xref: /openbmc/linux/mm/nommu.c (revision 4bce6fce)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 #if 0
46 #define kenter(FMT, ...) \
47 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60 
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 EXPORT_SYMBOL(max_mapnr);
66 unsigned long highest_memmap_pfn;
67 struct percpu_counter vm_committed_as;
68 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
69 int sysctl_overcommit_ratio = 50; /* default is 50% */
70 unsigned long sysctl_overcommit_kbytes __read_mostly;
71 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
72 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
73 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
74 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
75 int heap_stack_gap = 0;
76 
77 atomic_long_t mmap_pages_allocated;
78 
79 /*
80  * The global memory commitment made in the system can be a metric
81  * that can be used to drive ballooning decisions when Linux is hosted
82  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83  * balancing memory across competing virtual machines that are hosted.
84  * Several metrics drive this policy engine including the guest reported
85  * memory commitment.
86  */
87 unsigned long vm_memory_committed(void)
88 {
89 	return percpu_counter_read_positive(&vm_committed_as);
90 }
91 
92 EXPORT_SYMBOL_GPL(vm_memory_committed);
93 
94 EXPORT_SYMBOL(mem_map);
95 
96 /* list of mapped, potentially shareable regions */
97 static struct kmem_cache *vm_region_jar;
98 struct rb_root nommu_region_tree = RB_ROOT;
99 DECLARE_RWSEM(nommu_region_sem);
100 
101 const struct vm_operations_struct generic_file_vm_ops = {
102 };
103 
104 /*
105  * Return the total memory allocated for this pointer, not
106  * just what the caller asked for.
107  *
108  * Doesn't have to be accurate, i.e. may have races.
109  */
110 unsigned int kobjsize(const void *objp)
111 {
112 	struct page *page;
113 
114 	/*
115 	 * If the object we have should not have ksize performed on it,
116 	 * return size of 0
117 	 */
118 	if (!objp || !virt_addr_valid(objp))
119 		return 0;
120 
121 	page = virt_to_head_page(objp);
122 
123 	/*
124 	 * If the allocator sets PageSlab, we know the pointer came from
125 	 * kmalloc().
126 	 */
127 	if (PageSlab(page))
128 		return ksize(objp);
129 
130 	/*
131 	 * If it's not a compound page, see if we have a matching VMA
132 	 * region. This test is intentionally done in reverse order,
133 	 * so if there's no VMA, we still fall through and hand back
134 	 * PAGE_SIZE for 0-order pages.
135 	 */
136 	if (!PageCompound(page)) {
137 		struct vm_area_struct *vma;
138 
139 		vma = find_vma(current->mm, (unsigned long)objp);
140 		if (vma)
141 			return vma->vm_end - vma->vm_start;
142 	}
143 
144 	/*
145 	 * The ksize() function is only guaranteed to work for pointers
146 	 * returned by kmalloc(). So handle arbitrary pointers here.
147 	 */
148 	return PAGE_SIZE << compound_order(page);
149 }
150 
151 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
152 		      unsigned long start, unsigned long nr_pages,
153 		      unsigned int foll_flags, struct page **pages,
154 		      struct vm_area_struct **vmas, int *nonblocking)
155 {
156 	struct vm_area_struct *vma;
157 	unsigned long vm_flags;
158 	int i;
159 
160 	/* calculate required read or write permissions.
161 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
162 	 */
163 	vm_flags  = (foll_flags & FOLL_WRITE) ?
164 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
165 	vm_flags &= (foll_flags & FOLL_FORCE) ?
166 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
167 
168 	for (i = 0; i < nr_pages; i++) {
169 		vma = find_vma(mm, start);
170 		if (!vma)
171 			goto finish_or_fault;
172 
173 		/* protect what we can, including chardevs */
174 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
175 		    !(vm_flags & vma->vm_flags))
176 			goto finish_or_fault;
177 
178 		if (pages) {
179 			pages[i] = virt_to_page(start);
180 			if (pages[i])
181 				page_cache_get(pages[i]);
182 		}
183 		if (vmas)
184 			vmas[i] = vma;
185 		start = (start + PAGE_SIZE) & PAGE_MASK;
186 	}
187 
188 	return i;
189 
190 finish_or_fault:
191 	return i ? : -EFAULT;
192 }
193 
194 /*
195  * get a list of pages in an address range belonging to the specified process
196  * and indicate the VMA that covers each page
197  * - this is potentially dodgy as we may end incrementing the page count of a
198  *   slab page or a secondary page from a compound page
199  * - don't permit access to VMAs that don't support it, such as I/O mappings
200  */
201 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
202 		    unsigned long start, unsigned long nr_pages,
203 		    int write, int force, struct page **pages,
204 		    struct vm_area_struct **vmas)
205 {
206 	int flags = 0;
207 
208 	if (write)
209 		flags |= FOLL_WRITE;
210 	if (force)
211 		flags |= FOLL_FORCE;
212 
213 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
214 				NULL);
215 }
216 EXPORT_SYMBOL(get_user_pages);
217 
218 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
219 			   unsigned long start, unsigned long nr_pages,
220 			   int write, int force, struct page **pages,
221 			   int *locked)
222 {
223 	return get_user_pages(tsk, mm, start, nr_pages, write, force,
224 			      pages, NULL);
225 }
226 EXPORT_SYMBOL(get_user_pages_locked);
227 
228 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
229 			       unsigned long start, unsigned long nr_pages,
230 			       int write, int force, struct page **pages,
231 			       unsigned int gup_flags)
232 {
233 	long ret;
234 	down_read(&mm->mmap_sem);
235 	ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
236 			     pages, NULL);
237 	up_read(&mm->mmap_sem);
238 	return ret;
239 }
240 EXPORT_SYMBOL(__get_user_pages_unlocked);
241 
242 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
243 			     unsigned long start, unsigned long nr_pages,
244 			     int write, int force, struct page **pages)
245 {
246 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
247 					 force, pages, 0);
248 }
249 EXPORT_SYMBOL(get_user_pages_unlocked);
250 
251 /**
252  * follow_pfn - look up PFN at a user virtual address
253  * @vma: memory mapping
254  * @address: user virtual address
255  * @pfn: location to store found PFN
256  *
257  * Only IO mappings and raw PFN mappings are allowed.
258  *
259  * Returns zero and the pfn at @pfn on success, -ve otherwise.
260  */
261 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
262 	unsigned long *pfn)
263 {
264 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
265 		return -EINVAL;
266 
267 	*pfn = address >> PAGE_SHIFT;
268 	return 0;
269 }
270 EXPORT_SYMBOL(follow_pfn);
271 
272 LIST_HEAD(vmap_area_list);
273 
274 void vfree(const void *addr)
275 {
276 	kfree(addr);
277 }
278 EXPORT_SYMBOL(vfree);
279 
280 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
281 {
282 	/*
283 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284 	 * returns only a logical address.
285 	 */
286 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
287 }
288 EXPORT_SYMBOL(__vmalloc);
289 
290 void *vmalloc_user(unsigned long size)
291 {
292 	void *ret;
293 
294 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
295 			PAGE_KERNEL);
296 	if (ret) {
297 		struct vm_area_struct *vma;
298 
299 		down_write(&current->mm->mmap_sem);
300 		vma = find_vma(current->mm, (unsigned long)ret);
301 		if (vma)
302 			vma->vm_flags |= VM_USERMAP;
303 		up_write(&current->mm->mmap_sem);
304 	}
305 
306 	return ret;
307 }
308 EXPORT_SYMBOL(vmalloc_user);
309 
310 struct page *vmalloc_to_page(const void *addr)
311 {
312 	return virt_to_page(addr);
313 }
314 EXPORT_SYMBOL(vmalloc_to_page);
315 
316 unsigned long vmalloc_to_pfn(const void *addr)
317 {
318 	return page_to_pfn(virt_to_page(addr));
319 }
320 EXPORT_SYMBOL(vmalloc_to_pfn);
321 
322 long vread(char *buf, char *addr, unsigned long count)
323 {
324 	/* Don't allow overflow */
325 	if ((unsigned long) buf + count < count)
326 		count = -(unsigned long) buf;
327 
328 	memcpy(buf, addr, count);
329 	return count;
330 }
331 
332 long vwrite(char *buf, char *addr, unsigned long count)
333 {
334 	/* Don't allow overflow */
335 	if ((unsigned long) addr + count < count)
336 		count = -(unsigned long) addr;
337 
338 	memcpy(addr, buf, count);
339 	return count;
340 }
341 
342 /*
343  *	vmalloc  -  allocate virtually continguos memory
344  *
345  *	@size:		allocation size
346  *
347  *	Allocate enough pages to cover @size from the page level
348  *	allocator and map them into continguos kernel virtual space.
