1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/audit.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlb.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mmu_context.h> 38 #include "internal.h" 39 40 #if 0 41 #define kenter(FMT, ...) \ 42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 43 #define kleave(FMT, ...) \ 44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 45 #define kdebug(FMT, ...) \ 46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 47 #else 48 #define kenter(FMT, ...) \ 49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 50 #define kleave(FMT, ...) \ 51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 52 #define kdebug(FMT, ...) \ 53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 54 #endif 55 56 void *high_memory; 57 struct page *mem_map; 58 unsigned long max_mapnr; 59 unsigned long num_physpages; 60 unsigned long highest_memmap_pfn; 61 struct percpu_counter vm_committed_as; 62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 63 int sysctl_overcommit_ratio = 50; /* default is 50% */ 64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 66 int heap_stack_gap = 0; 67 68 atomic_long_t mmap_pages_allocated; 69 70 EXPORT_SYMBOL(mem_map); 71 EXPORT_SYMBOL(num_physpages); 72 73 /* list of mapped, potentially shareable regions */ 74 static struct kmem_cache *vm_region_jar; 75 struct rb_root nommu_region_tree = RB_ROOT; 76 DECLARE_RWSEM(nommu_region_sem); 77 78 const struct vm_operations_struct generic_file_vm_ops = { 79 }; 80 81 /* 82 * Return the total memory allocated for this pointer, not 83 * just what the caller asked for. 84 * 85 * Doesn't have to be accurate, i.e. may have races. 86 */ 87 unsigned int kobjsize(const void *objp) 88 { 89 struct page *page; 90 91 /* 92 * If the object we have should not have ksize performed on it, 93 * return size of 0 94 */ 95 if (!objp || !virt_addr_valid(objp)) 96 return 0; 97 98 page = virt_to_head_page(objp); 99 100 /* 101 * If the allocator sets PageSlab, we know the pointer came from 102 * kmalloc(). 103 */ 104 if (PageSlab(page)) 105 return ksize(objp); 106 107 /* 108 * If it's not a compound page, see if we have a matching VMA 109 * region. This test is intentionally done in reverse order, 110 * so if there's no VMA, we still fall through and hand back 111 * PAGE_SIZE for 0-order pages. 112 */ 113 if (!PageCompound(page)) { 114 struct vm_area_struct *vma; 115 116 vma = find_vma(current->mm, (unsigned long)objp); 117 if (vma) 118 return vma->vm_end - vma->vm_start; 119 } 120 121 /* 122 * The ksize() function is only guaranteed to work for pointers 123 * returned by kmalloc(). So handle arbitrary pointers here. 124 */ 125 return PAGE_SIZE << compound_order(page); 126 } 127 128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 129 unsigned long start, int nr_pages, unsigned int foll_flags, 130 struct page **pages, struct vm_area_struct **vmas, 131 int *retry) 132 { 133 struct vm_area_struct *vma; 134 unsigned long vm_flags; 135 int i; 136 137 /* calculate required read or write permissions. 138 * If FOLL_FORCE is set, we only require the "MAY" flags. 139 */ 140 vm_flags = (foll_flags & FOLL_WRITE) ? 141 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 142 vm_flags &= (foll_flags & FOLL_FORCE) ? 143 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 144 145 for (i = 0; i < nr_pages; i++) { 146 vma = find_vma(mm, start); 147 if (!vma) 148 goto finish_or_fault; 149 150 /* protect what we can, including chardevs */ 151 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 152 !(vm_flags & vma->vm_flags)) 153 goto finish_or_fault; 154 155 if (pages) { 156 pages[i] = virt_to_page(start); 157 if (pages[i]) 158 page_cache_get(pages[i]); 159 } 160 if (vmas) 161 vmas[i] = vma; 162 start = (start + PAGE_SIZE) & PAGE_MASK; 163 } 164 165 return i; 166 167 finish_or_fault: 168 return i ? : -EFAULT; 169 } 170 171 /* 172 * get a list of pages in an address range belonging to the specified process 173 * and indicate the VMA that covers each page 174 * - this is potentially dodgy as we may end incrementing the page count of a 175 * slab page or a secondary page from a compound page 176 * - don't permit access to VMAs that don't support it, such as I/O mappings 177 */ 178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 179 unsigned long start, int nr_pages, int write, int force, 180 struct page **pages, struct vm_area_struct **vmas) 181 { 182 int flags = 0; 183 184 if (write) 185 flags |= FOLL_WRITE; 186 if (force) 187 flags |= FOLL_FORCE; 188 189 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 190 NULL); 191 } 192 EXPORT_SYMBOL(get_user_pages); 193 194 /** 195 * follow_pfn - look up PFN at a user virtual address 196 * @vma: memory mapping 197 * @address: user virtual address 198 * @pfn: location to store found PFN 199 * 200 * Only IO mappings and raw PFN mappings are allowed. 201 * 202 * Returns zero and the pfn at @pfn on success, -ve otherwise. 203 */ 204 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 205 unsigned long *pfn) 206 { 207 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 208 return -EINVAL; 209 210 *pfn = address >> PAGE_SHIFT; 211 return 0; 212 } 213 EXPORT_SYMBOL(follow_pfn); 214 215 DEFINE_RWLOCK(vmlist_lock); 216 struct vm_struct *vmlist; 217 218 void vfree(const void *addr) 219 { 220 kfree(addr); 221 } 222 EXPORT_SYMBOL(vfree); 223 224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 225 { 226 /* 227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 228 * returns only a logical address. 229 */ 230 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 231 } 232 EXPORT_SYMBOL(__vmalloc); 233 234 void *vmalloc_user(unsigned long size) 235 { 236 void *ret; 237 238 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 239 PAGE_KERNEL); 240 if (ret) { 241 struct vm_area_struct *vma; 242 243 down_write(¤t->mm->mmap_sem); 244 vma = find_vma(current->mm, (unsigned long)ret); 245 if (vma) 246 vma->vm_flags |= VM_USERMAP; 247 up_write(¤t->mm->mmap_sem); 248 } 249 250 return ret; 251 } 252 EXPORT_SYMBOL(vmalloc_user); 253 254 struct page *vmalloc_to_page(const void *addr) 255 { 256 return virt_to_page(addr); 257 } 258 EXPORT_SYMBOL(vmalloc_to_page); 259 260 unsigned long vmalloc_to_pfn(const void *addr) 261 { 262 return page_to_pfn(virt_to_page(addr)); 263 } 264 EXPORT_SYMBOL(vmalloc_to_pfn); 265 266 long vread(char *buf, char *addr, unsigned long count) 267 { 268 memcpy(buf, addr, count); 269 return count; 270 } 271 272 long vwrite(char *buf, char *addr, unsigned long count) 273 { 274 /* Don't allow overflow */ 275 if ((unsigned long) addr + count < count) 276 count = -(unsigned long) addr; 277 278 memcpy(addr, buf, count); 279 return(count); 280 } 281 282 /* 283 * vmalloc - allocate virtually continguos memory 284 * 285 * @size: allocation size 286 * 287 * Allocate enough pages to cover @size from the page level 288 * allocator and map them into continguos kernel virtual space. 289 * 290 * For tight control over page level allocator and protection flags 291 * use __vmalloc() instead. 