xref: /openbmc/linux/mm/nommu.c (revision 4949009e)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 #if 0
46 #define kenter(FMT, ...) \
47 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60 
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75 
76 atomic_long_t mmap_pages_allocated;
77 
78 /*
79  * The global memory commitment made in the system can be a metric
80  * that can be used to drive ballooning decisions when Linux is hosted
81  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82  * balancing memory across competing virtual machines that are hosted.
83  * Several metrics drive this policy engine including the guest reported
84  * memory commitment.
85  */
86 unsigned long vm_memory_committed(void)
87 {
88 	return percpu_counter_read_positive(&vm_committed_as);
89 }
90 
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92 
93 EXPORT_SYMBOL(mem_map);
94 
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99 
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102 
103 /*
104  * Return the total memory allocated for this pointer, not
105  * just what the caller asked for.
106  *
107  * Doesn't have to be accurate, i.e. may have races.
108  */
109 unsigned int kobjsize(const void *objp)
110 {
111 	struct page *page;
112 
113 	/*
114 	 * If the object we have should not have ksize performed on it,
115 	 * return size of 0
116 	 */
117 	if (!objp || !virt_addr_valid(objp))
118 		return 0;
119 
120 	page = virt_to_head_page(objp);
121 
122 	/*
123 	 * If the allocator sets PageSlab, we know the pointer came from
124 	 * kmalloc().
125 	 */
126 	if (PageSlab(page))
127 		return ksize(objp);
128 
129 	/*
130 	 * If it's not a compound page, see if we have a matching VMA
131 	 * region. This test is intentionally done in reverse order,
132 	 * so if there's no VMA, we still fall through and hand back
133 	 * PAGE_SIZE for 0-order pages.
134 	 */
135 	if (!PageCompound(page)) {
136 		struct vm_area_struct *vma;
137 
138 		vma = find_vma(current->mm, (unsigned long)objp);
139 		if (vma)
140 			return vma->vm_end - vma->vm_start;
141 	}
142 
143 	/*
144 	 * The ksize() function is only guaranteed to work for pointers
145 	 * returned by kmalloc(). So handle arbitrary pointers here.
146 	 */
147 	return PAGE_SIZE << compound_order(page);
148 }
149 
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151 		      unsigned long start, unsigned long nr_pages,
152 		      unsigned int foll_flags, struct page **pages,
153 		      struct vm_area_struct **vmas, int *nonblocking)
154 {
155 	struct vm_area_struct *vma;
156 	unsigned long vm_flags;
157 	int i;
158 
159 	/* calculate required read or write permissions.
160 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
161 	 */
162 	vm_flags  = (foll_flags & FOLL_WRITE) ?
163 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164 	vm_flags &= (foll_flags & FOLL_FORCE) ?
165 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166 
167 	for (i = 0; i < nr_pages; i++) {
168 		vma = find_vma(mm, start);
169 		if (!vma)
170 			goto finish_or_fault;
171 
172 		/* protect what we can, including chardevs */
173 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174 		    !(vm_flags & vma->vm_flags))
175 			goto finish_or_fault;
176 
177 		if (pages) {
178 			pages[i] = virt_to_page(start);
179 			if (pages[i])
180 				page_cache_get(pages[i]);
181 		}
182 		if (vmas)
183 			vmas[i] = vma;
184 		start = (start + PAGE_SIZE) & PAGE_MASK;
185 	}
186 
187 	return i;
188 
189 finish_or_fault:
190 	return i ? : -EFAULT;
191 }
192 
193 /*
194  * get a list of pages in an address range belonging to the specified process
195  * and indicate the VMA that covers each page
196  * - this is potentially dodgy as we may end incrementing the page count of a
197  *   slab page or a secondary page from a compound page
198  * - don't permit access to VMAs that don't support it, such as I/O mappings
199  */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201 		    unsigned long start, unsigned long nr_pages,
202 		    int write, int force, struct page **pages,
203 		    struct vm_area_struct **vmas)
204 {
205 	int flags = 0;
206 
207 	if (write)
208 		flags |= FOLL_WRITE;
209 	if (force)
210 		flags |= FOLL_FORCE;
211 
212 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213 				NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216 
217 /**
218  * follow_pfn - look up PFN at a user virtual address
219  * @vma: memory mapping
220  * @address: user virtual address
221  * @pfn: location to store found PFN
222  *
223  * Only IO mappings and raw PFN mappings are allowed.
224  *
225  * Returns zero and the pfn at @pfn on success, -ve otherwise.