349  *
350  *	For tight control over page level allocator and protection flags
351  *	use __vmalloc() instead.
352  */
353 void *vmalloc(unsigned long size)
354 {
355        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
356 }
357 EXPORT_SYMBOL(vmalloc);
358 
359 /*
360  *	vzalloc - allocate virtually continguos memory with zero fill
361  *
362  *	@size:		allocation size
363  *
364  *	Allocate enough pages to cover @size from the page level
365  *	allocator and map them into continguos kernel virtual space.
366  *	The memory allocated is set to zero.
367  *
368  *	For tight control over page level allocator and protection flags
369  *	use __vmalloc() instead.
370  */
371 void *vzalloc(unsigned long size)
372 {
373 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
374 			PAGE_KERNEL);
375 }
376 EXPORT_SYMBOL(vzalloc);
377 
378 /**
379  * vmalloc_node - allocate memory on a specific node
380  * @size:	allocation size
381  * @node:	numa node
382  *
383  * Allocate enough pages to cover @size from the page level
384  * allocator and map them into contiguous kernel virtual space.
385  *
386  * For tight control over page level allocator and protection flags
387  * use __vmalloc() instead.
388  */
389 void *vmalloc_node(unsigned long size, int node)
390 {
391 	return vmalloc(size);
392 }
393 EXPORT_SYMBOL(vmalloc_node);
394 
395 /**
396  * vzalloc_node - allocate memory on a specific node with zero fill
397  * @size:	allocation size
398  * @node:	numa node
399  *
400  * Allocate enough pages to cover @size from the page level
401  * allocator and map them into contiguous kernel virtual space.
402  * The memory allocated is set to zero.
403  *
404  * For tight control over page level allocator and protection flags
405  * use __vmalloc() instead.
406  */
407 void *vzalloc_node(unsigned long size, int node)
408 {
409 	return vzalloc(size);
410 }
411 EXPORT_SYMBOL(vzalloc_node);
412 
413 #ifndef PAGE_KERNEL_EXEC
414 # define PAGE_KERNEL_EXEC PAGE_KERNEL
415 #endif
416 
417 /**
418  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
419  *	@size:		allocation size
420  *
421  *	Kernel-internal function to allocate enough pages to cover @size
422  *	the page level allocator and map them into contiguous and
423  *	executable kernel virtual space.
424  *
425  *	For tight control over page level allocator and protection flags
426  *	use __vmalloc() instead.
427  */
428 
429 void *vmalloc_exec(unsigned long size)
430 {
431 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
432 }
433 
434 /**
435  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
436  *	@size:		allocation size
437  *
438  *	Allocate enough 32bit PA addressable pages to cover @size from the
439  *	page level allocator and map them into continguos kernel virtual space.
440  */
441 void *vmalloc_32(unsigned long size)
442 {
443 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
444 }
445 EXPORT_SYMBOL(vmalloc_32);
446 
447 /**
448  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449  *	@size:		allocation size
450  *
451  * The resulting memory area is 32bit addressable and zeroed so it can be
452  * mapped to userspace without leaking data.
453  *
454  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455  * remap_vmalloc_range() are permissible.
456  */
457 void *vmalloc_32_user(unsigned long size)
458 {
459 	/*
460 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
461 	 * but for now this can simply use vmalloc_user() directly.
462 	 */
463 	return vmalloc_user(size);
464 }
465 EXPORT_SYMBOL(vmalloc_32_user);
466 
467 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
468 {
469 	BUG();
470 	return NULL;
471 }
472 EXPORT_SYMBOL(vmap);
473 
474 void vunmap(const void *addr)
475 {
476 	BUG();
477 }
478 EXPORT_SYMBOL(vunmap);
479 
480 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
481 {
482 	BUG();
483 	return NULL;
484 }
485 EXPORT_SYMBOL(vm_map_ram);
486 
487 void vm_unmap_ram(const void *mem, unsigned int count)
488 {
489 	BUG();
490 }
491 EXPORT_SYMBOL(vm_unmap_ram);
492 
493 void vm_unmap_aliases(void)
494 {
495 }
496 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
497 
498 /*
499  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
500  * have one.
501  */
502 void __weak vmalloc_sync_all(void)
503 {
504 }
505 
506 /**
507  *	alloc_vm_area - allocate a range of kernel address space
508  *	@size:		size of the area
509  *
510  *	Returns:	NULL on failure, vm_struct on success
511  *
512  *	This function reserves a range of kernel address space, and
513  *	allocates pagetables to map that range.  No actual mappings
514  *	are created.  If the kernel address space is not shared
515  *	between processes, it syncs the pagetable across all
516  *	processes.
517  */
518 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
519 {
520 	BUG();
521 	return NULL;
522 }
523 EXPORT_SYMBOL_GPL(alloc_vm_area);
524 
525 void free_vm_area(struct vm_struct *area)
526 {
527 	BUG();
528 }
529 EXPORT_SYMBOL_GPL(free_vm_area);
530 
531 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
532 		   struct page *page)
533 {
534 	return -EINVAL;
535 }
536 EXPORT_SYMBOL(vm_insert_page);
537 
538 /*
539  *  sys_brk() for the most part doesn't need the global kernel
540  *  lock, except when an application is doing something nasty
541  *  like trying to un-brk an area that has already been mapped
542  *  to a regular file.  in this case, the unmapping will need
543  *  to invoke file system routines that need the global lock.
544  */
545 SYSCALL_DEFINE1(brk, unsigned long, brk)
546 {
547 	struct mm_struct *mm = current->mm;
548 
549 	if (brk < mm->start_brk || brk > mm->context.end_brk)
550 		return mm->brk;
551 
552 	if (mm->brk == brk)
553 		return mm->brk;
554 
555 	/*
556 	 * Always allow shrinking brk
557 	 */
558 	if (brk <= mm->brk) {
559 		mm->brk = brk;
560 		return brk;
561 	}
562 
563 	/*
564 	 * Ok, looks good - let it rip.
