 down_write(&nommu_region_sem); 646 __put_nommu_region(region); 647 } 648 649 /* 650 * add a VMA into a process's mm_struct in the appropriate place in the list 651 * and tree and add to the address space's page tree also if not an anonymous 652 * page 653 * - should be called with mm->mmap_sem held writelocked 654 */ 655 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 656 { 657 struct vm_area_struct *pvma, *prev; 658 struct address_space *mapping; 659 struct rb_node **p, *parent, *rb_prev; 660 661 BUG_ON(!vma->vm_region); 662 663 mm->map_count++; 664 vma->vm_mm = mm; 665 666 /* add the VMA to the mapping */ 667 if (vma->vm_file) { 668 mapping = vma->vm_file->f_mapping; 669 670 i_mmap_lock_write(mapping); 671 flush_dcache_mmap_lock(mapping); 672 vma_interval_tree_insert(vma, &mapping->i_mmap); 673 flush_dcache_mmap_unlock(mapping); 674 i_mmap_unlock_write(mapping); 675 } 676 677 /* add the VMA to the tree */ 678 parent = rb_prev = NULL; 679 p = &mm->mm_rb.rb_node; 680 while (*p) { 681 parent = *p; 682 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 683 684 /* sort by: start addr, end addr, VMA struct addr in that order 685 * (the latter is necessary as we may get identical VMAs) */ 686 if (vma->vm_start < pvma->vm_start) 687 p = &(*p)->rb_left; 688 else if (vma->vm_start > pvma->vm_start) { 689 rb_prev = parent; 690 p = &(*p)->rb_right; 691 } else if (vma->vm_end < pvma->vm_end) 692 p = &(*p)->rb_left; 693 else if (vma->vm_end > pvma->vm_end) { 694 rb_prev = parent; 695 p = &(*p)->rb_right; 696 } else if (vma < pvma) 697 p = &(*p)->rb_left; 698 else if (vma > pvma) { 699 rb_prev = parent; 700 p = &(*p)->rb_right; 701 } else 702 BUG(); 703 } 704 705 rb_link_node(&vma->vm_rb, parent, p); 706 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 707 708 /* add VMA to the VMA list also */ 709 prev = NULL; 710 if (rb_prev) 711 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 712 713 __vma_link_list(mm, vma, prev, parent); 714 } 715 716 /* 717 * delete a VMA from its owning mm_struct and address space 718 */ 719 static void delete_vma_from_mm(struct vm_area_struct *vma) 720 { 721 int i; 722 struct address_space *mapping; 723 struct mm_struct *mm = vma->vm_mm; 724 struct task_struct *curr = current; 725 726 mm->map_count--; 727 for (i = 0; i < VMACACHE_SIZE; i++) { 728 /* if the vma is cached, invalidate the entire cache */ 729 if (curr->vmacache.vmas[i] == vma) { 730 vmacache_invalidate(mm); 731 break; 732 } 733 } 734 735 /* remove the VMA from the mapping */ 736 if (vma->vm_file) { 737 mapping = vma->vm_file->f_mapping; 738 739 i_mmap_lock_write(mapping); 740 flush_dcache_mmap_lock(mapping); 741 vma_interval_tree_remove(vma, &mapping->i_mmap); 742 flush_dcache_mmap_unlock(mapping); 743 i_mmap_unlock_write(mapping); 744 } 745 746 /* remove from the MM's tree and list */ 747 rb_erase(&vma->vm_rb, &mm->mm_rb); 748 749 if (vma->vm_prev) 750 vma->vm_prev->vm_next = vma->vm_next; 751 else 752 mm->mmap = vma->vm_next; 753 754 if (vma->vm_next) 755 vma->vm_next->vm_prev = vma->vm_prev; 756 } 757 758 /* 759 * destroy a VMA record 760 */ 761 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 762 { 763 if (vma->vm_ops && vma->vm_ops->close) 764 vma->vm_ops->close(vma); 765 if (vma->vm_file) 766 fput(vma->vm_file); 767 put_nommu_region(vma->vm_region); 768 vm_area_free(vma); 769 } 770 771 /* 772 * look up the first VMA in which addr resides, NULL if none 773 * - should be called with mm->mmap_sem at least held readlocked 774 */ 775 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 776 { 777 struct vm_area_struct *vma; 778 779 /* check the cache first */ 780 vma = vmacache_find(mm, addr); 781 if (likely(vma)) 782 return vma; 783 784 /* trawl the list (there may be multiple mappings in which addr 785 * resides) */ 786 for (vma = mm->mmap; vma; vma = vma->vm_next) { 787 if (vma->vm_start > addr) 788 return NULL; 789 if (vma->vm_end > addr) { 790 vmacache_update(addr, vma); 791 return vma; 792 } 793 } 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(find_vma); 798 799 /* 800 * find a VMA 801 * - we don't extend stack VMAs under NOMMU conditions 802 */ 803 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 804 { 805 return find_vma(mm, addr); 806 } 807 808 /* 809 * expand a stack to a given address 810 * - not supported under NOMMU conditions 811 */ 812 int expand_stack(struct vm_area_struct *vma, unsigned long address) 813 { 814 return -ENOMEM; 815 } 816 817 /* 818 * look up the first VMA exactly that exactly matches addr 819 * - should