226  */
227 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
228 	unsigned long *pfn)
229 {
230 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
231 		return -EINVAL;
232 
233 	*pfn = address >> PAGE_SHIFT;
234 	return 0;
235 }
236 EXPORT_SYMBOL(follow_pfn);
237 
238 LIST_HEAD(vmap_area_list);
239 
240 void vfree(const void *addr)
241 {
242 	kfree(addr);
243 }
244 EXPORT_SYMBOL(vfree);
245 
246 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
247 {
248 	/*
249 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
250 	 * returns only a logical address.
251 	 */
252 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
253 }
254 EXPORT_SYMBOL(__vmalloc);
255 
256 void *vmalloc_user(unsigned long size)
257 {
258 	void *ret;
259 
260 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
261 			PAGE_KERNEL);
262 	if (ret) {
263 		struct vm_area_struct *vma;
264 
265 		down_write(&current->mm->mmap_sem);
266 		vma = find_vma(current->mm, (unsigned long)ret);
267 		if (vma)
268 			vma->vm_flags |= VM_USERMAP;
269 		up_write(&current->mm->mmap_sem);
270 	}
271 
272 	return ret;
273 }
274 EXPORT_SYMBOL(vmalloc_user);
275 
276 struct page *vmalloc_to_page(const void *addr)
277 {
278 	return virt_to_page(addr);
279 }
280 EXPORT_SYMBOL(vmalloc_to_page);
281 
282 unsigned long vmalloc_to_pfn(const void *addr)
283 {
284 	return page_to_pfn(virt_to_page(addr));
285 }
286 EXPORT_SYMBOL(vmalloc_to_pfn);
287 
288 long vread(char *buf, char *addr, unsigned long count)
289 {
290 	/* Don't allow overflow */
291 	if ((unsigned long) buf + count < count)
292 		count = -(unsigned long) buf;
293 
294 	memcpy(buf, addr, count);
295 	return count;
296 }
297 
298 long vwrite(char *buf, char *addr, unsigned long count)
299 {
300 	/* Don't allow overflow */
301 	if ((unsigned long) addr + count < count)
302 		count = -(unsigned long) addr;
303 
304 	memcpy(addr, buf, count);
305 	return count;
306 }
307 
308 /*
309  *	vmalloc  -  allocate virtually continguos memory
310  *
311  *	@size:		allocation size
312  *
313  *	Allocate enough pages to cover @size from the page level
314  *	allocator and map them into continguos kernel virtual space.
315  *
316  *	For tight control over page level allocator and protection flags
317  *	use __vmalloc() instead.
318  */
319 void *vmalloc(unsigned long size)
320 {
321        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
322 }
323 EXPORT_SYMBOL(vmalloc);
324 
325 /*
326  *	vzalloc - allocate virtually continguos memory with zero fill
327  *
328  *	@size:		allocation size
329  *
330  *	Allocate enough pages to cover @size from the page level
331  *	allocator and map them into continguos kernel virtual space.
332  *	The memory allocated is set to zero.
333  *
334  *	For tight control over page level allocator and protection flags
335  *	use __vmalloc() instead.
336  */
337 void *vzalloc(unsigned long size)
338 {
339 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
340 			PAGE_KERNEL);
341 }
342 EXPORT_SYMBOL(vzalloc);
343 
344 /**
345  * vmalloc_node - allocate memory on a specific node
346  * @size:	allocation size
347  * @node:	numa node
348  *
349  * Allocate enough pages to cover @size from the page level
350  * allocator and map them into contiguous kernel virtual space.
351  *
352  * For tight control over page level allocator and protection flags
353  * use __vmalloc() instead.
354  */
355 void *vmalloc_node(unsigned long size, int node)
356 {
357 	return vmalloc(size);
358 }
359 EXPORT_SYMBOL(vmalloc_node);
360 
361 /**
362  * vzalloc_node - allocate memory on a specific node with zero fill
363  * @size:	allocation size
364  * @node:	numa node
365  *
366  * Allocate enough pages to cover @size from the page level
367  * allocator and map them into contiguous kernel virtual space.
368  * The memory allocated is set to zero.
369  *
370  * For tight control over page level allocator and protection flags
371  * use __vmalloc() instead.
372  */
373 void *vzalloc_node(unsigned long size, int node)
374 {
375 	return vzalloc(size);
376 }
377 EXPORT_SYMBOL(vzalloc_node);
378 
379 #ifndef PAGE_KERNEL_EXEC
380 # define PAGE_KERNEL_EXEC PAGE_KERNEL
381 #endif
382 
383 /**
384  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
385  *	@size:		allocation size
386  *
387  *	Kernel-internal function to allocate enough pages to cover @size
388  *	the page level allocator and map them into contiguous and
389  *	executable kernel virtual space.