565 	 */
566 	flush_icache_range(mm->brk, brk);
567 	return mm->brk = brk;
568 }
569 
570 /*
571  * initialise the VMA and region record slabs
572  */
573 void __init mmap_init(void)
574 {
575 	int ret;
576 
577 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
578 	VM_BUG_ON(ret);
579 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
580 }
581 
582 /*
583  * validate the region tree
584  * - the caller must hold the region lock
585  */
586 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
587 static noinline void validate_nommu_regions(void)
588 {
589 	struct vm_region *region, *last;
590 	struct rb_node *p, *lastp;
591 
592 	lastp = rb_first(&nommu_region_tree);
593 	if (!lastp)
594 		return;
595 
596 	last = rb_entry(lastp, struct vm_region, vm_rb);
597 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
598 	BUG_ON(unlikely(last->vm_top < last->vm_end));
599 
600 	while ((p = rb_next(lastp))) {
601 		region = rb_entry(p, struct vm_region, vm_rb);
602 		last = rb_entry(lastp, struct vm_region, vm_rb);
603 
604 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
605 		BUG_ON(unlikely(region->vm_top < region->vm_end));
606 		BUG_ON(unlikely(region->vm_start < last->vm_top));
607 
608 		lastp = p;
609 	}
610 }
611 #else
612 static void validate_nommu_regions(void)
613 {
614 }
615 #endif
616 
617 /*
618  * add a region into the global tree
619  */
620 static void add_nommu_region(struct vm_region *region)
621 {
622 	struct vm_region *pregion;
623 	struct rb_node **p, *parent;
624 
625 	validate_nommu_regions();
626 
627 	parent = NULL;
628 	p = &nommu_region_tree.rb_node;
629 	while (*p) {
630 		parent = *p;
631 		pregion = rb_entry(parent, struct vm_region, vm_rb);
632 		if (region->vm_start < pregion->vm_start)
633 			p = &(*p)->rb_left;
634 		else if (region->vm_start > pregion->vm_start)
635 			p = &(*p)->rb_right;
636 		else if (pregion == region)
637 			return;
638 		else
639 			BUG();
640 	}
641 
642 	rb_link_node(&region->vm_rb, parent, p);
643 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
644 
645 	validate_nommu_regions();
646 }
647 
648 /*
649  * delete a region from the global tree
650  */
651 static void delete_nommu_region(struct vm_region *region)
652 {
653 	BUG_ON(!nommu_region_tree.rb_node);
654 
655 	validate_nommu_regions();
656 	rb_erase(&region->vm_rb, &nommu_region_tree);
657 	validate_nommu_regions();
658 }
659 
660 /*
661  * free a contiguous series of pages
662  */
663 static void free_page_series(unsigned long from, unsigned long to)
664 {
665 	for (; from < to; from += PAGE_SIZE) {
666 		struct page *page = virt_to_page(from);
667 
668 		kdebug("- free %lx", from);
669 		atomic_long_dec(&mmap_pages_allocated);
670 		if (page_count(page) != 1)
671 			kdebug("free page %p: refcount not one: %d",
672 			       page, page_count(page));
673 		put_page(page);
674 	}
675 }
676 
677 /*
678  * release a reference to a region
679  * - the caller must hold the region semaphore for writing, which this releases
680  * - the region may not have been added to the tree yet, in which case vm_top
681  *   will equal vm_start
682  */
683 static void __put_nommu_region(struct vm_region *region)
684 	__releases(nommu_region_sem)
685 {
686 	kenter("%p{%d}", region, region->vm_usage);
687 
688 	BUG_ON(!nommu_region_tree.rb_node);
689 
690 	if (--region->vm_usage == 0) {
691 		if (region->vm_top > region->vm_start)
692 			delete_nommu_region(region);
693 		up_write(&nommu_region_sem);
694 
695 		if (region->vm_file)
696 			fput(region->vm_file);
697 
698 		/* IO memory and memory shared directly out of the pagecache
699 		 * from ramfs/tmpfs mustn't be released here */
700 		if (region->vm_flags & VM_MAPPED_COPY) {
701 			kdebug("free series");
702 			free_page_series(region->vm_start, region->vm_top);
703 		}
704 		kmem_cache_free(vm_region_jar, region);
705 	} else {
706 		up_write(&nommu_region_sem);
707 	}
708 }
709 
710 /*
711  * release a reference to a region
712  */
713 static void put_nommu_region(struct vm_region *region)
714 {
715 	down_write(&nommu_region_sem);
716 	__put_nommu_region(region);
717 }
718 
719 /*
720  * update protection on a vma
721  */
722 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
723 {
724 #ifdef CONFIG_MPU
725 	struct mm_struct *mm = vma->vm_mm;
726 	long start = vma->vm_start & PAGE_MASK;
727 	while (start < vma->vm_end) {
728 		protect_page(mm, start, flags);
729 		start += PAGE_SIZE;
730 	}
731 	update_protections(mm);
732 #endif
733 }
734 
735 /*
736  * add a VMA into a process's mm_struct in the appropriate place in the list
737  * and tree and add to the address space's page tree also if not an anonymous
738  * page
739  * - should be called with mm->mmap_sem held writelocked
740  */
741 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
742 {
743 	struct vm_area_struct *pvma, *prev;
744 	struct address_space *mapping;
745 	struct rb_node **p, *parent, *rb_prev;
746 
747 	kenter(",%p", vma);
748 
749 	BUG_ON(!vma->vm_region);
750 
751 	mm->map_count++;
752 	vma->vm_mm = mm;
753 
754 	protect_vma(vma, vma->vm_flags);
755 
756 	/* add the VMA to the mapping */
757 	if (vma->vm_file) {
758 		mapping = vma->vm_file->f_mapping;
759 
760 		i_mmap_lock_write(mapping);
761 		flush_dcache_mmap_lock(mapping);
762 		vma_interval_tree_insert(vma, &mapping->i_mmap);
763 		flush_dcache_mmap_unlock(mapping);
764 		i_mmap_unlock_write(mapping);
765 	}
766 
767 	/* add the VMA to the tree */
768 	parent = rb_prev = NULL;
769 	p = &mm->mm_rb.rb_node;
770 	while (*p) {
771 		parent = *p;
772 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
773 
774 		/* sort by: start addr, end addr, VMA struct addr in that order
775 		 * (the latter is necessary as we may get identical VMAs) */
776 		if (vma->vm_start < pvma->vm_start)
777 			p = &(*p)->rb_left;
778 		else if (vma->vm_start > pvma->vm_start) {
779 			rb_prev = parent;
780 			p = &(*p)->rb_right;
781 		} else if (vma->vm_end < pvma->vm_end)
782 			p = &(*p)->rb_left;
783 		else if (vma->vm_end > pvma->vm_end) {
784 			rb_prev = parent;
785 			p = &(*p)->rb_right;
786 		} else if (vma < pvma)
787 			p = &(*p)->rb_left;
788 		else if (vma > pvma) {
789 			rb_prev = parent;
790 			p = &(*p)->rb_right;
791 		} else
792 			BUG();
793 	}
794 
795 	rb_link_node(&vma->vm_rb, parent, p);
796 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
797 
798 	/* add VMA to the VMA list also */
799 	prev = NULL;
800 	if (rb_prev)
801 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
802 
803 	__vma_link_list(mm, vma, prev, parent);
804 }
805 
806 /*
807  * delete a VMA from its owning mm_struct and address space
808  */
809 static void delete_vma_from_mm(struct vm_area_struct *vma)
810 {
811 	int i;
812 	struct address_space *mapping;
813 	struct mm_struct *mm = vma->vm_mm;
814 	struct task_struct *curr = current;
815 
816 	kenter("%p", vma);
817 
818 	protect_vma(vma, 0);
819 
820 	mm->map_count--;
821 	for (i = 0; i < VMACACHE_SIZE; i++) {
822 		/* if the vma is cached, invalidate the entire cache */
823 		if (curr->vmacache[i] == vma) {
824 			vmacache_invalidate(mm);
825 			break;
826 		}
827 	}
828 
829 	/* remove the VMA from the mapping */