be called with mm->mmap_sem at least held readlocked 820 */ 821 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 822 unsigned long addr, 823 unsigned long len) 824 { 825 struct vm_area_struct *vma; 826 unsigned long end = addr + len; 827 828 /* check the cache first */ 829 vma = vmacache_find_exact(mm, addr, end); 830 if (vma) 831 return vma; 832 833 /* trawl the list (there may be multiple mappings in which addr 834 * resides) */ 835 for (vma = mm->mmap; vma; vma = vma->vm_next) { 836 if (vma->vm_start < addr) 837 continue; 838 if (vma->vm_start > addr) 839 return NULL; 840 if (vma->vm_end == end) { 841 vmacache_update(addr, vma); 842 return vma; 843 } 844 } 845 846 return NULL; 847 } 848 849 /* 850 * determine whether a mapping should be permitted and, if so, what sort of 851 * mapping we're capable of supporting 852 */ 853 static int validate_mmap_request(struct file *file, 854 unsigned long addr, 855 unsigned long len, 856 unsigned long prot, 857 unsigned long flags, 858 unsigned long pgoff, 859 unsigned long *_capabilities) 860 { 861 unsigned long capabilities, rlen; 862 int ret; 863 864 /* do the simple checks first */ 865 if (flags & MAP_FIXED) 866 return -EINVAL; 867 868 if ((flags & MAP_TYPE) != MAP_PRIVATE && 869 (flags & MAP_TYPE) != MAP_SHARED) 870 return -EINVAL; 871 872 if (!len) 873 return -EINVAL; 874 875 /* Careful about overflows.. */ 876 rlen = PAGE_ALIGN(len); 877 if (!rlen || rlen > TASK_SIZE) 878 return -ENOMEM; 879 880 /* offset overflow? */ 881 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 882 return -EOVERFLOW; 883 884 if (file) { 885 /* files must support mmap */ 886 if (!file->f_op->mmap) 887 return -ENODEV; 888 889 /* work out if what we've got could possibly be shared 890 * - we support chardevs that provide their own "memory" 891 * - we support files/blockdevs that are memory backed 892 */ 893 if (file->f_op->mmap_capabilities) { 894 capabilities = file->f_op->mmap_capabilities(file); 895 } else { 896 /* no explicit capabilities set, so assume some 897 * defaults */ 898 switch (file_inode(file)->i_mode & S_IFMT) { 899 case S_IFREG: 900 case S_IFBLK: 901 capabilities = NOMMU_MAP_COPY; 902 break; 903 904 case S_IFCHR: 905 capabilities = 906 NOMMU_MAP_DIRECT | 907 NOMMU_MAP_READ | 908 NOMMU_MAP_WRITE; 909 break; 910 911 default: 912 return -EINVAL; 913 } 914 } 915 916 /* eliminate any capabilities that we can't support on this 917 * device */ 918 if (!file->f_op->get_unmapped_area) 919 capabilities &= ~NOMMU_MAP_DIRECT; 920 if (!(file->f_mode & FMODE_CAN_READ)) 921 capabilities &= ~NOMMU_MAP_COPY; 922 923 /* The file shall have been opened with read permission. */ 924 if (!(file->f_mode & FMODE_READ)) 925 return -EACCES; 926 927 if (flags & MAP_SHARED) { 928 /* do checks for writing, appending and locking */ 929 if ((prot & PROT_WRITE) && 930 !(file->f_mode & FMODE_WRITE)) 931 return -EACCES; 932 933 if (IS_APPEND(file_inode(file)) && 934 (file->f_mode & FMODE_WRITE)) 935 return -EACCES; 936 937 if (locks_verify_locked(file)) 938 return -EAGAIN; 939 940 if (!(capabilities & NOMMU_MAP_DIRECT)) 941 return -ENODEV; 942 943 /* we mustn't privatise shared mappings */ 944 capabilities &= ~NOMMU_MAP_COPY; 945 } else { 946 /* we're going to read the file into private memory we 947 * allocate */ 948 if (!(capabilities & NOMMU_MAP_COPY)) 949 return -ENODEV; 950 951 /* we don't permit a private writable mapping to be 952 * shared with the backing device */ 953 if (prot & PROT_WRITE) 954 capabilities &= ~NOMMU_MAP_DIRECT; 955 } 956 957 if (capabilities & NOMMU_MAP_DIRECT) { 958 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 959 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 960 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 961 ) { 962 capabilities &= ~NOMMU_MAP_DIRECT; 963 if (flags & MAP_SHARED) { 964 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 965 return -EINVAL; 966 } 967 } 968 } 969 970 /* handle executable mappings and implied executable 971 * mappings */ 972 if (path_noexec(&file->f_path)) { 973 if (prot & PROT_EXEC) 974 return -EPERM; 975 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 976 /* handle implication of PROT_EXEC by PROT_READ */ 977 if (current->personality & READ_IMPLIES_EXEC) { 978 if (capabilities & NOMMU_MAP_EXEC) 979 prot |= PROT_EXEC; 980 } 981 } else if ((prot & PROT_READ) && 982 (prot & PROT_EXEC) && 983 !