390  *
391  *	For tight control over page level allocator and protection flags
392  *	use __vmalloc() instead.
393  */
394 
395 void *vmalloc_exec(unsigned long size)
396 {
397 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
398 }
399 
400 /**
401  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
402  *	@size:		allocation size
403  *
404  *	Allocate enough 32bit PA addressable pages to cover @size from the
405  *	page level allocator and map them into continguos kernel virtual space.
406  */
407 void *vmalloc_32(unsigned long size)
408 {
409 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
410 }
411 EXPORT_SYMBOL(vmalloc_32);
412 
413 /**
414  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
415  *	@size:		allocation size
416  *
417  * The resulting memory area is 32bit addressable and zeroed so it can be
418  * mapped to userspace without leaking data.
419  *
420  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
421  * remap_vmalloc_range() are permissible.
422  */
423 void *vmalloc_32_user(unsigned long size)
424 {
425 	/*
426 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
427 	 * but for now this can simply use vmalloc_user() directly.
428 	 */
429 	return vmalloc_user(size);
430 }
431 EXPORT_SYMBOL(vmalloc_32_user);
432 
433 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
434 {
435 	BUG();
436 	return NULL;
437 }
438 EXPORT_SYMBOL(vmap);
439 
440 void vunmap(const void *addr)
441 {
442 	BUG();
443 }
444 EXPORT_SYMBOL(vunmap);
445 
446 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
447 {
448 	BUG();
449 	return NULL;
450 }
451 EXPORT_SYMBOL(vm_map_ram);
452 
453 void vm_unmap_ram(const void *mem, unsigned int count)
454 {
455 	BUG();
456 }
457 EXPORT_SYMBOL(vm_unmap_ram);
458 
459 void vm_unmap_aliases(void)
460 {
461 }
462 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
463 
464 /*
465  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
466  * have one.
467  */
468 void __weak vmalloc_sync_all(void)
469 {
470 }
471 
472 /**
473  *	alloc_vm_area - allocate a range of kernel address space
474  *	@size:		size of the area
475  *
476  *	Returns:	NULL on failure, vm_struct on success
477  *
478  *	This function reserves a range of kernel address space, and
479  *	allocates pagetables to map that range.  No actual mappings
480  *	are created.  If the kernel address space is not shared
481  *	between processes, it syncs the pagetable across all
482  *	processes.
483  */
484 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
485 {
486 	BUG();
487 	return NULL;
488 }
489 EXPORT_SYMBOL_GPL(alloc_vm_area);
490 
491 void free_vm_area(struct vm_struct *area)
492 {
493 	BUG();
494 }
495 EXPORT_SYMBOL_GPL(free_vm_area);
496 
497 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
498 		   struct page *page)
499 {
500 	return -EINVAL;
501 }
502 EXPORT_SYMBOL(vm_insert_page);
503 
504 /*
505  *  sys_brk() for the most part doesn't need the global kernel
506  *  lock, except when an application is doing something nasty
507  *  like trying to un-brk an area that has already been mapped
508  *  to a regular file.  in this case, the unmapping will need
509  *  to invoke file system routines that need the global lock.
510  */
511 SYSCALL_DEFINE1(brk, unsigned long, brk)
512 {
513 	struct mm_struct *mm = current->mm;
514 
515 	if (brk < mm->start_brk || brk > mm->context.end_brk)
516 		return mm->brk;
517 
518 	if (mm->brk == brk)
519 		return mm->brk;
520 
521 	/*
522 	 * Always allow shrinking brk
523 	 */
524 	if (brk <= mm->brk) {
525 		mm->brk = brk;
526 		return brk;
527 	}
528 
529 	/*
530 	 * Ok, looks good - let it rip.