830 	if (vma->vm_file) {
831 		mapping = vma->vm_file->f_mapping;
832 
833 		i_mmap_lock_write(mapping);
834 		flush_dcache_mmap_lock(mapping);
835 		vma_interval_tree_remove(vma, &mapping->i_mmap);
836 		flush_dcache_mmap_unlock(mapping);
837 		i_mmap_unlock_write(mapping);
838 	}
839 
840 	/* remove from the MM's tree and list */
841 	rb_erase(&vma->vm_rb, &mm->mm_rb);
842 
843 	if (vma->vm_prev)
844 		vma->vm_prev->vm_next = vma->vm_next;
845 	else
846 		mm->mmap = vma->vm_next;
847 
848 	if (vma->vm_next)
849 		vma->vm_next->vm_prev = vma->vm_prev;
850 }
851 
852 /*
853  * destroy a VMA record
854  */
855 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
856 {
857 	kenter("%p", vma);
858 	if (vma->vm_ops && vma->vm_ops->close)
859 		vma->vm_ops->close(vma);
860 	if (vma->vm_file)
861 		fput(vma->vm_file);
862 	put_nommu_region(vma->vm_region);
863 	kmem_cache_free(vm_area_cachep, vma);
864 }
865 
866 /*
867  * look up the first VMA in which addr resides, NULL if none
868  * - should be called with mm->mmap_sem at least held readlocked
869  */
870 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
871 {
872 	struct vm_area_struct *vma;
873 
874 	/* check the cache first */
875 	vma = vmacache_find(mm, addr);
876 	if (likely(vma))
877 		return vma;
878 
879 	/* trawl the list (there may be multiple mappings in which addr
880 	 * resides) */
881 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
882 		if (vma->vm_start > addr)
883 			return NULL;
884 		if (vma->vm_end > addr) {
885 			vmacache_update(addr, vma);
886 			return vma;
887 		}
888 	}
889 
890 	return NULL;
891 }
892 EXPORT_SYMBOL(find_vma);
893 
894 /*
895  * find a VMA
896  * - we don't extend stack VMAs under NOMMU conditions
897  */
898 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
899 {
900 	return find_vma(mm, addr);
901 }
902 
903 /*
904  * expand a stack to a given address
905  * - not supported under NOMMU conditions
906  */
907 int expand_stack(struct vm_area_struct *vma, unsigned long address)
908 {
909 	return -ENOMEM;
910 }
911 
912 /*
913  * look up the first VMA exactly that exactly matches addr
914  * - should be called with mm->mmap_sem at least held readlocked
915  */
916 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
917 					     unsigned long addr,
918 					     unsigned long len)
919 {
920 	struct vm_area_struct *vma;
921 	unsigned long end = addr + len;
922 
923 	/* check the cache first */
924 	vma = vmacache_find_exact(mm, addr, end);
925 	if (vma)
926 		return vma;
927 
928 	/* trawl the list (there may be multiple mappings in which addr
929 	 * resides) */
930 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
931 		if (vma->vm_start < addr)
932 			continue;
933 		if (vma->vm_start > addr)
934 			return NULL;
935 		if (vma->vm_end == end) {
936 			vmacache_update(addr, vma);
937 			return vma;
938 		}
939 	}
940 
941 	return NULL;
942 }
943 
944 /*
945  * determine whether a mapping should be permitted and, if so, what sort of
946  * mapping we're capable of supporting
947  */
948 static int validate_mmap_request(struct file *file,
949 				 unsigned long addr,
950 				 unsigned long len,
951 				 unsigned long prot,
952 				 unsigned long flags,
953 				 unsigned long pgoff,
954 				 unsigned long *_capabilities)
955 {
956 	unsigned long capabilities, rlen;
957 	int ret;
958 
959 	/* do the simple checks first */
960 	if (flags & MAP_FIXED) {
961 		printk(KERN_DEBUG
962 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
963 		       current->pid);
964 		return -EINVAL;
965 	}
966 
967 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
968 	    (flags & MAP_TYPE) != MAP_SHARED)
969 		return -EINVAL;
970 
971 	if (!len)
972 		return -EINVAL;
973 
974 	/* Careful about overflows.. */
975 	rlen = PAGE_ALIGN(len);
976 	if (!rlen || rlen > TASK_SIZE)
977 		return -ENOMEM;
978 
979 	/* offset overflow? */
980 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
981 		return -EOVERFLOW;
982 
983 	if (file) {
984 		/* files must support mmap */
985 		if (!file->f_op->mmap)
986 			return -ENODEV;
987 
988 		/* work out if what we've got could possibly be shared
989 		 * - we support chardevs that provide their own "memory"
990 		 * - we support files/blockdevs that are memory backed
991 		 */
992 		if (file->f_op->mmap_capabilities) {
993 			capabilities = file->f_op->mmap_capabilities(file);
994 		} else {
995 			/* no explicit capabilities set, so assume some
996 			 * defaults */
997 			switch (file_inode(file)->i_mode & S_IFMT) {
998 			case S_IFREG:
999 			case S_IFBLK:
1000 				capabilities = NOMMU_MAP_COPY;
1001 				break;
1002 
1003 			case S_IFCHR:
1004 				capabilities =
1005 					NOMMU_MAP_DIRECT |
1006 					NOMMU_MAP_READ |
1007 					NOMMU_MAP_WRITE;
1008 				break;
1009 
1010 			default:
1011 				return -EINVAL;
1012 			}
1013 		}
1014 
1015 		/* eliminate any capabilities that we can't support on this
1016 		 * device */
1017 		if (!file->f_op->get_unmapped_area)
1018 			capabilities &= ~NOMMU_MAP_DIRECT;
1019 		if (!(file->f_mode & FMODE_CAN_READ))
1020 			capabilities &= ~NOMMU_MAP_COPY;
1021 
1022 		/* The file shall have been opened with read permission. */
1023 		if (!(file->f_mode & FMODE_READ))
1024 			return -EACCES;
1025 
1026 		if (flags & MAP_SHARED) {
1027 			/* do checks for writing, appending and locking */
1028 			if ((prot & PROT_WRITE) &&
1029 			    !(file->f_mode & FMODE_WRITE))
1030 				return -EACCES;
1031 
1032 			if (IS_APPEND(file_inode(file)) &&
1033 			    (file->f_mode & FMODE_WRITE))
1034 				return -EACCES;
1035 
1036 			if (locks_verify_locked(file))
1037 				return -EAGAIN;
1038 
1039 			if (!(capabilities & NOMMU_MAP_DIRECT))
1040 				return -ENODEV;
1041 
1042 			/* we mustn't privatise shared mappings */
1043 			capabilities &= ~NOMMU_MAP_COPY;
1044 		} else {
1045 			/* we're going to read the file into private memory we
1046 			 * allocate */
1047 			if (!(capabilities & NOMMU_MAP_COPY))
1048 				return -ENODEV;
1049 
1050 			/* we don't permit a private writable mapping to be
1051 			 * shared with the backing device */
1052 			if (prot & PROT_WRITE)
1053 				capabilities &= ~NOMMU_MAP_DIRECT;
1054 		}
1055 
1056 		if (capabilities & NOMMU_MAP_DIRECT) {
1057 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1058 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1060 			    ) {
1061 				capabilities &= ~NOMMU_MAP_DIRECT;
1062 				if (flags & MAP_SHARED) {
1063 					printk(KERN_WARNING
1064 					       "MAP_SHARED not completely supported on !MMU\n");
1065 					return -EINVAL;
1066 				}
1067 			}
1068 		}
1069 
1070 		/* handle executable mappings and implied executable
1071 		 * mappings */
1072 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073 			if (prot & PROT_EXEC)
1074 				return -EPERM;
1075 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076 			/* handle implication of PROT_EXEC by PROT_READ */
1077 			if (current->personality & READ_IMPLIES_EXEC) {
1078 				if (capabilities & NOMMU_MAP_EXEC)
1079 					prot |= PROT_EXEC;
1080 			}
1081 		} else if ((prot & PROT_READ) &&
1082 			 (prot & PROT_EXEC) &&
1083 			 !(capabilities & NOMMU_MAP_EXEC)
1084 			 ) {