(capabilities & NOMMU_MAP_EXEC) 984 ) { 985 /* backing file is not executable, try to copy */ 986 capabilities &= ~NOMMU_MAP_DIRECT; 987 } 988 } else { 989 /* anonymous mappings are always memory backed and can be 990 * privately mapped 991 */ 992 capabilities = NOMMU_MAP_COPY; 993 994 /* handle PROT_EXEC implication by PROT_READ */ 995 if ((prot & PROT_READ) && 996 (current->personality & READ_IMPLIES_EXEC)) 997 prot |= PROT_EXEC; 998 } 999 1000 /* allow the security API to have its say */ 1001 ret = security_mmap_addr(addr); 1002 if (ret < 0) 1003 return ret; 1004 1005 /* looks okay */ 1006 *_capabilities = capabilities; 1007 return 0; 1008 } 1009 1010 /* 1011 * we've determined that we can make the mapping, now translate what we 1012 * now know into VMA flags 1013 */ 1014 static unsigned long determine_vm_flags(struct file *file, 1015 unsigned long prot, 1016 unsigned long flags, 1017 unsigned long capabilities) 1018 { 1019 unsigned long vm_flags; 1020 1021 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1022 /* vm_flags |= mm->def_flags; */ 1023 1024 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1025 /* attempt to share read-only copies of mapped file chunks */ 1026 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1027 if (file && !(prot & PROT_WRITE)) 1028 vm_flags |= VM_MAYSHARE; 1029 } else { 1030 /* overlay a shareable mapping on the backing device or inode 1031 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1032 * romfs/cramfs */ 1033 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1034 if (flags & MAP_SHARED) 1035 vm_flags |= VM_SHARED; 1036 } 1037 1038 /* refuse to let anyone share private mappings with this process if 1039 * it's being traced - otherwise breakpoints set in it may interfere 1040 * with another untraced process 1041 */ 1042 if ((flags & MAP_PRIVATE) && current->ptrace) 1043 vm_flags &= ~VM_MAYSHARE; 1044 1045 return vm_flags; 1046 } 1047 1048 /* 1049 * set up a shared mapping on a file (the driver or filesystem provides and 1050 * pins the storage) 1051 */ 1052 static int do_mmap_shared_file(struct vm_area_struct *vma) 1053 { 1054 int ret; 1055 1056 ret = call_mmap(vma->vm_file, vma); 1057 if (ret == 0) { 1058 vma->vm_region->vm_top = vma->vm_region->vm_end; 1059 return 0; 1060 } 1061 if (ret != -ENOSYS) 1062 return ret; 1063 1064 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1065 * opposed to tried but failed) so we can only give a suitable error as 1066 * it's not possible to make a private copy if MAP_SHARED was given */ 1067 return -ENODEV; 1068 } 1069 1070 /* 1071 * set up a private mapping or an anonymous shared mapping 1072 */ 1073 static int do_mmap_private(struct vm_area_struct *vma, 1074 struct vm_region *region, 1075 unsigned long len, 1076 unsigned long capabilities) 1077 { 1078 unsigned long total, point; 1079 void *base; 1080 int ret, order; 1081 1082 /* invoke the file's mapping function so that it can keep track of 1083 * shared mappings on devices or memory 1084 * - VM_MAYSHARE will be set if it may attempt to share 1085 */ 1086 if (capabilities & NOMMU_MAP_DIRECT) { 1087 ret = call_mmap(vma->vm_file, vma); 1088 if (ret == 0) { 1089 /* shouldn't return success if we're not sharing */ 1090 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1091 vma->vm_region->vm_top = vma->vm_region->vm_end; 1092 return 0; 1093 } 1094 if (ret != -ENOSYS) 1095 return ret; 1096 1097 /* getting an ENOSYS error indicates that direct mmap isn't 1098 * possible (as opposed to tried but failed) so we'll try to 1099 * make a private copy of the data and map that instead */ 1100 } 1101 1102 1103 /* allocate some memory to hold the mapping 1104 * - note that this may not return a page-aligned address if the object 1105 * we're allocating is smaller than a page 1106 */ 1107 order = get_order(len); 1108 total = 1 << order; 1109 point = len >> PAGE_SHIFT; 1110 1111 /* we don't want to allocate a power-of-2 sized page set */ 1112 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1113 total = point; 1114 1115 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1116 if (!base) 1117 goto enomem; 1118 1119 atomic_long_add(total, &mmap_pages_allocated); 1120 1121 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1122 region->vm_start = (unsigned long) base; 1123 region->vm_end = region->vm_start + len; 1124 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1125 1126 vma->vm_start = region->vm_start; 1127 vma->vm_end = region->vm_start + len; 1128 1129 if (vma->vm_file) { 1130 /* read the contents of a file into the copy */ 1131 loff_t fpos; 1132 1133 fpos = vma->vm_pgoff; 1134 fpos <<= PAGE_SHIFT; 1135 1136 ret = kernel_read(vma->vm_file, base, len, &fpos); 