531 	 */
532 	flush_icache_range(mm->brk, brk);
533 	return mm->brk = brk;
534 }
535 
536 /*
537  * initialise the VMA and region record slabs
538  */
539 void __init mmap_init(void)
540 {
541 	int ret;
542 
543 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
544 	VM_BUG_ON(ret);
545 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
546 }
547 
548 /*
549  * validate the region tree
550  * - the caller must hold the region lock
551  */
552 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
553 static noinline void validate_nommu_regions(void)
554 {
555 	struct vm_region *region, *last;
556 	struct rb_node *p, *lastp;
557 
558 	lastp = rb_first(&nommu_region_tree);
559 	if (!lastp)
560 		return;
561 
562 	last = rb_entry(lastp, struct vm_region, vm_rb);
563 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
564 	BUG_ON(unlikely(last->vm_top < last->vm_end));
565 
566 	while ((p = rb_next(lastp))) {
567 		region = rb_entry(p, struct vm_region, vm_rb);
568 		last = rb_entry(lastp, struct vm_region, vm_rb);
569 
570 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
571 		BUG_ON(unlikely(region->vm_top < region->vm_end));
572 		BUG_ON(unlikely(region->vm_start < last->vm_top));
573 
574 		lastp = p;
575 	}
576 }
577 #else
578 static void validate_nommu_regions(void)
579 {
580 }
581 #endif
582 
583 /*
584  * add a region into the global tree
585  */
586 static void add_nommu_region(struct vm_region *region)
587 {
588 	struct vm_region *pregion;
589 	struct rb_node **p, *parent;
590 
591 	validate_nommu_regions();
592 
593 	parent = NULL;
594 	p = &nommu_region_tree.rb_node;
595 	while (*p) {
596 		parent = *p;
597 		pregion = rb_entry(parent, struct vm_region, vm_rb);
598 		if (region->vm_start < pregion->vm_start)
599 			p = &(*p)->rb_left;
600 		else if (region->vm_start > pregion->vm_start)
601 			p = &(*p)->rb_right;
602 		else if (pregion == region)
603 			return;
604 		else
605 			BUG();
606 	}
607 
608 	rb_link_node(&region->vm_rb, parent, p);
609 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
610 
611 	validate_nommu_regions();
612 }
613 
614 /*
615  * delete a region from the global tree
616  */
617 static void delete_nommu_region(struct vm_region *region)
618 {
619 	BUG_ON(!nommu_region_tree.rb_node);
620 
621 	validate_nommu_regions();
622 	rb_erase(&region->vm_rb, &nommu_region_tree);
623 	validate_nommu_regions();
624 }
625 
626 /*
627  * free a contiguous series of pages
628  */
629 static void free_page_series(unsigned long from, unsigned long to)
630 {
631 	for (; from < to; from += PAGE_SIZE) {
632 		struct page *page = virt_to_page(from);
633 
634 		kdebug("- free %lx", from);
635 		atomic_long_dec(&mmap_pages_allocated);
636 		if (page_count(page) != 1)
637 			kdebug("free page %p: refcount not one: %d",
638 			       page, page_count(page));
639 		put_page(page);
640 	}
641 }
642 
643 /*
644  * release a reference to a region
645  * - the caller must hold the region semaphore for writing, which this releases
646  * - the region may not have been added to the tree yet, in which case vm_top
647  *   will equal vm_start
648  */
649 static void __put_nommu_region(struct vm_region *region)
650 	__releases(nommu_region_sem)
651 {
652 	kenter("%p{%d}", region, region->vm_usage);
653 
654 	BUG_ON(!nommu_region_tree.rb_node);
655 
656 	if (--region->vm_usage == 0) {
657 		if (region->vm_top > region->vm_start)
658 			delete_nommu_region(region);
659 		up_write(&nommu_region_sem);
660 
661 		if (region->vm_file)
662 			fput(region->vm_file);
663 
664 		/* IO memory and memory shared directly out of the pagecache
665 		 * from ramfs/tmpfs mustn't be released here */
666 		if (region->vm_flags & VM_MAPPED_COPY) {
667 			kdebug("free series");
668 			free_page_series(region->vm_start, region->vm_top);
669 		}
670 		kmem_cache_free(vm_region_jar, region);
671 	} else {
672 		up_write(&nommu_region_sem);
673 	}
674 }
675 
676 /*
677  * release a reference to a region
678  */
679 static void put_nommu_region(struct vm_region *region)
680 {
681 	down_write(&nommu_region_sem);
682 	__put_nommu_region(region);
683 }
684 
685 /*
686  * update protection on a vma
687  */
688 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
689 {
690 #ifdef CONFIG_MPU