292 */ 293 void *vmalloc(unsigned long size) 294 { 295 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 296 } 297 EXPORT_SYMBOL(vmalloc); 298 299 /* 300 * vzalloc - allocate virtually continguos memory with zero fill 301 * 302 * @size: allocation size 303 * 304 * Allocate enough pages to cover @size from the page level 305 * allocator and map them into continguos kernel virtual space. 306 * The memory allocated is set to zero. 307 * 308 * For tight control over page level allocator and protection flags 309 * use __vmalloc() instead. 310 */ 311 void *vzalloc(unsigned long size) 312 { 313 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 314 PAGE_KERNEL); 315 } 316 EXPORT_SYMBOL(vzalloc); 317 318 /** 319 * vmalloc_node - allocate memory on a specific node 320 * @size: allocation size 321 * @node: numa node 322 * 323 * Allocate enough pages to cover @size from the page level 324 * allocator and map them into contiguous kernel virtual space. 325 * 326 * For tight control over page level allocator and protection flags 327 * use __vmalloc() instead. 328 */ 329 void *vmalloc_node(unsigned long size, int node) 330 { 331 return vmalloc(size); 332 } 333 EXPORT_SYMBOL(vmalloc_node); 334 335 /** 336 * vzalloc_node - allocate memory on a specific node with zero fill 337 * @size: allocation size 338 * @node: numa node 339 * 340 * Allocate enough pages to cover @size from the page level 341 * allocator and map them into contiguous kernel virtual space. 342 * The memory allocated is set to zero. 343 * 344 * For tight control over page level allocator and protection flags 345 * use __vmalloc() instead. 346 */ 347 void *vzalloc_node(unsigned long size, int node) 348 { 349 return vzalloc(size); 350 } 351 EXPORT_SYMBOL(vzalloc_node); 352 353 #ifndef PAGE_KERNEL_EXEC 354 # define PAGE_KERNEL_EXEC PAGE_KERNEL 355 #endif 356 357 /** 358 * vmalloc_exec - allocate virtually contiguous, executable memory 359 * @size: allocation size 360 * 361 * Kernel-internal function to allocate enough pages to cover @size 362 * the page level allocator and map them into contiguous and 363 * executable kernel virtual space. 364 * 365 * For tight control over page level allocator and protection flags 366 * use __vmalloc() instead. 367 */ 368 369 void *vmalloc_exec(unsigned long size) 370 { 371 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 372 } 373 374 /** 375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 376 * @size: allocation size 377 * 378 * Allocate enough 32bit PA addressable pages to cover @size from the 379 * page level allocator and map them into continguos kernel virtual space. 380 */ 381 void *vmalloc_32(unsigned long size) 382 { 383 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 384 } 385 EXPORT_SYMBOL(vmalloc_32); 386 387 /** 388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 389 * @size: allocation size 390 * 391 * The resulting memory area is 32bit addressable and zeroed so it can be 392 * mapped to userspace without leaking data. 393 * 394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 395 * remap_vmalloc_range() are permissible. 396 */ 397 void *vmalloc_32_user(unsigned long size) 398 { 399 /* 400 * We'll have to sort out the ZONE_DMA bits for 64-bit, 401 * but for now this can simply use vmalloc_user() directly. 402 */ 403 return vmalloc_user(size); 404 } 405 EXPORT_SYMBOL(vmalloc_32_user); 406 407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 408 { 409 BUG(); 410 return NULL; 411 } 412 EXPORT_SYMBOL(vmap); 413 414 void vunmap(const void *addr) 415 { 416 BUG(); 417 } 418 EXPORT_SYMBOL(vunmap); 419 420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 421 { 422 BUG(); 423 return NULL; 424 } 425 EXPORT_SYMBOL(vm_map_ram); 426 427 void vm_unmap_ram(const void *mem, unsigned int count) 428 { 429 BUG(); 430 } 431 EXPORT_SYMBOL(vm_unmap_ram); 432 433 void vm_unmap_aliases(void) 434 { 435 } 436 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 437 438 /* 439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 440 * have one. 441 */ 442 void __attribute__((weak)) vmalloc_sync_all(void) 443 { 444 } 445 446 /** 447 * alloc_vm_area - allocate a range of kernel address space 448 * @size: size of the area 449 * 450 * Returns: NULL on failure, vm_struct on success 451 * 452 * This function reserves a range of kernel address space, and 453 * allocates pagetables to map that range. No actual mappings 454 * are created. If the kernel address space is not shared 455 * between processes, it syncs the pagetable across all 456 * processes. 457 */ 458 struct vm_struct *alloc_vm_area(size_t size) 459 { 460 BUG(); 461 return NULL; 462 } 463 EXPORT_SYMBOL_GPL(alloc_vm_area); 464 465 void free_vm_area(struct vm_struct *area) 466 { 467 BUG(); 468 } 469 EXPORT_SYMBOL_GPL(free_vm_area); 470 471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 472 struct page *page) 473 { 474 return -EINVAL; 475 } 476 EXPORT_SYMBOL(vm_insert_page); 477 478 /* 479 * sys_brk() for the most part doesn't need the global kernel 480 * lock, except when an application is doing something nasty 481 * like trying to un-brk an area that has already been mapped 482 * to a regular file. in this case, the unmapping will need 483 * to invoke file system routines that need the global lock. 484 */ 485 SYSCALL_DEFINE1(brk, unsigned long, brk) 486 { 487 struct mm_struct *mm = current->mm; 488 489 if (brk < mm->start_brk || brk > mm->context.end_brk) 490 return mm->brk; 491 492 if (mm->brk == brk) 493 return mm->brk; 494 495 /* 496 * Always allow shrinking brk 497 */ 498 if (brk <= mm->brk) { 499 mm->brk = brk; 500 return brk; 501 } 502 503 /* 504 * Ok, looks good - let it rip. 505 */ 506 flush_icache_range(mm->brk, brk); 507 return mm->brk = brk; 508 } 509 510 /* 511 * initialise the VMA and region record slabs 512 */ 513 void __init mmap_init(void) 514 { 515 int ret; 516 517 ret = percpu_counter_init(&vm_committed_as, 0); 518 VM_BUG_ON(ret); 519 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 520 } 521 522 /* 523 * validate the region tree 524 * - the caller must hold the region lock 525 */ 526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 527 static noinline void validate_nommu_regions(void) 528 { 529 struct vm_region *region, *last; 530 struct rb_node *p, *lastp; 531 532 lastp = rb_first(&nommu_region_tree); 533 if (!lastp) 534 return; 535 536 last = rb_entry(lastp, struct vm_region, vm_rb); 537 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 538 BUG_ON(unlikely(last->vm_top < last->vm_end)); 539 540 while ((p = rb_next(lastp))) { 541 region = rb_entry(p, struct vm_region, vm_rb); 542 last = rb_entry(lastp, struct vm_region, vm_rb); 543 544 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 545 BUG_ON(unlikely(region->vm_top < region->vm_end)); 546 BUG_ON(unlikely(region->vm_start < last->vm_top)); 547 548 lastp = p; 549 } 550 } 551 #else 552 static void validate_nommu_regions(void) 553 { 554 } 555 #endif 556 557 /* 558 * add a region into the global tree 559 */ 560 static void add_nommu_region(struct vm_region *region) 561 { 562 struct vm_region *pregion; 563 struct rb_node **p, *parent; 564 565 validate_nommu_regions(); 566 567 parent = NULL; 568 p = &nommu_region_tree.rb_node; 569 while (*p) { 570 parent = *p; 571 pregion = rb_entry(parent, struct vm_region, vm_rb); 572 if (region->vm_start < pregion->vm_start) 573 p = &(*p)->rb_left; 574 else if (region->vm_start > pregion->vm_start) 575 p = &(*p)->rb_right; 576 else if (pregion == region) 577 return; 578 else 579 BUG(); 580 } 581 582 rb_link_node(®ion->vm_rb, parent, p); 583 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 584 585 validate_nommu_regions(); 586 } 587 588 /* 589 * delete a region from the global tree 590 */ 591 static void delete_nommu_region(struct vm_region *region) 592 { 593 BUG_ON(!nommu_region_tree.rb_node); 594 595 validate_nommu_regions(); 596 rb_erase(®ion->vm_rb, &nommu_region_tree); 597 validate_nommu_regions(); 598 } 599 600 /* 601 * free a contiguous series of pages 602 */ 603 static void free_page_series(unsigned long from, unsigned long to) 604 { 605 for (; from < to; from += PAGE_SIZE) { 606 struct page *page = virt_to_page(from); 607 608 kdebug("- free %lx", from); 609 atomic_long_dec(&mmap_pages_allocated); 610 if (page_count(page) != 1) 611 kdebug("free page %p: refcount not one: %d", 612 page, page_count(page)); 613 put_page(page); 614 } 615 } 616 617 /* 618 * release a reference to a region 619 * - the caller must hold the region semaphore for writing, which this releases 620 * - the region may not have been added to the tree yet, in which case vm_top 621 * will equal vm_start 622 */ 623 static void __put_nommu_region(struct vm_region *region) 624 __releases(nommu_region_sem) 625 { 626 kenter("%p{%d}", region, region->vm_usage); 627 628 BUG_ON(!nommu_region_tree.rb_node); 629 630 if (--region->vm_usage == 0) { 631 if (region->vm_top > region->vm_start) 632 delete_nommu_region(region); 633 up_write(&nommu_region_sem); 634 635 if (region->vm_file) 636 fput(region->vm_file); 637 638 /* IO memory and memory shared directly out of the pagecache 639 * from ramfs/tmpfs mustn't be released here */ 640 if (region->vm_flags & VM_MAPPED_COPY) { 641 kdebug("free series"); 642 free_page_series(region->vm_start, region->vm_top); 643 } 644 kmem_cache_free(vm_region_jar, region); 645 } else { 646 up_write(&nommu_region_sem); 647 } 648 } 649 650 /* 651 * release a reference to a region 652 */ 653 static void put_nommu_region(struct vm_region *region) 654 { 655 down_write(&nommu_region_sem); 656 __put_nommu_region(region); 657 } 658 659 /* 660 * update protection on a vma 661 */ 662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 663 { 664 #ifdef CONFIG_MPU 665 struct mm_struct *mm = vma->vm_mm; 666 long start = vma->vm_start & PAGE_MASK; 667 while (start < vma->vm_end) { 668 protect_page(mm, start, flags); 669 start += PAGE_SIZE; 670 } 671 update_protections(mm); 672 #endif 673 } 674 675 /* 676 * add a VMA into a process's mm_struct in the appropriate place in the list 677 * and tree and add to the address space's page tree also if not an anonymous 678 * page 679 * - should be called with mm->mmap_sem held writelocked 680 */ 681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 682 { 683 struct vm_area_struct *pvma, **pp, *next; 684 struct address_space *mapping; 685 struct rb_node **p, *parent; 686 687 kenter(",%p", vma); 688 689 BUG_ON(!vma->vm_region); 690 691 mm->map_count++; 692 vma->vm_mm = mm; 693 694 protect_vma(vma, vma->vm_flags); 695 696 /* add the VMA to the mapping */ 697 if (vma->vm_file) { 698 mapping = vma->vm_file->f_mapping; 699 700 flush_dcache_mmap_lock(mapping); 701 vma_prio_tree_insert(vma, &mapping->i_mmap); 702 flush_dcache_mmap_unlock(mapping); 703 } 704 705 /* add the VMA to the tree */ 706 parent = NULL; 707 p = &mm->mm_rb.rb_node; 708 while (*p) { 709 parent = *p; 710 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 711 712 /* sort by: start addr, end addr, VMA struct addr in that order 713 * (the latter is necessary as we may get identical VMAs) */ 714 if (vma->vm_start < pvma->vm_start) 715 p = &(*p)->rb_left; 716 else if (vma->vm_start > pvma->vm_start) 717 p = &(*p)->rb_right; 718 else if (vma->vm_end < pvma->vm_end) 719 p = &(*p)->rb_left; 720 else if (vma->vm_end > pvma->vm_end) 721 p = &(*p)->rb_right; 722 else if (vma < pvma) 723 p = &(*p)->rb_left; 724 else if (vma > pvma) 725 p = &(*p)->rb_right; 726 else 727 BUG(); 728 } 729 730 rb_link_node(&vma->vm_rb, parent, p); 731 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 732 733 /* add VMA to the VMA list also */ 734 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 735 if (pvma->vm_start > vma->vm_start) 736 break; 737 if (pvma->vm_start < vma->vm_start) 738 continue; 739 if (pvma->vm_end < vma->vm_end) 740 break; 741 } 742 743 next = *pp; 744 *pp = vma; 745 vma->vm_next = next; 746 if (next) 747 next->vm_prev = vma; 748 } 749 750 /* 751 * delete a VMA from its owning mm_struct and address space 752 */ 753 static void delete_vma_from_mm(struct vm_area_struct *vma) 754 { 755 struct vm_area_struct **pp; 756 struct address_space *mapping; 757 struct mm_struct *mm = vma->vm_mm; 758 759 kenter("%p", vma); 760 761 protect_vma(vma, 0); 762 763 mm->map_count--; 764 if (mm->mmap_cache == vma) 765 mm->mmap_cache = NULL; 766 767 /* remove the VMA from the mapping */ 768 if (vma->vm_file) { 769 mapping = vma->vm_file->f_mapping; 770 771 flush_dcache_mmap_lock(mapping); 772 vma_prio_tree_remove(vma, &mapping->i_mmap); 773 flush_dcache_mmap_unlock(mapping); 774 } 775 776 /* remove from the MM's tree and list */ 777 rb_erase(&vma->vm_rb, &mm->mm_rb); 778 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 779 if (*pp == vma) { 780 *pp = vma->vm_next; 781 break; 782 } 783 } 784 785 vma->vm_mm = NULL; 786 } 787 788 /* 789 * destroy a VMA record 790 */ 791 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 792 { 793 kenter("%p", vma); 794 if (vma->vm_ops && vma->vm_ops->close) 795 vma->vm_ops->close(vma); 796 if (vma->vm_file) { 797 fput(vma->vm_file); 798 if (vma->vm_flags & VM_EXECUTABLE) 799 removed_exe_file_vma(mm); 800 } 801 put_nommu_region(vma->vm_region); 802 kmem_cache_free(vm_area_cachep, vma); 803 } 804 805 /* 806 * look up the first VMA in which addr resides, NULL if none 807 * - should be called with mm->mmap_sem at least held readlocked 808 */ 809 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 810 { 811 struct vm_area_struct *vma; 812 struct rb_node *n = mm->mm_rb.rb_node; 813 814 /* check the cache first */ 815 vma = mm->mmap_cache; 816 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 817 return vma; 818 819 /* trawl the tree (there may be multiple mappings in which addr 820 * resides) */ 821 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 822 vma = rb_entry(n, struct vm_area_struct, vm_rb); 823 if (vma->vm_start > addr) 824 return NULL; 825 if (vma->vm_end > addr) { 826 mm->mmap_cache = vma; 827 return vma; 828 } 829 } 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(find_vma); 834 835 /* 836 * find a