1137 if (ret < 0) 1138 goto error_free; 1139 1140 /* clear the last little bit */ 1141 if (ret < len) 1142 memset(base + ret, 0, len - ret); 1143 1144 } else { 1145 vma_set_anonymous(vma); 1146 } 1147 1148 return 0; 1149 1150 error_free: 1151 free_page_series(region->vm_start, region->vm_top); 1152 region->vm_start = vma->vm_start = 0; 1153 region->vm_end = vma->vm_end = 0; 1154 region->vm_top = 0; 1155 return ret; 1156 1157 enomem: 1158 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1159 len, current->pid, current->comm); 1160 show_free_areas(0, NULL); 1161 return -ENOMEM; 1162 } 1163 1164 /* 1165 * handle mapping creation for uClinux 1166 */ 1167 unsigned long do_mmap(struct file *file, 1168 unsigned long addr, 1169 unsigned long len, 1170 unsigned long prot, 1171 unsigned long flags, 1172 vm_flags_t vm_flags, 1173 unsigned long pgoff, 1174 unsigned long *populate, 1175 struct list_head *uf) 1176 { 1177 struct vm_area_struct *vma; 1178 struct vm_region *region; 1179 struct rb_node *rb; 1180 unsigned long capabilities, result; 1181 int ret; 1182 1183 *populate = 0; 1184 1185 /* decide whether we should attempt the mapping, and if so what sort of 1186 * mapping */ 1187 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1188 &capabilities); 1189 if (ret < 0) 1190 return ret; 1191 1192 /* we ignore the address hint */ 1193 addr = 0; 1194 len = PAGE_ALIGN(len); 1195 1196 /* we've determined that we can make the mapping, now translate what we 1197 * now know into VMA flags */ 1198 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1199 1200 /* we're going to need to record the mapping */ 1201 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1202 if (!region) 1203 goto error_getting_region; 1204 1205 vma = vm_area_alloc(current->mm); 1206 if (!vma) 1207 goto error_getting_vma; 1208 1209 region->vm_usage = 1; 1210 region->vm_flags = vm_flags; 1211 region->vm_pgoff = pgoff; 1212 1213 vma->vm_flags = vm_flags; 1214 vma->vm_pgoff = pgoff; 1215 1216 if (file) { 1217 region->vm_file = get_file(file); 1218 vma->vm_file = get_file(file); 1219 } 1220 1221 down_write(&nommu_region_sem); 1222 1223 /* if we want to share, we need to check for regions created by other 1224 * mmap() calls that overlap with our proposed mapping 1225 * - we can only share with a superset match on most regular files 1226 * - shared mappings on character devices and memory backed files are 1227 * permitted to overlap inexactly as far as we are concerned for in 1228 * these cases, sharing is handled in the driver or filesystem rather 1229 * than here 1230 */ 1231 if (vm_flags & VM_MAYSHARE) { 1232 struct vm_region *pregion; 1233 unsigned long pglen, rpglen, pgend, rpgend, start; 1234 1235 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1236 pgend = pgoff + pglen; 1237 1238 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1239 pregion = rb_entry(rb, struct vm_region, vm_rb); 1240 1241 if (!(pregion->vm_flags & VM_MAYSHARE)) 1242 continue; 1243 1244 /* search for overlapping mappings on the same file */ 1245 if (file_inode(pregion->vm_file) != 1246 file_inode(file)) 1247 continue; 1248 1249 if (pregion->vm_pgoff >= pgend) 1250 continue; 1251 1252 rpglen = pregion->vm_end - pregion->vm_start; 1253 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1254 rpgend = pregion->vm_pgoff + rpglen; 1255 if (pgoff >= rpgend) 1256 continue; 1257 1258 /* handle inexactly overlapping matches between 1259 * mappings */ 1260 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1261 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1262 /* new mapping is not a subset of the region */ 1263 if (!(capabilities & NOMMU_MAP_DIRECT)) 1264 goto sharing_violation; 1265 continue; 1266 } 1267 1268 /* we've found a region we can share */ 1269 pregion->vm_usage++; 1270 vma->vm_region = pregion; 1271 start = pregion->vm_start; 1272 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1273 vma->vm_start = start; 1274 vma->vm_end = start + len; 1275 1276 if (pregion->vm_flags & VM_MAPPED_COPY) 1277 vma->vm_flags |= VM_MAPPED_COPY; 1278 else { 1279 ret = do_mmap_shared_file(vma); 1280 if (ret < 0) { 1281 vma->vm_region = NULL; 1282 vma->vm_start = 0; 1283 vma->vm_end = 0; 1284 pregion->vm_usage--; 1285 pregion = NULL; 1286 goto error_just_free; 1287 } 1288 } 1289 fput(region->vm_file); 1290 kmem_cache_free(vm_region_jar, region); 1291 region = pregion; 1292 result = start; 1293 goto share; 1294 } 1295 1296 /* obtain the address at which to make a shared mapping 1297 * - this is the hook for quasi-memory character devices to 1298 * tell us the location of a shared mapping 1299 */ 1300 if (capabilities & NOMMU_MAP_DIRECT) { 1301 addr = file->f_op->get_unmapped_area(file, addr, len, 1302 pgoff, flags); 1303 if (IS_ERR_VALUE(addr)) { 1304 ret = addr; 1305 if (ret != -ENOSYS) 1306 goto error_just_free; 1307 1308 /* the driver refused to tell us where to site 1309 * the mapping so we'll have to attempt to copy 1310 * it */ 1311 ret = -ENODEV; 1312 if (!