1085 			/* backing file is not executable, try to copy */
1086 			capabilities &= ~NOMMU_MAP_DIRECT;
1087 		}
1088 	} else {
1089 		/* anonymous mappings are always memory backed and can be
1090 		 * privately mapped
1091 		 */
1092 		capabilities = NOMMU_MAP_COPY;
1093 
1094 		/* handle PROT_EXEC implication by PROT_READ */
1095 		if ((prot & PROT_READ) &&
1096 		    (current->personality & READ_IMPLIES_EXEC))
1097 			prot |= PROT_EXEC;
1098 	}
1099 
1100 	/* allow the security API to have its say */
1101 	ret = security_mmap_addr(addr);
1102 	if (ret < 0)
1103 		return ret;
1104 
1105 	/* looks okay */
1106 	*_capabilities = capabilities;
1107 	return 0;
1108 }
1109 
1110 /*
1111  * we've determined that we can make the mapping, now translate what we
1112  * now know into VMA flags
1113  */
1114 static unsigned long determine_vm_flags(struct file *file,
1115 					unsigned long prot,
1116 					unsigned long flags,
1117 					unsigned long capabilities)
1118 {
1119 	unsigned long vm_flags;
1120 
1121 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122 	/* vm_flags |= mm->def_flags; */
1123 
1124 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125 		/* attempt to share read-only copies of mapped file chunks */
1126 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127 		if (file && !(prot & PROT_WRITE))
1128 			vm_flags |= VM_MAYSHARE;
1129 	} else {
1130 		/* overlay a shareable mapping on the backing device or inode
1131 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132 		 * romfs/cramfs */
1133 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134 		if (flags & MAP_SHARED)
1135 			vm_flags |= VM_SHARED;
1136 	}
1137 
1138 	/* refuse to let anyone share private mappings with this process if
1139 	 * it's being traced - otherwise breakpoints set in it may interfere
1140 	 * with another untraced process
1141 	 */
1142 	if ((flags & MAP_PRIVATE) && current->ptrace)
1143 		vm_flags &= ~VM_MAYSHARE;
1144 
1145 	return vm_flags;
1146 }
1147 
1148 /*
1149  * set up a shared mapping on a file (the driver or filesystem provides and
1150  * pins the storage)
1151  */
1152 static int do_mmap_shared_file(struct vm_area_struct *vma)
1153 {
1154 	int ret;
1155 
1156 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157 	if (ret == 0) {
1158 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1159 		return 0;
1160 	}
1161 	if (ret != -ENOSYS)
1162 		return ret;
1163 
1164 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1165 	 * opposed to tried but failed) so we can only give a suitable error as
1166 	 * it's not possible to make a private copy if MAP_SHARED was given */
1167 	return -ENODEV;
1168 }
1169 
1170 /*
1171  * set up a private mapping or an anonymous shared mapping
1172  */
1173 static int do_mmap_private(struct vm_area_struct *vma,
1174 			   struct vm_region *region,
1175 			   unsigned long len,
1176 			   unsigned long capabilities)
1177 {
1178 	unsigned long total, point;
1179 	void *base;
1180 	int ret, order;
1181 
1182 	/* invoke the file's mapping function so that it can keep track of
1183 	 * shared mappings on devices or memory
1184 	 * - VM_MAYSHARE will be set if it may attempt to share
1185 	 */
1186 	if (capabilities & NOMMU_MAP_DIRECT) {
1187 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188 		if (ret == 0) {
1189 			/* shouldn't return success if we're not sharing */
1190 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1192 			return 0;
1193 		}
1194 		if (ret != -ENOSYS)
1195 			return ret;
1196 
1197 		/* getting an ENOSYS error indicates that direct mmap isn't
1198 		 * possible (as opposed to tried but failed) so we'll try to
1199 		 * make a private copy of the data and map that instead */
1200 	}
1201 
1202 
1203 	/* allocate some memory to hold the mapping
1204 	 * - note that this may not return a page-aligned address if the object
1205 	 *   we're allocating is smaller than a page
1206 	 */
1207 	order = get_order(len);
1208 	kdebug("alloc order %d for %lx", order, len);
1209 
1210 	total = 1 << order;
1211 	point = len >> PAGE_SHIFT;
1212 
1213 	/* we don't want to allocate a power-of-2 sized page set */
1214 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215 		total = point;
1216 		kdebug("try to alloc exact %lu pages", total);
1217 	}
1218 
1219 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220 	if (!base)
1221 		goto enomem;
1222 
1223 	atomic_long_add(total, &mmap_pages_allocated);
1224 
1225 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226 	region->vm_start = (unsigned long) base;
1227 	region->vm_end   = region->vm_start + len;
1228 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1229 
1230 	vma->vm_start = region->vm_start;
1231 	vma->vm_end   = region->vm_start + len;
1232 
1233 	if (vma->vm_file) {
1234 		/* read the contents of a file into the copy */
1235 		mm_segment_t old_fs;
1236 		loff_t fpos;
1237 
1238 		fpos = vma->vm_pgoff;
1239 		fpos <<= PAGE_SHIFT;
1240 
1241 		old_fs = get_fs();
1242 		set_fs(KERNEL_DS);
1243 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1244 		set_fs(old_fs);
1245 
1246 		if (ret < 0)
1247 			goto error_free;
1248 
1249 		/* clear the last little bit */
1250 		if (ret < len)
1251 			memset(base + ret, 0, len - ret);
1252 
1253 	}
1254 
1255 	return 0;
1256 
1257 error_free:
1258 	free_page_series(region->vm_start, region->vm_top);
1259 	region->vm_start = vma->vm_start = 0;
1260 	region->vm_end   = vma->vm_end = 0;
1261 	region->vm_top   = 0;
1262 	return ret;
1263 
1264 enomem:
1265 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266 	       len, current->pid, current->comm);
1267 	show_free_areas(0);
1268 	return -ENOMEM;
1269 }
1270 
1271 /*
1272  * handle mapping creation for uClinux
1273  */
1274 unsigned long do_mmap_pgoff(struct file *file,
1275 			    unsigned long addr,
1276 			    unsigned long len,
1277 			    unsigned long prot,
1278 			    unsigned long flags,
1279 			    unsigned long pgoff,
1280 			    unsigned long *populate)
1281 {
1282 	struct vm_area_struct *vma;
1283 	struct vm_region *region;
1284 	struct rb_node *rb;
1285 	unsigned long capabilities, vm_flags, result;
1286 	int ret;
1287 
1288 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1289 
1290 	*populate = 0;
1291 
1292 	/* decide whether we should attempt the mapping, and if so what sort of
1293 	 * mapping */
1294 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295 				    &capabilities);
1296 	if (ret < 0) {
1297 		kleave(" = %d [val]", ret);
1298 		return ret;
1299 	}
1300 
1301 	/* we ignore the address hint */
1302 	addr = 0;
1303 	len = PAGE_ALIGN(len);
1304 
1305 	/* we've determined that we can make the mapping, now translate what we
1306 	 * now know into VMA flags */
1307 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1308 
1309 	/* we're going to need to record the mapping */
1310 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311 	if (!region)
1312 		goto error_getting_region;
1313 
1314 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315 	if (!vma)
1316 		goto error_getting_vma;
1317 
1318 	region->vm_usage = 1;
1319 	region->vm_flags = vm_flags;
1320 	region->vm_pgoff = pgoff;