VMA 837 * - we don't extend stack VMAs under NOMMU conditions 838 */ 839 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 840 { 841 return find_vma(mm, addr); 842 } 843 844 /* 845 * expand a stack to a given address 846 * - not supported under NOMMU conditions 847 */ 848 int expand_stack(struct vm_area_struct *vma, unsigned long address) 849 { 850 return -ENOMEM; 851 } 852 853 /* 854 * look up the first VMA exactly that exactly matches addr 855 * - should be called with mm->mmap_sem at least held readlocked 856 */ 857 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 858 unsigned long addr, 859 unsigned long len) 860 { 861 struct vm_area_struct *vma; 862 struct rb_node *n = mm->mm_rb.rb_node; 863 unsigned long end = addr + len; 864 865 /* check the cache first */ 866 vma = mm->mmap_cache; 867 if (vma && vma->vm_start == addr && vma->vm_end == end) 868 return vma; 869 870 /* trawl the tree (there may be multiple mappings in which addr 871 * resides) */ 872 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 873 vma = rb_entry(n, struct vm_area_struct, vm_rb); 874 if (vma->vm_start < addr) 875 continue; 876 if (vma->vm_start > addr) 877 return NULL; 878 if (vma->vm_end == end) { 879 mm->mmap_cache = vma; 880 return vma; 881 } 882 } 883 884 return NULL; 885 } 886 887 /* 888 * determine whether a mapping should be permitted and, if so, what sort of 889 * mapping we're capable of supporting 890 */ 891 static int validate_mmap_request(struct file *file, 892 unsigned long addr, 893 unsigned long len, 894 unsigned long prot, 895 unsigned long flags, 896 unsigned long pgoff, 897 unsigned long *_capabilities) 898 { 899 unsigned long capabilities, rlen; 900 unsigned long reqprot = prot; 901 int ret; 902 903 /* do the simple checks first */ 904 if (flags & MAP_FIXED) { 905 printk(KERN_DEBUG 906 "%d: Can't do fixed-address/overlay mmap of RAM\n", 907 current->pid); 908 return -EINVAL; 909 } 910 911 if ((flags & MAP_TYPE) != MAP_PRIVATE && 912 (flags & MAP_TYPE) != MAP_SHARED) 913 return -EINVAL; 914 915 if (!len) 916 return -EINVAL; 917 918 /* Careful about overflows.. */ 919 rlen = PAGE_ALIGN(len); 920 if (!rlen || rlen > TASK_SIZE) 921 return -ENOMEM; 922 923 /* offset overflow? */ 924 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 925 return -EOVERFLOW; 926 927 if (file) { 928 /* validate file mapping requests */ 929 struct address_space *mapping; 930 931 /* files must support mmap */ 932 if (!file->f_op || !file->f_op->mmap) 933 return -ENODEV; 934 935 /* work out if what we've got could possibly be shared 936 * - we support chardevs that provide their own "memory" 937 * - we support files/blockdevs that are memory backed 938 */ 939 mapping = file->f_mapping; 940 if (!mapping) 941 mapping = file->f_path.dentry->d_inode->i_mapping; 942 943 capabilities = 0; 944 if (mapping && mapping->backing_dev_info) 945 capabilities = mapping->backing_dev_info->capabilities; 946 947 if (!capabilities) { 948 /* no explicit capabilities set, so assume some 949 * defaults */ 950 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 951 case S_IFREG: 952 case S_IFBLK: 953 capabilities = BDI_CAP_MAP_COPY; 954 break; 955 956 case S_IFCHR: 957 capabilities = 958 BDI_CAP_MAP_DIRECT | 959 BDI_CAP_READ_MAP | 960 BDI_CAP_WRITE_MAP; 961 break; 962 963 default: 964 return -EINVAL; 965 } 966 } 967 968 /* eliminate any capabilities that we can't support on this 969 * device */ 970 if (!file->f_op->get_unmapped_area) 971 capabilities &= ~BDI_CAP_MAP_DIRECT; 972 if (!file->f_op->read) 973 capabilities &= ~BDI_CAP_MAP_COPY; 974 975 /* The file shall have been opened with read permission. */ 976 if (!(file->f_mode & FMODE_READ)) 977 return -EACCES; 978 979 if (flags & MAP_SHARED) { 980 /* do checks for writing, appending and locking */ 981 if ((prot & PROT_WRITE) && 982 !(file->f_mode & FMODE_WRITE)) 983 return -EACCES; 984 985 if (IS_APPEND(file->f_path.dentry->d_inode) && 986 (file->f_mode & FMODE_WRITE)) 987 return -EACCES; 988 989 if (locks_verify_locked(file->f_path.dentry->d_inode)) 990 return -EAGAIN; 991 992 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 993 return -ENODEV; 994 995 /* we mustn't privatise shared mappings */ 996 capabilities &= ~BDI_CAP_MAP_COPY; 997 } 998 else { 999 /* we're going to read the file into private memory we 1000 * allocate */ 1001 if (!(capabilities & BDI_CAP_MAP_COPY)) 1002 return -ENODEV; 1003 1004 /* we don't permit a private writable mapping to be 1005 * shared with the backing device */ 1006 if (prot & PROT_WRITE) 1007 capabilities &= ~BDI_CAP_MAP_DIRECT; 1008 } 1009 1010 if (capabilities & BDI_CAP_MAP_DIRECT) { 1011 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1012 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1013 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1014 ) { 1015 capabilities &= ~BDI_CAP_MAP_DIRECT; 1016 if (flags & MAP_SHARED) { 1017 printk(KERN_WARNING 1018 "MAP_SHARED not completely supported on !MMU\n"); 1019 return -EINVAL; 1020 } 1021 } 1022 } 1023 1024 /* handle executable mappings and implied executable 1025 * mappings */ 1026 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1027 if (prot & PROT_EXEC) 1028 return -EPERM; 1029 } 1030 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1031 /* handle implication of PROT_EXEC by PROT_READ */ 1032 if (current->personality & READ_IMPLIES_EXEC) { 1033 if (capabilities & BDI_CAP_EXEC_MAP) 1034 prot |= PROT_EXEC; 1035 } 1036 } 1037 else if ((prot & PROT_READ) && 1038 (prot & PROT_EXEC) && 1039 !(capabilities & BDI_CAP_EXEC_MAP) 1040 ) { 1041 /* backing file is not executable, try to copy */ 1042 capabilities &= ~BDI_CAP_MAP_DIRECT; 1043 } 1044 } 1045 else { 1046 /* anonymous mappings are always memory backed and can be 1047 * privately mapped 1048 */ 1049 capabilities = BDI_CAP_MAP_COPY; 1050 1051 /* handle PROT_EXEC implication by PROT_READ */ 1052 if ((prot & PROT_READ) && 1053 (current->personality & READ_IMPLIES_EXEC)) 1054 prot |= PROT_EXEC; 1055 } 1056 1057 /* allow the security API to have its say */ 1058 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1059 if (ret < 0) 1060 return ret; 1061 1062 /* looks okay */ 1063 *_capabilities = capabilities; 1064 return 0; 1065 } 1066 1067 /* 1068 * we've determined that we can make the mapping, now translate what we 1069 * now know into VMA flags 1070 */ 1071 static unsigned long determine_vm_flags(struct file *file, 1072 unsigned long prot, 1073 unsigned long flags, 1074 unsigned long capabilities) 1075 { 1076 unsigned long vm_flags; 1077 1078 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1079 /* vm_flags |= mm->def_flags; */ 1080 1081 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1082 /* attempt to share read-only copies of mapped file chunks */ 1083 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1084 if (file && !