(capabilities & NOMMU_MAP_COPY)) 1313 goto error_just_free; 1314 1315 capabilities &= ~NOMMU_MAP_DIRECT; 1316 } else { 1317 vma->vm_start = region->vm_start = addr; 1318 vma->vm_end = region->vm_end = addr + len; 1319 } 1320 } 1321 } 1322 1323 vma->vm_region = region; 1324 1325 /* set up the mapping 1326 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1327 */ 1328 if (file && vma->vm_flags & VM_SHARED) 1329 ret = do_mmap_shared_file(vma); 1330 else 1331 ret = do_mmap_private(vma, region, len, capabilities); 1332 if (ret < 0) 1333 goto error_just_free; 1334 add_nommu_region(region); 1335 1336 /* clear anonymous mappings that don't ask for uninitialized data */ 1337 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1338 memset((void *)region->vm_start, 0, 1339 region->vm_end - region->vm_start); 1340 1341 /* okay... we have a mapping; now we have to register it */ 1342 result = vma->vm_start; 1343 1344 current->mm->total_vm += len >> PAGE_SHIFT; 1345 1346 share: 1347 add_vma_to_mm(current->mm, vma); 1348 1349 /* we flush the region from the icache only when the first executable 1350 * mapping of it is made */ 1351 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1352 flush_icache_range(region->vm_start, region->vm_end); 1353 region->vm_icache_flushed = true; 1354 } 1355 1356 up_write(&nommu_region_sem); 1357 1358 return result; 1359 1360 error_just_free: 1361 up_write(&nommu_region_sem); 1362 error: 1363 if (region->vm_file) 1364 fput(region->vm_file); 1365 kmem_cache_free(vm_region_jar, region); 1366 if (vma->vm_file) 1367 fput(vma->vm_file); 1368 vm_area_free(vma); 1369 return ret; 1370 1371 sharing_violation: 1372 up_write(&nommu_region_sem); 1373 pr_warn("Attempt to share mismatched mappings\n"); 1374 ret = -EINVAL; 1375 goto error; 1376 1377 error_getting_vma: 1378 kmem_cache_free(vm_region_jar, region); 1379 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1380 len, current->pid); 1381 show_free_areas(0, NULL); 1382 return -ENOMEM; 1383 1384 error_getting_region: 1385 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1386 len, current->pid); 1387 show_free_areas(0, NULL); 1388 return -ENOMEM; 1389 } 1390 1391 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1392 unsigned long prot, unsigned long flags, 1393 unsigned long fd, unsigned long pgoff) 1394 { 1395 struct file *file = NULL; 1396 unsigned long retval = -EBADF; 1397 1398 audit_mmap_fd(fd, flags); 1399 if (!(flags & MAP_ANONYMOUS)) { 1400 file = fget(fd); 1401 if (!file) 1402 goto out; 1403 } 1404 1405 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1406 1407 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1408 1409 if (file) 1410 fput(file); 1411 out: 1412 return retval; 1413 } 1414 1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1416 unsigned long, prot, unsigned long, flags, 1417 unsigned long, fd, unsigned long, pgoff) 1418 { 1419 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1420 } 1421 1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1423 struct mmap_arg_struct { 1424 unsigned long addr; 1425 unsigned long len; 1426 unsigned long prot; 1427 unsigned long flags; 1428 unsigned long fd; 1429 unsigned long offset; 1430 }; 1431 1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1433 { 1434 struct mmap_arg_struct a; 1435 1436 if (copy_from_user(&a, arg, sizeof(a))) 1437 return -EFAULT; 1438 if (offset_in_page(a.offset)) 1439 return -EINVAL; 1440 1441 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1442 a.offset >> PAGE_SHIFT); 1443 } 1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1445 1446 /* 1447 * split a vma into two pieces at address 'addr', a new vma is allocated either 1448 * for the first part or the tail. 1449 */ 1450 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1451 unsigned long addr, int new_below) 1452 { 1453 struct vm_area_struct *new; 1454 struct vm_region *region; 1455 unsigned long npages; 1456 1457 /* we're only permitted to split anonymous regions (these should have 1458 * only a single usage on the region) */ 1459 if (vma->vm_file) 1460 