691 	struct mm_struct *mm = vma->vm_mm;
692 	long start = vma->vm_start & PAGE_MASK;
693 	while (start < vma->vm_end) {
694 		protect_page(mm, start, flags);
695 		start += PAGE_SIZE;
696 	}
697 	update_protections(mm);
698 #endif
699 }
700 
701 /*
702  * add a VMA into a process's mm_struct in the appropriate place in the list
703  * and tree and add to the address space's page tree also if not an anonymous
704  * page
705  * - should be called with mm->mmap_sem held writelocked
706  */
707 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
708 {
709 	struct vm_area_struct *pvma, *prev;
710 	struct address_space *mapping;
711 	struct rb_node **p, *parent, *rb_prev;
712 
713 	kenter(",%p", vma);
714 
715 	BUG_ON(!vma->vm_region);
716 
717 	mm->map_count++;
718 	vma->vm_mm = mm;
719 
720 	protect_vma(vma, vma->vm_flags);
721 
722 	/* add the VMA to the mapping */
723 	if (vma->vm_file) {
724 		mapping = vma->vm_file->f_mapping;
725 
726 		i_mmap_lock_write(mapping);
727 		flush_dcache_mmap_lock(mapping);
728 		vma_interval_tree_insert(vma, &mapping->i_mmap);
729 		flush_dcache_mmap_unlock(mapping);
730 		i_mmap_unlock_write(mapping);
731 	}
732 
733 	/* add the VMA to the tree */
734 	parent = rb_prev = NULL;
735 	p = &mm->mm_rb.rb_node;
736 	while (*p) {
737 		parent = *p;
738 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
739 
740 		/* sort by: start addr, end addr, VMA struct addr in that order
741 		 * (the latter is necessary as we may get identical VMAs) */
742 		if (vma->vm_start < pvma->vm_start)
743 			p = &(*p)->rb_left;
744 		else if (vma->vm_start > pvma->vm_start) {
745 			rb_prev = parent;
746 			p = &(*p)->rb_right;
747 		} else if (vma->vm_end < pvma->vm_end)
748 			p = &(*p)->rb_left;
749 		else if (vma->vm_end > pvma->vm_end) {
750 			rb_prev = parent;
751 			p = &(*p)->rb_right;
752 		} else if (vma < pvma)
753 			p = &(*p)->rb_left;
754 		else if (vma > pvma) {
755 			rb_prev = parent;
756 			p = &(*p)->rb_right;
757 		} else
758 			BUG();
759 	}
760 
761 	rb_link_node(&vma->vm_rb, parent, p);
762 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
763 
764 	/* add VMA to the VMA list also */
765 	prev = NULL;
766 	if (rb_prev)
767 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
768 
769 	__vma_link_list(mm, vma, prev, parent);
770 }
771 
772 /*
773  * delete a VMA from its owning mm_struct and address space
774  */
775 static void delete_vma_from_mm(struct vm_area_struct *vma)
776 {
777 	int i;
778 	struct address_space *mapping;
779 	struct mm_struct *mm = vma->vm_mm;
780 	struct task_struct *curr = current;
781 
782 	kenter("%p", vma);
783 
784 	protect_vma(vma, 0);
785 
786 	mm->map_count--;
787 	for (i = 0; i < VMACACHE_SIZE; i++) {
788 		/* if the vma is cached, invalidate the entire cache */
789 		if (curr->vmacache[i] == vma) {
790 			vmacache_invalidate(mm);
791 			break;
792 		}
793 	}
794 
795 	/* remove the VMA from the mapping */
796 	if (vma->vm_file) {
797 		mapping = vma->vm_file->f_mapping;
798 
799 		i_mmap_lock_write(mapping);
800 		flush_dcache_mmap_lock(mapping);
801 		vma_interval_tree_remove(vma, &mapping->i_mmap);
802 		flush_dcache_mmap_unlock(mapping);
803 		i_mmap_unlock_write(mapping);
804 	}
805 
806 	/* remove from the MM's tree and list */
807 	rb_erase(&vma->vm_rb, &mm->mm_rb);
808 
809 	if (vma->vm_prev)
810 		vma->vm_prev->vm_next = vma->vm_next;
811 	else
812 		mm->mmap = vma->vm_next;
813 
814 	if (vma->vm_next)
815 		vma->vm_next->vm_prev = vma->vm_prev;
816 }
817 
818 /*
819  * destroy a VMA record
820  */
821 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
822 {
823 	kenter("%p", vma);
824 	if (vma->vm_ops && vma->vm_ops->close)
825 		vma->vm_ops->close(vma);
826 	if (vma->vm_file)
827 		fput(vma->vm_file);
828 	put_nommu_region(vma->vm_region);
829 	kmem_cache_free(vm_area_cachep, vma);
830 }
831 
832 /*
833  * look up the first VMA in which addr resides, NULL if none
834  * - should be called with mm->mmap_sem at least held readlocked
835  */
836 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
837 {
838 	struct vm_area_struct *vma;
839 
840 	/* check the cache first */
841 	vma = vmacache_find(mm, addr);
842 	if (likely(vma))
843 		return vma;
844 
845 	/* trawl the list (there may be multiple mappings in which addr