(prot & PROT_WRITE)) 1085 vm_flags |= VM_MAYSHARE; 1086 } else { 1087 /* overlay a shareable mapping on the backing device or inode 1088 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1089 * romfs/cramfs */ 1090 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1091 if (flags & MAP_SHARED) 1092 vm_flags |= VM_SHARED; 1093 } 1094 1095 /* refuse to let anyone share private mappings with this process if 1096 * it's being traced - otherwise breakpoints set in it may interfere 1097 * with another untraced process 1098 */ 1099 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1100 vm_flags &= ~VM_MAYSHARE; 1101 1102 return vm_flags; 1103 } 1104 1105 /* 1106 * set up a shared mapping on a file (the driver or filesystem provides and 1107 * pins the storage) 1108 */ 1109 static int do_mmap_shared_file(struct vm_area_struct *vma) 1110 { 1111 int ret; 1112 1113 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1114 if (ret == 0) { 1115 vma->vm_region->vm_top = vma->vm_region->vm_end; 1116 return 0; 1117 } 1118 if (ret != -ENOSYS) 1119 return ret; 1120 1121 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1122 * opposed to tried but failed) so we can only give a suitable error as 1123 * it's not possible to make a private copy if MAP_SHARED was given */ 1124 return -ENODEV; 1125 } 1126 1127 /* 1128 * set up a private mapping or an anonymous shared mapping 1129 */ 1130 static int do_mmap_private(struct vm_area_struct *vma, 1131 struct vm_region *region, 1132 unsigned long len, 1133 unsigned long capabilities) 1134 { 1135 struct page *pages; 1136 unsigned long total, point, n, rlen; 1137 void *base; 1138 int ret, order; 1139 1140 /* invoke the file's mapping function so that it can keep track of 1141 * shared mappings on devices or memory 1142 * - VM_MAYSHARE will be set if it may attempt to share 1143 */ 1144 if (capabilities & BDI_CAP_MAP_DIRECT) { 1145 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1146 if (ret == 0) { 1147 /* shouldn't return success if we're not sharing */ 1148 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1149 vma->vm_region->vm_top = vma->vm_region->vm_end; 1150 return 0; 1151 } 1152 if (ret != -ENOSYS) 1153 return ret; 1154 1155 /* getting an ENOSYS error indicates that direct mmap isn't 1156 * possible (as opposed to tried but failed) so we'll try to 1157 * make a private copy of the data and map that instead */ 1158 } 1159 1160 rlen = PAGE_ALIGN(len); 1161 1162 /* allocate some memory to hold the mapping 1163 * - note that this may not return a page-aligned address if the object 1164 * we're allocating is smaller than a page 1165 */ 1166 order = get_order(rlen); 1167 kdebug("alloc order %d for %lx", order, len); 1168 1169 pages = alloc_pages(GFP_KERNEL, order); 1170 if (!pages) 1171 goto enomem; 1172 1173 total = 1 << order; 1174 atomic_long_add(total, &mmap_pages_allocated); 1175 1176 point = rlen >> PAGE_SHIFT; 1177 1178 /* we allocated a power-of-2 sized page set, so we may want to trim off 1179 * the excess */ 1180 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1181 while (total > point) { 1182 order = ilog2(total - point); 1183 n = 1 << order; 1184 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1185 atomic_long_sub(n, &mmap_pages_allocated); 1186 total -= n; 1187 set_page_refcounted(pages + total); 1188 __free_pages(pages + total, order); 1189 } 1190 } 1191 1192 for (point = 1; point < total; point++) 1193 set_page_refcounted(&pages[point]); 1194 1195 base = page_address(pages); 1196 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1197 region->vm_start = (unsigned long) base; 1198 region->vm_end = region->vm_start + rlen; 1199 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1200 1201 vma->vm_start = region->vm_start; 1202 vma->vm_end = region->vm_start + len; 1203 1204 if (vma->vm_file) { 1205 /* read the contents of a file into the copy */ 1206 mm_segment_t old_fs; 1207 loff_t fpos; 1208 1209 fpos = vma->vm_pgoff; 1210 fpos <<= PAGE_SHIFT; 1211 1212 old_fs = get_fs(); 1213 set_fs(KERNEL_DS); 1214 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1215 set_fs(old_fs); 1216 1217 if (ret < 0) 1218 goto error_free; 1219 1220 /* clear the last little bit */ 1221 if (ret < rlen) 1222 memset(base + ret, 0, rlen - ret); 1223 1224 } 1225 1226 return 0; 1227 1228 error_free: 1229 free_page_series(region->vm_start, region->vm_end); 1230 region->vm_start = vma->vm_start = 0; 1231 region->vm_end = vma->vm_end = 0; 1232 region->vm_top = 0; 1233 return ret; 1234 1235 enomem: 1236 printk("Allocation of length %lu from process %d (%s) failed\n", 1237 len, current->pid, current->comm); 1238 show_free_areas(); 1239 return -ENOMEM; 1240 } 1241 1242 /* 1243 * handle mapping creation for uClinux 1244 */ 1245 unsigned long do_mmap_pgoff(struct file *file, 1246 unsigned long addr, 1247 unsigned long len, 1248 unsigned long prot, 1249 unsigned long flags, 1250 unsigned long pgoff) 1251 { 1252 struct vm_area_struct *vma; 1253 struct vm_region *region; 1254 struct rb_node *rb; 1255 unsigned long capabilities, vm_flags, result; 1256 int ret; 1257 1258 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1259 1260 /* decide whether we should attempt the mapping, and if so what sort of 1261 * mapping */ 1262 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1263 &capabilities); 1264 if (ret < 0) { 1265 kleave(" = %d [val]", ret); 1266 return ret; 1267 } 1268 1269 /* we ignore the address hint */ 1270 addr = 0; 1271 1272 /* we've determined that we can make the mapping, now translate what we 1273 * now know into VMA flags */ 1274 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1275 1276 /* we're going to need to record the mapping */ 1277 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1278 if (!region) 1279 goto error_getting_region; 1280 1281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1282 if (!vma) 1283 goto error_getting_vma; 1284 1285 region->vm_usage = 1; 1286 region->vm_flags = vm_flags; 1287 region->vm_pgoff = pgoff; 1288 1289 INIT_LIST_HEAD(&vma->anon_vma_chain); 1290 vma->vm_flags = vm_flags; 1291 vma->vm_pgoff = pgoff; 1292 1293 if (file) { 1294 region->vm_file = file; 1295 get_file(file); 1296 vma->vm_file = file; 1297 get_file(file); 1298 if (vm_flags & VM_EXECUTABLE) { 1299 added_exe_file_vma(current->mm); 1300 vma->vm_mm = current->mm; 1301 } 1302 } 1303 1304 down_write(&nommu_region_sem); 1305 1306 /* if we want to share, we need to check for regions created by other 1307 * mmap() calls that overlap with our proposed mapping 1308 * - we can only share with a superset match on most regular files 1309 * - shared mappings on character devices and memory backed files are 1310 * permitted to overlap inexactly as far as we are concerned for in 1311 * these cases, sharing is handled in the driver or filesystem rather 1312 * than here 1313 */ 1314 if (vm_flags & VM_MAYSHARE) { 1315 struct vm_region *pregion; 1316 unsigned long pglen, rpglen, pgend, rpgend, start; 1317 1318 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1319 pgend = pgoff + pglen; 1320 1321 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1322 pregion = rb_entry(rb, struct vm_region, vm_rb); 1323 1324 if (!