return -ENOMEM; 1461 1462 if (mm->map_count >= sysctl_max_map_count) 1463 return -ENOMEM; 1464 1465 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1466 if (!region) 1467 return -ENOMEM; 1468 1469 new = vm_area_dup(vma); 1470 if (!new) { 1471 kmem_cache_free(vm_region_jar, region); 1472 return -ENOMEM; 1473 } 1474 1475 /* most fields are the same, copy all, and then fixup */ 1476 *region = *vma->vm_region; 1477 new->vm_region = region; 1478 1479 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1480 1481 if (new_below) { 1482 region->vm_top = region->vm_end = new->vm_end = addr; 1483 } else { 1484 region->vm_start = new->vm_start = addr; 1485 region->vm_pgoff = new->vm_pgoff += npages; 1486 } 1487 1488 if (new->vm_ops && new->vm_ops->open) 1489 new->vm_ops->open(new); 1490 1491 delete_vma_from_mm(vma); 1492 down_write(&nommu_region_sem); 1493 delete_nommu_region(vma->vm_region); 1494 if (new_below) { 1495 vma->vm_region->vm_start = vma->vm_start = addr; 1496 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1497 } else { 1498 vma->vm_region->vm_end = vma->vm_end = addr; 1499 vma->vm_region->vm_top = addr; 1500 } 1501 add_nommu_region(vma->vm_region); 1502 add_nommu_region(new->vm_region); 1503 up_write(&nommu_region_sem); 1504 add_vma_to_mm(mm, vma); 1505 add_vma_to_mm(mm, new); 1506 return 0; 1507 } 1508 1509 /* 1510 * shrink a VMA by removing the specified chunk from either the beginning or 1511 * the end 1512 */ 1513 static int shrink_vma(struct mm_struct *mm, 1514 struct vm_area_struct *vma, 1515 unsigned long from, unsigned long to) 1516 { 1517 struct vm_region *region; 1518 1519 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1520 * and list */ 1521 delete_vma_from_mm(vma); 1522 if (from > vma->vm_start) 1523 vma->vm_end = from; 1524 else 1525 vma->vm_start = to; 1526 add_vma_to_mm(mm, vma); 1527 1528 /* cut the backing region down to size */ 1529 region = vma->vm_region; 1530 BUG_ON(region->vm_usage != 1); 1531 1532 down_write(&nommu_region_sem); 1533 delete_nommu_region(region); 1534 if (from > region->vm_start) { 1535 to = region->vm_top; 1536 region->vm_top = region->vm_end = from; 1537 } else { 1538 region->vm_start = to; 1539 } 1540 add_nommu_region(region); 1541 up_write(&nommu_region_sem); 1542 1543 free_page_series(from, to); 1544 return 0; 1545 } 1546 1547 /* 1548 * release a mapping 1549 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1550 * VMA, though it need not cover the whole VMA 1551 */ 1552 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1553 { 1554 struct vm_area_struct *vma; 1555 unsigned long end; 1556 int ret; 1557 1558 len = PAGE_ALIGN(len); 1559 if (len == 0) 1560 return -EINVAL; 1561 1562 end = start + len; 1563 1564 /* find the first potentially overlapping VMA */ 1565 vma = find_vma(mm, start); 1566 if (!vma) { 1567 static int limit; 1568 if (limit < 5) { 1569 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1570 current->pid, current->comm, 1571 start, start + len - 1); 1572 limit++; 1573 } 1574 return -EINVAL; 1575 } 1576 1577 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1578 if (vma->vm_file) { 1579 do { 1580 if (start > vma->vm_start) 1581 return -EINVAL; 1582 if (end == vma->vm_end) 1583 goto erase_whole_vma; 1584 vma = vma->vm_next; 1585 } while (vma); 1586 return -EINVAL; 1587 } else { 1588 /* the chunk must be a subset of the VMA found */ 1589 if (start == vma->vm_start && end == vma->vm_end) 1590 goto erase_whole_vma; 1591 if (start < vma->vm_start || end > vma->vm_end) 1592 return -EINVAL; 1593 if (offset_in_page(start)) 1594 return -EINVAL; 1595 if (end != vma->vm_end && offset_in_page(end)) 1596 return -EINVAL; 1597 if (start != vma->vm_start && end != vma->vm_end) { 1598 ret = split_vma(mm, vma, start, 1); 1599 if (ret < 0) 1600 return ret; 1601 } 1602 return shrink_vma(mm, vma, start, end); 1603 } 1604 1605 erase_whole_vma: 1606 delete_vma_from_mm(vma); 1607 delete_vma(mm, vma); 1608 return 0; 1609 } 1610 EXPORT_SYMBOL(do_munmap); 1611 1612 int vm_munmap(unsigned long addr, size_t len) 1613 { 1614 struct mm_struct *mm = current->mm; 1615 int ret; 1616 1617 down_write(&mm->mmap_sem); 1618 ret = do_munmap(mm, addr, len, NULL); 1619 up_write(&mm->mmap_sem); 1620 return ret; 1621 } 1622 EXPORT_SYMBOL(vm_munmap); 1623 1624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1625 { 1626 return vm_munmap(addr, len); 1627 } 1628 1629 /* 1630 * release all the mappings made in a process's VM space 1631 */ 1632 void exit_mmap(struct mm_struct *mm) 1633 { 1634 struct vm_area_struct *vma; 1635 1636 if (!mm) 1637 return; 1638 1639 mm->total_vm = 0; 1640 1641 while ((vma = mm->mmap)) { 1642 mm->mmap = vma->vm_next; 1643 delete_vma_from_mm(vma); 1644 delete_vma(mm, vma); 1645 cond_resched(); 1646 } 1647 } 1648 1649 int vm_brk(unsigned long addr, unsigned long len) 1650 { 1651 return -ENOMEM; 1652 } 1653 1654 /* 1655 * expand (or shrink) an existing mapping, potentially moving it at the same 1656 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1657 * 1658 * under NOMMU conditions, we only permit changing a mapping's size, and only 1659 * as long as it stays within the region allocated by do_mmap_private() and the 1660 * block is not shareable 1661 * 1662 * MREMAP_FIXED is not supported under NOMMU conditions 1663 */ 1664 static unsigned long do_mremap(unsigned long addr, 1665 unsigned long old_len, unsigned long new_len, 1666 unsigned long flags, unsigned long new_addr) 1667 { 1668 struct vm_area_struct *vma; 1669 1670 /* insanity checks first */ 1671 old_len = PAGE_ALIGN(old_len); 1672 new_len = PAGE_ALIGN(new_len); 1673 if (old_len == 0 || new_len == 0) 1674 return (unsigned long) -EINVAL; 1675 1676 if (offset_in_page(addr)) 1677 return -EINVAL; 1678 1679 if (flags & MREMAP_FIXED && new_addr != addr) 1680 return (unsigned long) -EINVAL; 1681 1682 vma = find_vma_exact(current->mm, addr, old_len); 1683 if (!vma) 1684 return (unsigned long) -EINVAL; 1685 1686 if (vma->vm_end != vma->vm_start + old_len) 1687 return (unsigned long) -EFAULT; 1688 1689 if (vma->vm_flags & VM_MAYSHARE) 1690 return (unsigned long) -EPERM; 1691 1692 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1693 return (unsigned long) -ENOMEM; 1694 1695 /* all checks complete - do it */ 1696 vma->vm_end = vma->vm_start + new_len; 1697 return vma->vm_start; 1698 } 1699 1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1701 unsigned long, new_len, unsigned long, flags, 1702 unsigned long, new_addr) 1703 { 1704 unsigned long ret; 1705 1706 down_write(¤t->mm->mmap_sem); 1707 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1708 up_write(¤t->mm->mmap_sem); 1709 return ret; 1710 } 1711 1712 struct page *follow_page_mask(struct vm_area_struct *vma, 1713 unsigned long address, unsigned int flags, 1714 unsigned int *page_mask) 1715 { 1716 *page_mask = 0; 1717 return NULL; 1718 } 1719 1720 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1721 unsigned long pfn, unsigned long size, pgprot_t prot) 1722 { 1723 if (addr != (pfn << PAGE_SHIFT)) 1724 return -EINVAL; 1725 1726 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1727 return 0; 1728 } 1729 EXPORT_SYMBOL(remap_pfn_range); 1730 1731 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1732 { 1733 unsigned long pfn = start >> PAGE_SHIFT; 1734 unsigned long vm_len = vma->vm_end - vma->vm_start; 1735 1736 pfn += vma->vm_pgoff; 1737 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1738 } 1739 EXPORT_SYMBOL(vm_iomap_memory); 1740 1741 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1742 unsigned long pgoff) 1743 { 1744 unsigned int size = vma->vm_end - vma->vm_start; 1745 1746 if (!(vma->vm_flags & VM_USERMAP)) 1747 return -EINVAL; 1748 1749 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1750 vma->vm_end = vma->vm_start + size; 1751 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(remap_vmalloc_range); 1755 1756 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1757 unsigned long len, unsigned long pgoff, unsigned long flags) 1758 { 1759 return -ENOMEM; 1760 } 1761 1762 vm_fault_t filemap_fault(struct vm_fault *vmf) 1763 { 1764 BUG(); 1765 return 0; 1766 } 1767 EXPORT_SYMBOL(filemap_fault); 1768 1769 void filemap_map_pages(struct vm_fault *vmf, 1770 pgoff_t start_pgoff, pgoff_t end_pgoff) 1771 { 1772 BUG(); 1773 } 1774 EXPORT_SYMBOL(filemap_map_pages); 1775 1776 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1777 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1778 { 1779 struct vm_area_struct *vma; 1780 int write = gup_flags & FOLL_WRITE; 1781 1782 down_read(&mm->mmap_sem); 1783 1784 /* the access must start within one of the target process's mappings */ 1785 vma = find_vma(mm, addr); 1786 if (vma) { 1787 /* don't overrun this mapping */ 1788 if (addr + len >= vma->vm_end) 1789 len = vma->vm_end - addr; 1790 1791 /* only read or write mappings where it is permitted */ 1792 if (write && vma->vm_flags & VM_MAYWRITE) 1793 copy_to_user_page(vma, NULL, addr, 1794 (void *) addr, buf, len); 1795 else if (!write && vma->vm_flags & VM_MAYREAD) 1796 copy_from_user_page(vma, NULL, addr, 