846 	 * resides) */
847 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
848 		if (vma->vm_start > addr)
849 			return NULL;
850 		if (vma->vm_end > addr) {
851 			vmacache_update(addr, vma);
852 			return vma;
853 		}
854 	}
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(find_vma);
859 
860 /*
861  * find a VMA
862  * - we don't extend stack VMAs under NOMMU conditions
863  */
864 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
865 {
866 	return find_vma(mm, addr);
867 }
868 
869 /*
870  * expand a stack to a given address
871  * - not supported under NOMMU conditions
872  */
873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
874 {
875 	return -ENOMEM;
876 }
877 
878 /*
879  * look up the first VMA exactly that exactly matches addr
880  * - should be called with mm->mmap_sem at least held readlocked
881  */
882 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
883 					     unsigned long addr,
884 					     unsigned long len)
885 {
886 	struct vm_area_struct *vma;
887 	unsigned long end = addr + len;
888 
889 	/* check the cache first */
890 	vma = vmacache_find_exact(mm, addr, end);
891 	if (vma)
892 		return vma;
893 
894 	/* trawl the list (there may be multiple mappings in which addr
895 	 * resides) */
896 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
897 		if (vma->vm_start < addr)
898 			continue;
899 		if (vma->vm_start > addr)
900 			return NULL;
901 		if (vma->vm_end == end) {
902 			vmacache_update(addr, vma);
903 			return vma;
904 		}
905 	}
906 
907 	return NULL;
908 }
909 
910 /*
911  * determine whether a mapping should be permitted and, if so, what sort of
912  * mapping we're capable of supporting
913  */
914 static int validate_mmap_request(struct file *file,
915 				 unsigned long addr,
916 				 unsigned long len,
917 				 unsigned long prot,
918 				 unsigned long flags,
919 				 unsigned long pgoff,
920 				 unsigned long *_capabilities)
921 {
922 	unsigned long capabilities, rlen;
923 	int ret;
924 
925 	/* do the simple checks first */
926 	if (flags & MAP_FIXED) {
927 		printk(KERN_DEBUG
928 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
929 		       current->pid);
930 		return -EINVAL;
931 	}
932 
933 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
934 	    (flags & MAP_TYPE) != MAP_SHARED)
935 		return -EINVAL;
936 
937 	if (!len)
938 		return -EINVAL;
939 
940 	/* Careful about overflows.. */
941 	rlen = PAGE_ALIGN(len);
942 	if (!rlen || rlen > TASK_SIZE)
943 		return -ENOMEM;
944 
945 	/* offset overflow? */
946 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
947 		return -EOVERFLOW;
948 
949 	if (file) {
950 		/* validate file mapping requests */
951 		struct address_space *mapping;
952 
953 		/* files must support mmap */
954 		if (!file->f_op->mmap)
955 			return -ENODEV;
956 
957 		/* work out if what we've got could possibly be shared
958 		 * - we support chardevs that provide their own "memory"
959 		 * - we support files/blockdevs that are memory backed
960 		 */
961 		mapping = file->f_mapping;
962 		if (!mapping)
963 			mapping = file_inode(file)->i_mapping;
964 
965 		capabilities = 0;
966 		if (mapping && mapping->backing_dev_info)
967 			capabilities = mapping->backing_dev_info->capabilities;
968 
969 		if (!capabilities) {
970 			/* no explicit capabilities set, so assume some
971 			 * defaults */
972 			switch (file_inode(file)->i_mode & S_IFMT) {
973 			case S_IFREG:
974 			case S_IFBLK:
975 				capabilities = BDI_CAP_MAP_COPY;
976 				break;
977 
978 			case S_IFCHR:
979 				capabilities =
980 					BDI_CAP_MAP_DIRECT |
981 					BDI_CAP_READ_MAP |
982 					BDI_CAP_WRITE_MAP;
983 				break;
984 
985 			default:
986 				return -EINVAL;
987 			}
988 		}
989 
990 		/* eliminate any capabilities that we can't support on this
991 		 * device */
992 		if (!file->f_op->get_unmapped_area)
993 			capabilities &= ~BDI_CAP_MAP_DIRECT;
994 		if (!file->f_op->read)
995 			capabilities &= ~BDI_CAP_MAP_COPY;
996 
997 		/* The file shall have been opened with read permission. */
998 		if (!(file->f_mode & FMODE_READ))
999 			return -EACCES;
1000 
1001 		if (flags & MAP_SHARED) {
1002 			/* do checks for writing, appending and locking */
1003 			if ((prot & PROT_WRITE) &&