1321 
1322 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1323 	vma->vm_flags = vm_flags;
1324 	vma->vm_pgoff = pgoff;
1325 
1326 	if (file) {
1327 		region->vm_file = get_file(file);
1328 		vma->vm_file = get_file(file);
1329 	}
1330 
1331 	down_write(&nommu_region_sem);
1332 
1333 	/* if we want to share, we need to check for regions created by other
1334 	 * mmap() calls that overlap with our proposed mapping
1335 	 * - we can only share with a superset match on most regular files
1336 	 * - shared mappings on character devices and memory backed files are
1337 	 *   permitted to overlap inexactly as far as we are concerned for in
1338 	 *   these cases, sharing is handled in the driver or filesystem rather
1339 	 *   than here
1340 	 */
1341 	if (vm_flags & VM_MAYSHARE) {
1342 		struct vm_region *pregion;
1343 		unsigned long pglen, rpglen, pgend, rpgend, start;
1344 
1345 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346 		pgend = pgoff + pglen;
1347 
1348 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1350 
1351 			if (!(pregion->vm_flags & VM_MAYSHARE))
1352 				continue;
1353 
1354 			/* search for overlapping mappings on the same file */
1355 			if (file_inode(pregion->vm_file) !=
1356 			    file_inode(file))
1357 				continue;
1358 
1359 			if (pregion->vm_pgoff >= pgend)
1360 				continue;
1361 
1362 			rpglen = pregion->vm_end - pregion->vm_start;
1363 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 			rpgend = pregion->vm_pgoff + rpglen;
1365 			if (pgoff >= rpgend)
1366 				continue;
1367 
1368 			/* handle inexactly overlapping matches between
1369 			 * mappings */
1370 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372 				/* new mapping is not a subset of the region */
1373 				if (!(capabilities & NOMMU_MAP_DIRECT))
1374 					goto sharing_violation;
1375 				continue;
1376 			}
1377 
1378 			/* we've found a region we can share */
1379 			pregion->vm_usage++;
1380 			vma->vm_region = pregion;
1381 			start = pregion->vm_start;
1382 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383 			vma->vm_start = start;
1384 			vma->vm_end = start + len;
1385 
1386 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1387 				kdebug("share copy");
1388 				vma->vm_flags |= VM_MAPPED_COPY;
1389 			} else {
1390 				kdebug("share mmap");
1391 				ret = do_mmap_shared_file(vma);
1392 				if (ret < 0) {
1393 					vma->vm_region = NULL;
1394 					vma->vm_start = 0;
1395 					vma->vm_end = 0;
1396 					pregion->vm_usage--;
1397 					pregion = NULL;
1398 					goto error_just_free;
1399 				}
1400 			}
1401 			fput(region->vm_file);
1402 			kmem_cache_free(vm_region_jar, region);
1403 			region = pregion;
1404 			result = start;
1405 			goto share;
1406 		}
1407 
1408 		/* obtain the address at which to make a shared mapping
1409 		 * - this is the hook for quasi-memory character devices to
1410 		 *   tell us the location of a shared mapping
1411 		 */
1412 		if (capabilities & NOMMU_MAP_DIRECT) {
1413 			addr = file->f_op->get_unmapped_area(file, addr, len,
1414 							     pgoff, flags);
1415 			if (IS_ERR_VALUE(addr)) {
1416 				ret = addr;
1417 				if (ret != -ENOSYS)
1418 					goto error_just_free;
1419 
1420 				/* the driver refused to tell us where to site
1421 				 * the mapping so we'll have to attempt to copy
1422 				 * it */
1423 				ret = -ENODEV;
1424 				if (!(capabilities & NOMMU_MAP_COPY))
1425 					goto error_just_free;
1426 
1427 				capabilities &= ~NOMMU_MAP_DIRECT;
1428 			} else {
1429 				vma->vm_start = region->vm_start = addr;
1430 				vma->vm_end = region->vm_end = addr + len;
1431 			}
1432 		}
1433 	}
1434 
1435 	vma->vm_region = region;
1436 
1437 	/* set up the mapping
1438 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1439 	 */
1440 	if (file && vma->vm_flags & VM_SHARED)
1441 		ret = do_mmap_shared_file(vma);
1442 	else
1443 		ret = do_mmap_private(vma, region, len, capabilities);
1444 	if (ret < 0)
1445 		goto error_just_free;
1446 	add_nommu_region(region);
1447 
1448 	/* clear anonymous mappings that don't ask for uninitialized data */
1449 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450 		memset((void *)region->vm_start, 0,
1451 		       region->vm_end - region->vm_start);
1452 
1453 	/* okay... we have a mapping; now we have to register it */
1454 	result = vma->vm_start;
1455 
1456 	current->mm->total_vm += len >> PAGE_SHIFT;
1457 
1458 share:
1459 	add_vma_to_mm(current->mm, vma);
1460 
1461 	/* we flush the region from the icache only when the first executable
1462 	 * mapping of it is made  */
1463 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464 		flush_icache_range(region->vm_start, region->vm_end);
1465 		region->vm_icache_flushed = true;
1466 	}
1467 
1468 	up_write(&nommu_region_sem);
1469 
1470 	kleave(" = %lx", result);
1471 	return result;
1472 
1473 error_just_free:
1474 	up_write(&nommu_region_sem);
1475 error:
1476 	if (region->vm_file)
1477 		fput(region->vm_file);
1478 	kmem_cache_free(vm_region_jar, region);
1479 	if (vma->vm_file)
1480 		fput(vma->vm_file);
1481 	kmem_cache_free(vm_area_cachep, vma);
1482 	kleave(" = %d", ret);
1483 	return ret;
1484 
1485 sharing_violation:
1486 	up_write(&nommu_region_sem);
1487 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488 	ret = -EINVAL;
1489 	goto error;
1490 
1491 error_getting_vma:
1492 	kmem_cache_free(vm_region_jar, region);
1493 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494 	       " from process %d failed\n",
1495 	       len, current->pid);
1496 	show_free_areas(0);
1497 	return -ENOMEM;
1498 
1499 error_getting_region:
1500 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501 	       " from process %d failed\n",
1502 	       len, current->pid);
1503 	show_free_areas(0);
1504 	return -ENOMEM;
1505 }
1506 
1507 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508 		unsigned long, prot, unsigned long, flags,
1509 		unsigned long, fd, unsigned long, pgoff)
1510 {
1511 	struct file *file = NULL;
1512 	unsigned long retval = -EBADF;
1513 
1514 	audit_mmap_fd(fd, flags);
1515 	if (!(flags & MAP_ANONYMOUS)) {
1516 		file = fget(fd);
1517 		if (!file)
1518 			goto out;
1519 	}
1520 
1521 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1522 
1523 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1524 
1525 	if (file)
1526 		fput(file);
1527 out:
1528 	return retval;
1529 }
1530 
1531 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1532 struct mmap_arg_struct {
1533 	unsigned long addr;
1534 	unsigned long len;
1535 	unsigned long prot;
1536 	unsigned long flags;
1537 	unsigned long fd;
1538 	unsigned long offset;
1539 };
1540 
1541 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542 {
1543 	struct mmap_arg_struct a;
1544 
1545 	if (copy_from_user(&a, arg, sizeof(a)))
1546 		return -EFAULT;
1547 	if (a.offset & ~PAGE_MASK)
1548 		return -EINVAL;
1549 
1550 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551 			      a.offset >> PAGE_SHIFT);
1552 }
1553 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554 
1555 /*
1556  * split a vma into two pieces at address 'addr', a new vma is allocated either
1557  * for the first part or the tail.