1797 buf, (void *) addr, len); 1798 else 1799 len = 0; 1800 } else { 1801 len = 0; 1802 } 1803 1804 up_read(&mm->mmap_sem); 1805 1806 return len; 1807 } 1808 1809 /** 1810 * access_remote_vm - access another process' address space 1811 * @mm: the mm_struct of the target address space 1812 * @addr: start address to access 1813 * @buf: source or destination buffer 1814 * @len: number of bytes to transfer 1815 * @gup_flags: flags modifying lookup behaviour 1816 * 1817 * The caller must hold a reference on @mm. 1818 */ 1819 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1820 void *buf, int len, unsigned int gup_flags) 1821 { 1822 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1823 } 1824 1825 /* 1826 * Access another process' address space. 1827 * - source/target buffer must be kernel space 1828 */ 1829 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1830 unsigned int gup_flags) 1831 { 1832 struct mm_struct *mm; 1833 1834 if (addr + len < addr) 1835 return 0; 1836 1837 mm = get_task_mm(tsk); 1838 if (!mm) 1839 return 0; 1840 1841 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1842 1843 mmput(mm); 1844 return len; 1845 } 1846 EXPORT_SYMBOL_GPL(access_process_vm); 1847 1848 /** 1849 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1850 * @inode: The inode to check 1851 * @size: The current filesize of the inode 1852 * @newsize: The proposed filesize of the inode 1853 * 1854 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1855 * make sure that that any outstanding VMAs aren't broken and then shrink the 1856 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1857 * automatically grant mappings that are too large. 1858 */ 1859 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1860 size_t newsize) 1861 { 1862 struct vm_area_struct *vma; 1863 struct vm_region *region; 1864 pgoff_t low, high; 1865 size_t r_size, r_top; 1866 1867 low = newsize >> PAGE_SHIFT; 1868 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1869 1870 down_write(&nommu_region_sem); 1871 i_mmap_lock_read(inode->i_mapping); 1872 1873 /* search for VMAs that fall within the dead zone */ 1874 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1875 /* found one - only interested if it's shared out of the page 1876 * cache */ 1877 if (vma->vm_flags & VM_SHARED) { 1878 i_mmap_unlock_read(inode->i_mapping); 1879 up_write(&nommu_region_sem); 1880 return -ETXTBSY; /* not quite true, but near enough */ 1881 } 1882 } 1883 1884 /* reduce any regions that overlap the dead zone - if in existence, 1885 * these will be pointed to by VMAs that don't overlap the dead zone 1886 * 1887 * we don't check for any regions that start beyond the EOF as there 1888 * shouldn't be any 1889 */ 1890 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1891 if (!(vma->vm_flags & VM_SHARED)) 1892 continue; 1893 1894 region = vma->vm_region; 1895 r_size = region->vm_top - region->vm_start; 1896 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1897 1898 if (r_top > newsize) { 1899 region->vm_top -= r_top - newsize; 1900 if (region->vm_end > region->vm_top) 1901 region->vm_end = region->vm_top; 1902 } 1903 } 1904 1905 i_mmap_unlock_read(inode->i_mapping); 1906 up_write(&nommu_region_sem); 1907 return 0; 1908 } 1909 1910 /* 1911 * Initialise sysctl_user_reserve_kbytes. 1912 * 1913 * This is intended to prevent a user from starting a single memory hogging 1914 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1915 * mode. 1916 * 1917 * The default value is min(3% of free memory, 128MB) 1918 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1919 */ 1920 static int __meminit init_user_reserve(void) 1921 { 1922 unsigned long free_kbytes; 1923 1924 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1925 1926 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1927 return 0; 1928 } 1929 subsys_initcall(init_user_reserve); 1930 1931 /* 1932 * Initialise sysctl_admin_reserve_kbytes. 1933 * 1934 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1935 * to log in and kill a memory hogging process. 1936 * 1937 * Systems with more than 256MB will reserve 8MB, enough to recover 1938 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1939 * only reserve 3% of free pages by default. 1940 */ 1941 static int __meminit init_admin_reserve(void) 1942 { 1943 unsigned long free_kbytes; 1944 1945 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1946 1947 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1948 return 0; 1949 } 1950 subsys_initcall(init_admin_reserve); 1951