1004 			    !(file->f_mode & FMODE_WRITE))
1005 				return -EACCES;
1006 
1007 			if (IS_APPEND(file_inode(file)) &&
1008 			    (file->f_mode & FMODE_WRITE))
1009 				return -EACCES;
1010 
1011 			if (locks_verify_locked(file))
1012 				return -EAGAIN;
1013 
1014 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
1015 				return -ENODEV;
1016 
1017 			/* we mustn't privatise shared mappings */
1018 			capabilities &= ~BDI_CAP_MAP_COPY;
1019 		} else {
1020 			/* we're going to read the file into private memory we
1021 			 * allocate */
1022 			if (!(capabilities & BDI_CAP_MAP_COPY))
1023 				return -ENODEV;
1024 
1025 			/* we don't permit a private writable mapping to be
1026 			 * shared with the backing device */
1027 			if (prot & PROT_WRITE)
1028 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1029 		}
1030 
1031 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1032 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1033 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1034 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1035 			    ) {
1036 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1037 				if (flags & MAP_SHARED) {
1038 					printk(KERN_WARNING
1039 					       "MAP_SHARED not completely supported on !MMU\n");
1040 					return -EINVAL;
1041 				}
1042 			}
1043 		}
1044 
1045 		/* handle executable mappings and implied executable
1046 		 * mappings */
1047 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048 			if (prot & PROT_EXEC)
1049 				return -EPERM;
1050 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1051 			/* handle implication of PROT_EXEC by PROT_READ */
1052 			if (current->personality & READ_IMPLIES_EXEC) {
1053 				if (capabilities & BDI_CAP_EXEC_MAP)
1054 					prot |= PROT_EXEC;
1055 			}
1056 		} else if ((prot & PROT_READ) &&
1057 			 (prot & PROT_EXEC) &&
1058 			 !(capabilities & BDI_CAP_EXEC_MAP)
1059 			 ) {
1060 			/* backing file is not executable, try to copy */
1061 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1062 		}
1063 	} else {
1064 		/* anonymous mappings are always memory backed and can be
1065 		 * privately mapped
1066 		 */
1067 		capabilities = BDI_CAP_MAP_COPY;
1068 
1069 		/* handle PROT_EXEC implication by PROT_READ */
1070 		if ((prot & PROT_READ) &&
1071 		    (current->personality & READ_IMPLIES_EXEC))
1072 			prot |= PROT_EXEC;
1073 	}
1074 
1075 	/* allow the security API to have its say */
1076 	ret = security_mmap_addr(addr);
1077 	if (ret < 0)
1078 		return ret;
1079 
1080 	/* looks okay */
1081 	*_capabilities = capabilities;
1082 	return 0;
1083 }
1084 
1085 /*
1086  * we've determined that we can make the mapping, now translate what we
1087  * now know into VMA flags
1088  */
1089 static unsigned long determine_vm_flags(struct file *file,
1090 					unsigned long prot,
1091 					unsigned long flags,
1092 					unsigned long capabilities)
1093 {
1094 	unsigned long vm_flags;
1095 
1096 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1097 	/* vm_flags |= mm->def_flags; */
1098 
1099 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1100 		/* attempt to share read-only copies of mapped file chunks */
1101 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1102 		if (file && !(prot & PROT_WRITE))
1103 			vm_flags |= VM_MAYSHARE;
1104 	} else {
1105 		/* overlay a shareable mapping on the backing device or inode
1106 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1107 		 * romfs/cramfs */
1108 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1109 		if (flags & MAP_SHARED)
1110 			vm_flags |= VM_SHARED;
1111 	}
1112 
1113 	/* refuse to let anyone share private mappings with this process if
1114 	 * it's being traced - otherwise breakpoints set in it may interfere
1115 	 * with another untraced process
1116 	 */
1117 	if ((flags & MAP_PRIVATE) && current->ptrace)
1118 		vm_flags &= ~VM_MAYSHARE;
1119 
1120 	return vm_flags;
1121 }
1122 
1123 /*
1124  * set up a shared mapping on a file (the driver or filesystem provides and
1125  * pins the storage)
1126  */
1127 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128 {
1129 	int ret;
1130 
1131 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1132 	if (ret == 0) {
1133 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1134 		return 0;