(pregion->vm_flags & VM_MAYSHARE)) 1325 continue; 1326 1327 /* search for overlapping mappings on the same file */ 1328 if (pregion->vm_file->f_path.dentry->d_inode != 1329 file->f_path.dentry->d_inode) 1330 continue; 1331 1332 if (pregion->vm_pgoff >= pgend) 1333 continue; 1334 1335 rpglen = pregion->vm_end - pregion->vm_start; 1336 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1337 rpgend = pregion->vm_pgoff + rpglen; 1338 if (pgoff >= rpgend) 1339 continue; 1340 1341 /* handle inexactly overlapping matches between 1342 * mappings */ 1343 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1344 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1345 /* new mapping is not a subset of the region */ 1346 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1347 goto sharing_violation; 1348 continue; 1349 } 1350 1351 /* we've found a region we can share */ 1352 pregion->vm_usage++; 1353 vma->vm_region = pregion; 1354 start = pregion->vm_start; 1355 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1356 vma->vm_start = start; 1357 vma->vm_end = start + len; 1358 1359 if (pregion->vm_flags & VM_MAPPED_COPY) { 1360 kdebug("share copy"); 1361 vma->vm_flags |= VM_MAPPED_COPY; 1362 } else { 1363 kdebug("share mmap"); 1364 ret = do_mmap_shared_file(vma); 1365 if (ret < 0) { 1366 vma->vm_region = NULL; 1367 vma->vm_start = 0; 1368 vma->vm_end = 0; 1369 pregion->vm_usage--; 1370 pregion = NULL; 1371 goto error_just_free; 1372 } 1373 } 1374 fput(region->vm_file); 1375 kmem_cache_free(vm_region_jar, region); 1376 region = pregion; 1377 result = start; 1378 goto share; 1379 } 1380 1381 /* obtain the address at which to make a shared mapping 1382 * - this is the hook for quasi-memory character devices to 1383 * tell us the location of a shared mapping 1384 */ 1385 if (capabilities & BDI_CAP_MAP_DIRECT) { 1386 addr = file->f_op->get_unmapped_area(file, addr, len, 1387 pgoff, flags); 1388 if (IS_ERR((void *) addr)) { 1389 ret = addr; 1390 if (ret != (unsigned long) -ENOSYS) 1391 goto error_just_free; 1392 1393 /* the driver refused to tell us where to site 1394 * the mapping so we'll have to attempt to copy 1395 * it */ 1396 ret = (unsigned long) -ENODEV; 1397 if (!(capabilities & BDI_CAP_MAP_COPY)) 1398 goto error_just_free; 1399 1400 capabilities &= ~BDI_CAP_MAP_DIRECT; 1401 } else { 1402 vma->vm_start = region->vm_start = addr; 1403 vma->vm_end = region->vm_end = addr + len; 1404 } 1405 } 1406 } 1407 1408 vma->vm_region = region; 1409 1410 /* set up the mapping 1411 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1412 */ 1413 if (file && vma->vm_flags & VM_SHARED) 1414 ret = do_mmap_shared_file(vma); 1415 else 1416 ret = do_mmap_private(vma, region, len, capabilities); 1417 if (ret < 0) 1418 goto error_just_free; 1419 add_nommu_region(region); 1420 1421 /* clear anonymous mappings that don't ask for uninitialized data */ 1422 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1423 memset((void *)region->vm_start, 0, 1424 region->vm_end - region->vm_start); 1425 1426 /* okay... we have a mapping; now we have to register it */ 1427 result = vma->vm_start; 1428 1429 current->mm->total_vm += len >> PAGE_SHIFT; 1430 1431 share: 1432 add_vma_to_mm(current->mm, vma); 1433 1434 /* we flush the region from the icache only when the first executable 1435 * mapping of it is made */ 1436 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1437 flush_icache_range(region->vm_start, region->vm_end); 1438 region->vm_icache_flushed = true; 1439 } 1440 1441 up_write(&nommu_region_sem); 1442 1443 kleave(" = %lx", result); 1444 return result; 1445 1446 error_just_free: 1447 up_write(&nommu_region_sem); 1448 error: 1449 if (region->vm_file) 1450 fput(region->vm_file); 1451 kmem_cache_free(vm_region_jar, region); 1452 if (vma->vm_file) 1453 fput(vma->vm_file); 1454 if (vma->vm_flags & VM_EXECUTABLE) 1455 removed_exe_file_vma(vma->vm_mm); 1456 kmem_cache_free(vm_area_cachep, vma); 1457 kleave(" = %d", ret); 1458 return ret; 1459 1460 sharing_violation: 1461 up_write(&nommu_region_sem); 1462 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1463 ret = -EINVAL; 1464 goto error; 1465 1466 error_getting_vma: 1467 kmem_cache_free(vm_region_jar, region); 1468 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1469 " from process %d failed\n", 1470 len, current->pid); 1471 show_free_areas(); 1472 return -ENOMEM; 1473 1474 error_getting_region: 1475 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1476 " from process %d failed\n", 1477 len, current->pid); 1478 show_free_areas(); 1479 return -ENOMEM; 1480 } 1481 EXPORT_SYMBOL(do_mmap_pgoff); 1482 1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1484 unsigned long, prot, unsigned long, flags, 1485 unsigned long, fd, unsigned long, pgoff) 1486 { 1487 struct file *file = NULL; 1488 unsigned long retval = -EBADF; 1489 1490 audit_mmap_fd(fd, flags); 1491 if (!(flags & MAP_ANONYMOUS)) { 1492 file = fget(fd); 1493 if (!file) 1494 goto out; 1495 } 1496 1497 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1498 1499 down_write(¤t->mm->mmap_sem); 1500 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1501 up_write(¤t->mm->mmap_sem); 1502 1503 if (file) 1504 fput(file); 1505 out: 1506 return retval; 1507 } 1508 1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1510 struct mmap_arg_struct { 1511 unsigned long addr; 1512 unsigned long len; 1513 unsigned long prot; 1514 unsigned long flags; 1515 unsigned long fd; 1516 unsigned long offset; 1517 }; 1518 1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1520 { 1521 struct mmap_arg_struct a; 1522 1523 if (copy_from_user(&a, arg, sizeof(a))) 1524 return -EFAULT; 1525 if (a.offset & ~PAGE_MASK) 1526 return -EINVAL; 1527 1528 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1529 a.offset >> PAGE_SHIFT); 1530 } 1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1532 1533 /* 1534 * split a vma into two pieces at address 'addr', a new vma is allocated either 1535 * for the first part or the tail. 1536 */ 1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1538 unsigned long addr, int new_below) 1539 { 1540 struct vm_area_struct *new; 1541 struct vm_region *region; 1542 unsigned long npages; 1543 1544 kenter(""); 1545 1546 /* we're only permitted to split anonymous regions (these should have 1547 * only a single usage on the region) */ 1548 if (vma->vm_file) 1549 return -ENOMEM; 1550 1551 if (mm->map_count >= sysctl_max_map_count) 1552 return -ENOMEM; 1553 1554 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1555 if (!region) 1556 return -ENOMEM; 1557 1558 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1559 if (!new) { 1560 kmem_cache_free(vm_region_jar, region); 1561 return -ENOMEM; 1562 } 1563 1564 /* most fields are the same, copy all, and then fixup */ 1565 *new = *vma; 1566 *region = *vma->vm_region; 1567 new->vm_region = region; 1568 1569 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1570 1571 if (new_below) { 1572 region->vm_top = region->vm_end = new->vm_end = addr; 1573 } else { 1574 region->vm_start = new->vm_start = addr; 1575 region->vm_pgoff = new->vm_pgoff += npages; 1576 } 1577 1578 if (new->vm_ops && new->vm_ops->open) 1579 new->vm_ops->open(new); 1580 1581 delete_vma_from_mm(vma); 1582 down_write(&nommu_region_sem); 1583 delete_nommu_region(vma->vm_region); 1584 if (new_below) { 1585 vma->vm_region->vm_start = vma->vm_start = addr; 1586 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1587 } else { 1588 vma->vm_region->vm_end = vma->vm_end = addr; 1589 vma->vm_region->vm_top = addr; 1590 } 1591 add_nommu_region(vma->vm_region); 1592 add_nommu_region(new->vm_region); 1593 up_write(&nommu_region_sem); 1594 add_vma_to_mm(mm, vma); 1595 add_vma_to_mm(mm, new); 1596 return 0; 1597 } 1598 1599 /* 1600 * shrink a VMA by removing the specified chunk from either the beginning or 1601 * the end 1602 */ 1603 static int shrink_vma(struct mm_struct *mm, 1604 struct vm_area_struct *vma, 1605 unsigned long from, unsigned long to) 1606 { 1607 struct vm_region *region; 1608 1609 kenter(""); 1610 1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1612 * and list */ 1613 delete_vma_from_mm(vma); 1614 if (from > vma->vm_start) 1615 vma->vm_end = from; 1616 else 1617 vma->vm_start = to; 1618 add_vma_to_mm(mm, vma); 1619 1620 /* cut the backing region down to size */ 1621 region = vma->vm_region; 1622 BUG_ON(region->vm_usage != 1); 1623 1624 down_write(&nommu_region_sem); 1625 delete_nommu_region(region); 1626 if (from > region->vm_start) { 1627 to = region->vm_top; 1628 region->vm_top = region->vm_end = from; 1629 } else { 1630 region->vm_start = to; 1631 } 1632 add_nommu_region(region); 1633 up_write(&nommu_region_sem); 1634 1635 free_page_series(from, to); 1636 return 0; 1637 } 1638 1639 /* 1640 * release a mapping 1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1642 * VMA, though it need not cover the whole VMA 1643 */ 1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1645 { 1646 struct vm_area_struct *vma; 1647 struct rb_node *rb; 1648 unsigned long end = start + len; 1649 int ret; 1650 1651 kenter(",%lx,%zx", start, len); 1652 1653 if (len == 0) 1654 return -EINVAL; 1655 1656 /* find the first potentially overlapping VMA */ 1657 vma = find_vma(mm, start); 1658 if (!vma) { 1659 static int limit = 0; 1660 if (limit < 5) { 1661 printk(KERN_WARNING 1662 "munmap of memory not mmapped by process %d" 1663 " (%s): 0x%lx-0x%lx\n", 1664 current->pid, current->comm, 1665 start, start + len - 1); 1666 limit++; 1667 } 1668 return -EINVAL; 1669 } 1670 1671 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1672 if (vma->vm_file) { 1673 do { 1674 if (start > vma->vm_start) { 1675 kleave(" = -EINVAL [miss]"); 1676 return -EINVAL; 1677 } 1678 if (end == vma->vm_end) 1679 goto erase_whole_vma; 1680 rb = rb_next(&vma->vm_rb); 1681 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1682 } while (rb); 1683 kleave(" = -EINVAL [split file]"); 1684 return -EINVAL; 1685 } else { 1686 /* the chunk must be a subset of the VMA found */ 1687 if (start == vma->vm_start && end == vma->vm_end) 1688 goto erase_whole_vma; 1689 if (start < vma->vm_start || end > vma->vm_end) { 1690 kleave(" = -EINVAL [superset]"); 1691 return -EINVAL; 1692 } 1693 if (start & ~PAGE_MASK) { 1694 kleave(" = -EINVAL [unaligned start]"); 1695 return -EINVAL; 1696 } 1697 if (end != vma->vm_end && end & ~PAGE_MASK) { 1698 kleave(" = -EINVAL [unaligned split]"); 1699 return -EINVAL; 1700 } 1701 if (start != vma->vm_start && end != vma->vm_end) { 1702 ret = split_vma(mm, vma, start, 1); 1703 if (ret < 0) { 1704 kleave(" = %d [split]", ret); 1705 return ret; 1706 } 1707 } 1708 return shrink_vma(mm, vma, start, end); 1709 } 1710 1711 erase_whole_vma: 1712 delete_vma_from_mm(vma); 1713 delete_vma(mm, vma); 1714 kleave(" = 0"); 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(do_munmap); 1718 1719 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1720 { 1721 int ret; 1722 struct mm_struct *mm = current->mm; 1723 1724 down_write(&mm->mmap_sem); 1725 ret = do_munmap(mm, addr, len); 1726 up_write(&mm->mmap_sem); 1727 return ret; 1728 } 1729 1730 /* 1731 * release all the mappings made in a process's VM space 1732 */ 1733 void exit_mmap(struct mm_struct *mm) 1734 { 1735 struct vm_area_struct *vma; 1736 1737 if (!mm) 1738 return; 1739 1740 kenter(""); 1741 1742 mm->total_vm = 0; 1743 1744 while ((vma = mm->mmap)) { 1745 mm->mmap = vma->vm_next; 1746 delete_vma_from_mm(vma); 1747 delete_vma(mm, vma); 1748 cond_resched(); 1749 } 1750 1751 kleave(""); 1752 } 1753 1754 unsigned long do_brk(unsigned long addr, unsigned long len) 1755 { 1756 return -ENOMEM; 1757 } 1758 1759 /* 1760 * expand (or shrink) an existing mapping, potentially moving it at the same 1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1762 * 1763 * under NOMMU conditions, we only permit changing a mapping's size, and only 1764 * as long as it stays within the region allocated by do_mmap_private() and the 1765 * block is not shareable 1766 * 1767 * MREMAP_FIXED is not supported under NOMMU conditions 1768 */ 1769 unsigned long do_mremap(unsigned long addr, 1770 unsigned long old_len, unsigned long new_len, 1771 unsigned long flags, unsigned long new_addr) 1772 { 1773 struct vm_area_struct *vma; 1774 1775 /* insanity checks first */ 1776 if (old_len == 0 || new_len == 0) 1777 return (unsigned long) -EINVAL; 1778 1779 if (addr & ~PAGE_MASK) 1780 return -EINVAL; 1781 1782 if (flags & MREMAP_FIXED && new_addr != addr) 1783 return (unsigned long) -EINVAL; 1784 1785 vma = find_vma_exact(current->mm, addr, old_len); 1786 if (!vma) 1787 return (unsigned long) -EINVAL; 1788 1789 if (vma->vm_end != vma->vm_start + old_len) 1790 return (unsigned long) -EFAULT; 1791 1792 if (vma->vm_flags & VM_MAYSHARE) 1793 return (unsigned long) -EPERM; 1794 1795 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1796 return (unsigned long) -ENOMEM; 1797 1798 /* all checks complete - do it */ 1799 vma->vm_end = vma->vm_start + new_len; 1800 return vma->vm_start; 1801 } 1802 EXPORT_SYMBOL(do_mremap); 1803 1804 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1805 unsigned long, new_len, unsigned long, flags, 1806 unsigned long, new_addr) 1807 { 1808 unsigned long ret; 1809 1810 down_write(¤t->mm->mmap_sem); 1811 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1812 up_write(¤t->mm->mmap_sem); 1813 return ret; 1814 } 1815 1816 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1817 unsigned int foll_flags) 1818 { 1819 return NULL; 1820 } 1821 1822 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1823 unsigned long to, unsigned long size, pgprot_t prot) 1824 { 1825 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1826 return 0; 1827 } 1828 EXPORT_SYMBOL(remap_pfn_range); 1829 1830 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1831 unsigned long pgoff) 1832 { 1833 unsigned int size = vma->vm_end - vma->vm_start; 1834 1835 if (!