1558  */
1559 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560 	      unsigned long addr, int new_below)
1561 {
1562 	struct vm_area_struct *new;
1563 	struct vm_region *region;
1564 	unsigned long npages;
1565 
1566 	kenter("");
1567 
1568 	/* we're only permitted to split anonymous regions (these should have
1569 	 * only a single usage on the region) */
1570 	if (vma->vm_file)
1571 		return -ENOMEM;
1572 
1573 	if (mm->map_count >= sysctl_max_map_count)
1574 		return -ENOMEM;
1575 
1576 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577 	if (!region)
1578 		return -ENOMEM;
1579 
1580 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581 	if (!new) {
1582 		kmem_cache_free(vm_region_jar, region);
1583 		return -ENOMEM;
1584 	}
1585 
1586 	/* most fields are the same, copy all, and then fixup */
1587 	*new = *vma;
1588 	*region = *vma->vm_region;
1589 	new->vm_region = region;
1590 
1591 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1592 
1593 	if (new_below) {
1594 		region->vm_top = region->vm_end = new->vm_end = addr;
1595 	} else {
1596 		region->vm_start = new->vm_start = addr;
1597 		region->vm_pgoff = new->vm_pgoff += npages;
1598 	}
1599 
1600 	if (new->vm_ops && new->vm_ops->open)
1601 		new->vm_ops->open(new);
1602 
1603 	delete_vma_from_mm(vma);
1604 	down_write(&nommu_region_sem);
1605 	delete_nommu_region(vma->vm_region);
1606 	if (new_below) {
1607 		vma->vm_region->vm_start = vma->vm_start = addr;
1608 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609 	} else {
1610 		vma->vm_region->vm_end = vma->vm_end = addr;
1611 		vma->vm_region->vm_top = addr;
1612 	}
1613 	add_nommu_region(vma->vm_region);
1614 	add_nommu_region(new->vm_region);
1615 	up_write(&nommu_region_sem);
1616 	add_vma_to_mm(mm, vma);
1617 	add_vma_to_mm(mm, new);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * shrink a VMA by removing the specified chunk from either the beginning or
1623  * the end
1624  */
1625 static int shrink_vma(struct mm_struct *mm,
1626 		      struct vm_area_struct *vma,
1627 		      unsigned long from, unsigned long to)
1628 {
1629 	struct vm_region *region;
1630 
1631 	kenter("");
1632 
1633 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1634 	 * and list */
1635 	delete_vma_from_mm(vma);
1636 	if (from > vma->vm_start)
1637 		vma->vm_end = from;
1638 	else
1639 		vma->vm_start = to;
1640 	add_vma_to_mm(mm, vma);
1641 
1642 	/* cut the backing region down to size */
1643 	region = vma->vm_region;
1644 	BUG_ON(region->vm_usage != 1);
1645 
1646 	down_write(&nommu_region_sem);
1647 	delete_nommu_region(region);
1648 	if (from > region->vm_start) {
1649 		to = region->vm_top;
1650 		region->vm_top = region->vm_end = from;
1651 	} else {
1652 		region->vm_start = to;
1653 	}
1654 	add_nommu_region(region);
1655 	up_write(&nommu_region_sem);
1656 
1657 	free_page_series(from, to);
1658 	return 0;
1659 }
1660 
1661 /*
1662  * release a mapping
1663  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664  *   VMA, though it need not cover the whole VMA
1665  */
1666 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1667 {
1668 	struct vm_area_struct *vma;
1669 	unsigned long end;
1670 	int ret;
1671 
1672 	kenter(",%lx,%zx", start, len);
1673 
1674 	len = PAGE_ALIGN(len);
1675 	if (len == 0)
1676 		return -EINVAL;
1677 
1678 	end = start + len;
1679 
1680 	/* find the first potentially overlapping VMA */
1681 	vma = find_vma(mm, start);
1682 	if (!vma) {
1683 		static int limit;
1684 		if (limit < 5) {
1685 			printk(KERN_WARNING
1686 			       "munmap of memory not mmapped by process %d"
1687 			       " (%s): 0x%lx-0x%lx\n",
1688 			       current->pid, current->comm,
1689 			       start, start + len - 1);
1690 			limit++;
1691 		}
1692 		return -EINVAL;
1693 	}
1694 
1695 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1696 	if (vma->vm_file) {
1697 		do {
1698 			if (start > vma->vm_start) {
1699 				kleave(" = -EINVAL [miss]");
1700 				return -EINVAL;
1701 			}
1702 			if (end == vma->vm_end)
1703 				goto erase_whole_vma;
1704 			vma = vma->vm_next;
1705 		} while (vma);
1706 		kleave(" = -EINVAL [split file]");
1707 		return -EINVAL;
1708 	} else {
1709 		/* the chunk must be a subset of the VMA found */
1710 		if (start == vma->vm_start && end == vma->vm_end)
1711 			goto erase_whole_vma;
1712 		if (start < vma->vm_start || end > vma->vm_end) {
1713 			kleave(" = -EINVAL [superset]");
1714 			return -EINVAL;
1715 		}
1716 		if (start & ~PAGE_MASK) {
1717 			kleave(" = -EINVAL [unaligned start]");
1718 			return -EINVAL;
1719 		}
1720 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1721 			kleave(" = -EINVAL [unaligned split]");
1722 			return -EINVAL;
1723 		}
1724 		if (start != vma->vm_start && end != vma->vm_end) {
1725 			ret = split_vma(mm, vma, start, 1);
1726 			if (ret < 0) {
1727 				kleave(" = %d [split]", ret);
1728 				return ret;
1729 			}
1730 		}
1731 		return shrink_vma(mm, vma, start, end);
1732 	}
1733 
1734 erase_whole_vma:
1735 	delete_vma_from_mm(vma);
1736 	delete_vma(mm, vma);
1737 	kleave(" = 0");
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL(do_munmap);
1741 
1742 int vm_munmap(unsigned long addr, size_t len)
1743 {
1744 	struct mm_struct *mm = current->mm;
1745 	int ret;
1746 
1747 	down_write(&mm->mmap_sem);
1748 	ret = do_munmap(mm, addr, len);
1749 	up_write(&mm->mmap_sem);
1750 	return ret;
1751 }
1752 EXPORT_SYMBOL(vm_munmap);
1753 
1754 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1755 {
1756 	return vm_munmap(addr, len);
1757 }
1758 
1759 /*
1760  * release all the mappings made in a process's VM space
1761  */
1762 void exit_mmap(struct mm_struct *mm)
1763 {
1764 	struct vm_area_struct *vma;
1765 
1766 	if (!mm)
1767 		return;
1768 
1769 	kenter("");
1770 
1771 	mm->total_vm = 0;
1772 
1773 	while ((vma = mm->mmap)) {
1774 		mm->mmap = vma->vm_next;
1775 		delete_vma_from_mm(vma);
1776 		delete_vma(mm, vma);
1777 		cond_resched();
1778 	}
1779 
1780 	kleave("");
1781 }
1782 
1783 unsigned long vm_brk(unsigned long addr, unsigned long len)
1784 {
1785 	return -ENOMEM;
1786 }
1787 
1788 /*
1789  * expand (or shrink) an existing mapping, potentially moving it at the same
1790  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1791  *
1792  * under NOMMU conditions, we only permit changing a mapping's size, and only
1793  * as long as it stays within the region allocated by do_mmap_private() and the
1794  * block is not shareable
1795  *
1796  * MREMAP_FIXED is not supported under NOMMU conditions
1797  */
1798 static unsigned long do_mremap(unsigned long addr,
1799 			unsigned long old_len, unsigned long new_len,
1800 			unsigned long flags, unsigned long new_addr)
1801 {
1802 	struct vm_area_struct *vma;
1803 
1804 	/* insanity checks first */
1805 	old_len = PAGE_ALIGN(old_len);
1806 	new_len = PAGE_ALIGN(new_len);
1807 	if (old_len == 0 || new_len == 0)
1808 		return (unsigned long) -EINVAL;
1809 
1810 	if (addr & ~PAGE_MASK)
1811 		return -EINVAL;
1812 
1813 	if (flags & MREMAP_FIXED && new_addr != addr)
1814 		return (unsigned long) -EINVAL;
1815 
1816 	vma = find_vma_exact(current->mm, addr, old_len);
1817 	if (!vma)
1818 		return (unsigned long) -EINVAL;
1819 
1820 	if (vma->vm_end != vma->vm_start + old_len)
1821 		return (unsigned long) -EFAULT;
1822 
1823 	if (vma->vm_flags & VM_MAYSHARE)
1824 		return (unsigned long) -EPERM;
1825 
1826 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827 		return (unsigned long) -ENOMEM;
1828 
1829 	/* all checks complete - do it */
1830 	vma->vm_end = vma->vm_start + new_len;
1831 	return vma->vm_start;
1832 }
1833 
1834 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835 		unsigned long, new_len, unsigned long, flags,
1836 		unsigned long, new_addr)
1837 {
1838 	unsigned long ret;
1839 
1840 	down_write(&current->mm->mmap_sem);
1841 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842 	up_write(&current->mm->mmap_sem);
1843 	return ret;
1844 }
1845 
1846 struct page *follow_page_mask(struct vm_area_struct *vma,
1847 			      unsigned long address, unsigned int flags,
1848 			      unsigned int *page_mask)
1849 {
1850 	*page_mask = 0;
1851 	return NULL;
1852 }
1853 
1854 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855 		unsigned long pfn, unsigned long size, pgprot_t prot)
1856 {
1857 	if (addr != (pfn << PAGE_SHIFT))
1858 		return -EINVAL;
1859 
1860 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(remap_pfn_range);
1864 
1865 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1866 {
1867 	unsigned long pfn = start >> PAGE_SHIFT;
1868 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1869 
1870 	pfn += vma->vm_pgoff;
1871 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872 }
1873 EXPORT_SYMBOL(vm_iomap_memory);
1874 
1875 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876 			unsigned long pgoff)
1877 {
1878 	unsigned int size = vma->vm_end - vma->vm_start;
1879 
1880 	if (!(vma->vm_flags & VM_USERMAP))
1881 		return -EINVAL;
1882 
1883 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884 	vma->vm_end = vma->vm_start + size;
1885 
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL(remap_vmalloc_range);
1889 
1890 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891 	unsigned long len, unsigned long pgoff, unsigned long flags)
1892 {
1893 	return -ENOMEM;
1894 }
1895 
1896 void unmap_mapping_range(struct address_space *mapping,
1897 			 loff_t const holebegin, loff_t const holelen,
1898 			 int even_cows)
1899 {
1900 }
1901 EXPORT_SYMBOL(unmap_mapping_range);
1902 
1903 /*
1904  * Check that a process has enough memory to allocate a new virtual
1905  * mapping. 0 means there is enough memory for the allocation to
1906  * succeed and -ENOMEM implies there is not.
1907  *
1908  * We currently support three overcommit policies, which are set via the
1909  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1910  *
1911  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912  * Additional code 2002 Jul 20 by Robert Love.
1913  *
1914  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1915  *
1916  * Note this is a helper function intended to be used by LSMs which
1917  * wish to use this logic.
1918  */
1919 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1920 {
1921 	long free, allowed, reserve;
1922 
1923 	vm_acct_memory(pages);
1924 
1925 	/*
1926 	 * Sometimes we want to use more memory than we have
1927 	 */
1928 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929 		return 0;
1930 
1931 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932 		free = global_page_state(NR_FREE_PAGES);
1933 		free += global_page_state(NR_FILE_PAGES);
1934 
1935 		/*
1936 		 * shmem pages shouldn't be counted as free in this
1937 		 * case, they can't be purged, only swapped out, and
1938 		 * that won't affect the overall amount of available
1939 		 * memory in the system.
1940 		 */
1941 		free -= global_page_state(NR_SHMEM);
1942 
1943 		free += get_nr_swap_pages();
1944 
1945 		/*
1946 		 * Any slabs which are created with the
1947 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948 		 * which are reclaimable, under pressure.  The dentry
1949 		 * cache and most inode caches should fall into this
1950 		 */
1951 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1952 
1953 		/*
1954 		 * Leave reserved pages. The pages are not for anonymous pages.
1955 		 */
1956 		if (free <= totalreserve_pages)
1957 			goto error;
1958 		else
1959 			free -= totalreserve_pages;
1960 
1961 		/*
1962 		 * Reserve some for root
1963 		 */
1964 		if (!cap_sys_admin)
1965 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966 
1967 		if (free > pages)
1968 			return 0;
1969 
1970 		goto error;
1971 	}
1972 
1973 	allowed = vm_commit_limit();
1974 	/*
1975 	 * Reserve some 3% for root
1976 	 */
1977 	if (!cap_sys_admin)
1978 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1979 
1980 	/*
1981 	 * Don't let a single process grow so big a user can't recover
1982 	 */
1983 	if (mm) {
1984 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1986 	}
1987 
1988 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989 		return 0;
1990 
1991 error:
1992 	vm_unacct_memory(pages);
1993 
1994 	return -ENOMEM;
1995 }
1996 
1997 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1998 {
1999 	BUG();
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL(filemap_fault);
2003 
2004 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2005 {
2006 	BUG();
2007 }
2008 EXPORT_SYMBOL(filemap_map_pages);
2009 
2010 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011 		unsigned long addr, void *buf, int len, int write)
2012 {
2013 	struct vm_area_struct *vma;
2014 
2015 	down_read(&mm->mmap_sem);
2016 
2017 	/* the access must start within one of the target process's mappings */
2018 	vma = find_vma(mm, addr);
2019 	if (vma) {
2020 		/* don't overrun this mapping */
2021 		if (addr + len >= vma->vm_end)
2022 			len = vma->vm_end - addr;
2023 
2024 		/* only read or write mappings where it is permitted */
2025 		if (write && vma->vm_flags & VM_MAYWRITE)
2026 			copy_to_user_page(vma, NULL, addr,
2027 					 (void *) addr, buf, len);
2028 		else if (!write && vma->vm_flags & VM_MAYREAD)
2029 			copy_from_user_page(vma, NULL, addr,
2030 					    buf, (void *) addr, len);
2031 		else
2032 			len = 0;
2033 	} else {
2034 		len = 0;
2035 	}
2036 
2037 	up_read(&mm->mmap_sem);
2038 
2039 	return len;
2040 }
2041 
2042 /**
2043  * @access_remote_vm - access another process' address space
2044  * @mm:		the mm_struct of the target address space
2045  * @addr:	start address to access
2046  * @buf:	source or destination buffer
2047  * @len:	number of bytes to transfer
2048  * @write:	whether the access is a write
2049  *
2050  * The caller must hold a reference on @mm.
2051  */
2052 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053 		void *buf, int len, int write)
2054 {
2055 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056 }
2057 
2058 /*
2059  * Access another process' address space.
2060  * - source/target buffer must be kernel space
2061  */
2062 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2063 {
2064 	struct mm_struct *mm;
2065 
2066 	if (addr + len < addr)
2067 		return 0;
2068 
2069 	mm = get_task_mm(tsk);
2070 	if (!mm)
2071 		return 0;
2072 
2073 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2074 
2075 	mmput(mm);
2076 	return len;
2077 }
2078 
2079 /**
2080  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081  * @inode: The inode to check
2082  * @size: The current filesize of the inode
2083  * @newsize: The proposed filesize of the inode
2084  *
2085  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086  * make sure that that any outstanding VMAs aren't broken and then shrink the
2087  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088  * automatically grant mappings that are too large.
2089  */
2090 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091 				size_t newsize)
2092 {
2093 	struct vm_area_struct *vma;
2094 	struct vm_region *region;
2095 	pgoff_t low, high;
2096 	size_t r_size, r_top;
2097 
2098 	low = newsize >> PAGE_SHIFT;
2099 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2100 
2101 	down_write(&nommu_region_sem);
2102 	i_mmap_lock_read(inode->i_mapping);
2103 
2104 	/* search for VMAs that fall within the dead zone */
2105 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106 		/* found one - only interested if it's shared out of the page
2107 		 * cache */
2108 		if (vma->vm_flags & VM_SHARED) {
2109 			i_mmap_unlock_read(inode->i_mapping);
2110 			up_write(&nommu_region_sem);
2111 			return -ETXTBSY; /* not quite true, but near enough */
2112 		}
2113 	}
2114 
2115 	/* reduce any regions that overlap the dead zone - if in existence,
2116 	 * these will be pointed to by VMAs that don't overlap the dead zone
2117 	 *
2118 	 * we don't check for any regions that start beyond the EOF as there
2119 	 * shouldn't be any
2120 	 */
2121 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122 		if (!(vma->vm_flags & VM_SHARED))
2123 			continue;
2124 
2125 		region = vma->vm_region;
2126 		r_size = region->vm_top - region->vm_start;
2127 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2128 
2129 		if (r_top > newsize) {
2130 			region->vm_top -= r_top - newsize;
2131 			if (region->vm_end > region->vm_top)
2132 				region->vm_end = region->vm_top;
2133 		}
2134 	}
2135 
2136 	i_mmap_unlock_read(inode->i_mapping);
2137 	up_write(&nommu_region_sem);
2138 	return 0;
2139 }
2140 
2141 /*
2142  * Initialise sysctl_user_reserve_kbytes.
2143  *
2144  * This is intended to prevent a user from starting a single memory hogging
2145  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146  * mode.
2147  *
2148  * The default value is min(3% of free memory, 128MB)
2149  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2150  */
2151 static int __meminit init_user_reserve(void)
2152 {
2153 	unsigned long free_kbytes;
2154 
2155 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2156 
2157 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158 	return 0;
2159 }
2160 module_init(init_user_reserve)
2161 
2162 /*
2163  * Initialise sysctl_admin_reserve_kbytes.
2164  *
2165  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166  * to log in and kill a memory hogging process.
2167  *
2168  * Systems with more than 256MB will reserve 8MB, enough to recover
2169  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170  * only reserve 3% of free pages by default.
2171  */
2172 static int __meminit init_admin_reserve(void)
2173 {
2174 	unsigned long free_kbytes;
2175 
2176 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2177 
2178 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179 	return 0;
2180 }
2181 module_init(init_admin_reserve)
2182