(vma->vm_flags & VM_USERMAP)) 1836 return -EINVAL; 1837 1838 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1839 vma->vm_end = vma->vm_start + size; 1840 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(remap_vmalloc_range); 1844 1845 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1846 unsigned long len, unsigned long pgoff, unsigned long flags) 1847 { 1848 return -ENOMEM; 1849 } 1850 1851 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1852 { 1853 } 1854 1855 void unmap_mapping_range(struct address_space *mapping, 1856 loff_t const holebegin, loff_t const holelen, 1857 int even_cows) 1858 { 1859 } 1860 EXPORT_SYMBOL(unmap_mapping_range); 1861 1862 /* 1863 * Check that a process has enough memory to allocate a new virtual 1864 * mapping. 0 means there is enough memory for the allocation to 1865 * succeed and -ENOMEM implies there is not. 1866 * 1867 * We currently support three overcommit policies, which are set via the 1868 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1869 * 1870 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1871 * Additional code 2002 Jul 20 by Robert Love. 1872 * 1873 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1874 * 1875 * Note this is a helper function intended to be used by LSMs which 1876 * wish to use this logic. 1877 */ 1878 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1879 { 1880 unsigned long free, allowed; 1881 1882 vm_acct_memory(pages); 1883 1884 /* 1885 * Sometimes we want to use more memory than we have 1886 */ 1887 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1888 return 0; 1889 1890 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1891 unsigned long n; 1892 1893 free = global_page_state(NR_FILE_PAGES); 1894 free += nr_swap_pages; 1895 1896 /* 1897 * Any slabs which are created with the 1898 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1899 * which are reclaimable, under pressure. The dentry 1900 * cache and most inode caches should fall into this 1901 */ 1902 free += global_page_state(NR_SLAB_RECLAIMABLE); 1903 1904 /* 1905 * Leave the last 3% for root 1906 */ 1907 if (!cap_sys_admin) 1908 free -= free / 32; 1909 1910 if (free > pages) 1911 return 0; 1912 1913 /* 1914 * nr_free_pages() is very expensive on large systems, 1915 * only call if we're about to fail. 1916 */ 1917 n = nr_free_pages(); 1918 1919 /* 1920 * Leave reserved pages. The pages are not for anonymous pages. 1921 */ 1922 if (n <= totalreserve_pages) 1923 goto error; 1924 else 1925 n -= totalreserve_pages; 1926 1927 /* 1928 * Leave the last 3% for root 1929 */ 1930 if (!cap_sys_admin) 1931 n -= n / 32; 1932 free += n; 1933 1934 if (free > pages) 1935 return 0; 1936 1937 goto error; 1938 } 1939 1940 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1941 /* 1942 * Leave the last 3% for root 1943 */ 1944 if (!cap_sys_admin) 1945 allowed -= allowed / 32; 1946 allowed += total_swap_pages; 1947 1948 /* Don't let a single process grow too big: 1949 leave 3% of the size of this process for other processes */ 1950 if (mm) 1951 allowed -= mm->total_vm / 32; 1952 1953 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1954 return 0; 1955 1956 error: 1957 vm_unacct_memory(pages); 1958 1959 return -ENOMEM; 1960 } 1961 1962 int in_gate_area_no_mm(unsigned long addr) 1963 { 1964 return 0; 1965 } 1966 1967 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1968 { 1969 BUG(); 1970 return 0; 1971 } 1972 EXPORT_SYMBOL(filemap_fault); 1973 1974 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1975 unsigned long addr, void *buf, int len, int write) 1976 { 1977 struct vm_area_struct *vma; 1978 1979 down_read(&mm->mmap_sem); 1980 1981 /* the access must start within one of the target process's mappings */ 1982 vma = find_vma(mm, addr); 1983 if (vma) { 1984 /* don't overrun this mapping */ 1985 if (addr + len >= vma->vm_end) 1986 len = vma->vm_end - addr; 1987 1988 /* only read or write mappings where it is permitted */ 1989 if (write && vma->vm_flags & VM_MAYWRITE) 1990 copy_to_user_page(vma, NULL, addr, 1991 (void *) addr, buf, len); 1992 else if (!write && vma->vm_flags & VM_MAYREAD) 1993 copy_from_user_page(vma, NULL, addr, 1994 buf, (void *) addr, len); 1995 else 1996 len = 0; 1997 } else { 1998 len = 0; 1999 } 2000 2001 up_read(&mm->mmap_sem); 2002 2003 return len; 2004 } 2005 2006 /** 2007 * @access_remote_vm - access another process' address space 2008 * @mm: the mm_struct of the target address space 2009 * @addr: start address to access 2010 * @buf: source or destination buffer 2011 * @len: number of bytes to transfer 2012 * @write: whether the access is a write 2013 * 2014 * The caller must hold a reference on @mm. 2015 */ 2016 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2017 void *buf, int len, int write) 2018 { 2019 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2020 } 2021 2022 /* 2023 * Access another process' address space. 2024 * - source/target buffer must be kernel space 2025 */ 2026 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2027 { 2028 struct mm_struct *mm; 2029 2030 if (addr + len < addr) 2031 return 0; 2032 2033 mm = get_task_mm(tsk); 2034 if (!mm) 2035 return 0; 2036 2037 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2038 2039 mmput(mm); 2040 return len; 2041 } 2042 2043 /** 2044 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2045 * @inode: The inode to check 2046 * @size: The current filesize of the inode 2047 * @newsize: The proposed filesize of the inode 2048 * 2049 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2050 * make sure that that any outstanding VMAs aren't broken and then shrink the 2051 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2052 * automatically grant mappings that are too large. 2053 */ 2054 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2055 size_t newsize) 2056 { 2057 struct vm_area_struct *vma; 2058 struct prio_tree_iter iter; 2059 struct vm_region *region; 2060 pgoff_t low, high; 2061 size_t r_size, r_top; 2062 2063 low = newsize >> PAGE_SHIFT; 2064 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2065 2066 down_write(&nommu_region_sem); 2067 2068 /* search for VMAs that fall within the dead zone */ 2069 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2070 low, high) { 2071 /* found one - only interested if it's shared out of the page 2072 * cache */ 2073 if (vma->vm_flags & VM_SHARED) { 2074 up_write(&nommu_region_sem); 2075 return -ETXTBSY; /* not quite true, but near enough */ 2076 } 2077 } 2078 2079 /* reduce any regions that overlap the dead zone - if in existence, 2080 * these will be pointed to by VMAs that don't overlap the dead zone 2081 * 2082 * we don't check for any regions that start beyond the EOF as there 2083 * shouldn't be any 2084 */ 2085 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap, 2086 0, ULONG_MAX) { 2087 if (!(vma->vm_flags & VM_SHARED)) 2088 continue; 2089 2090 region = vma->vm_region; 2091 r_size = region->vm_top - region->vm_start; 2092 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2093 2094 if (r_top > newsize) { 2095 region->vm_top -= r_top - newsize; 2096 if (region->vm_end > region->vm_top) 2097 region->vm_end = region->vm_top; 2098 } 2099 } 2100 2101 up_write(&nommu_region_sem); 2102 return 0; 2103 } 2104