1135 	}
1136 	if (ret != -ENOSYS)
1137 		return ret;
1138 
1139 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1140 	 * opposed to tried but failed) so we can only give a suitable error as
1141 	 * it's not possible to make a private copy if MAP_SHARED was given */
1142 	return -ENODEV;
1143 }
1144 
1145 /*
1146  * set up a private mapping or an anonymous shared mapping
1147  */
1148 static int do_mmap_private(struct vm_area_struct *vma,
1149 			   struct vm_region *region,
1150 			   unsigned long len,
1151 			   unsigned long capabilities)
1152 {
1153 	unsigned long total, point;
1154 	void *base;
1155 	int ret, order;
1156 
1157 	/* invoke the file's mapping function so that it can keep track of
1158 	 * shared mappings on devices or memory
1159 	 * - VM_MAYSHARE will be set if it may attempt to share
1160 	 */
1161 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1162 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163 		if (ret == 0) {
1164 			/* shouldn't return success if we're not sharing */
1165 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1167 			return 0;
1168 		}
1169 		if (ret != -ENOSYS)
1170 			return ret;
1171 
1172 		/* getting an ENOSYS error indicates that direct mmap isn't
1173 		 * possible (as opposed to tried but failed) so we'll try to
1174 		 * make a private copy of the data and map that instead */
1175 	}
1176 
1177 
1178 	/* allocate some memory to hold the mapping
1179 	 * - note that this may not return a page-aligned address if the object
1180 	 *   we're allocating is smaller than a page
1181 	 */
1182 	order = get_order(len);
1183 	kdebug("alloc order %d for %lx", order, len);
1184 
1185 	total = 1 << order;
1186 	point = len >> PAGE_SHIFT;
1187 
1188 	/* we don't want to allocate a power-of-2 sized page set */
1189 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1190 		total = point;
1191 		kdebug("try to alloc exact %lu pages", total);
1192 		base = alloc_pages_exact(len, GFP_KERNEL);
1193 	} else {
1194 		base = (void *)__get_free_pages(GFP_KERNEL, order);
1195 	}
1196 
1197 	if (!base)
1198 		goto enomem;
1199 
1200 	atomic_long_add(total, &mmap_pages_allocated);
1201 
1202 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1203 	region->vm_start = (unsigned long) base;
1204 	region->vm_end   = region->vm_start + len;
1205 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1206 
1207 	vma->vm_start = region->vm_start;
1208 	vma->vm_end   = region->vm_start + len;
1209 
1210 	if (vma->vm_file) {
1211 		/* read the contents of a file into the copy */
1212 		mm_segment_t old_fs;
1213 		loff_t fpos;
1214 
1215 		fpos = vma->vm_pgoff;
1216 		fpos <<= PAGE_SHIFT;
1217 
1218 		old_fs = get_fs();
1219 		set_fs(KERNEL_DS);
1220 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1221 		set_fs(old_fs);
1222 
1223 		if (ret < 0)
1224 			goto error_free;
1225 
1226 		/* clear the last little bit */
1227 		if (ret < len)
1228 			memset(base + ret, 0, len - ret);
1229 
1230 	}
1231 
1232 	return 0;
1233 
1234 error_free:
1235 	free_page_series(region->vm_start, region->vm_top);
1236 	region->vm_start = vma->vm_start = 0;
1237 	region->vm_end   = vma->vm_end = 0;
1238 	region->vm_top   = 0;
1239 	return ret;
1240 
1241 enomem:
1242 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1243 	       len, current->pid, current->comm);
1244 	show_free_areas(0);
1245 	return -ENOMEM;
1246 }
1247 
1248 /*
1249  * handle mapping creation for uClinux
1250  */
1251 unsigned long do_mmap_pgoff(struct file *file,
1252 			    unsigned long addr,
1253 			    unsigned long len,
1254 			    unsigned long prot,
1255 			    unsigned long flags,
1256 			    unsigned long pgoff,
1257 			    unsigned long *populate)
1258 {
1259 	struct vm_area_struct *vma;
1260 	struct vm_region *region;
1261 	struct rb_node *rb;
1262 	unsigned long capabilities, vm_flags, result;
1263 	int ret;
1264 
1265 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1266 
1267 	*populate = 0;
1268 
1269 	/* decide whether we should attempt the mapping, and if so what sort of
1270 	 * mapping */
1271 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1272 				    &capabilities);
1273 	if (ret < 0) {
1274 		kleave(" = %d [val]", ret);
1275 		return ret;
1276 	}
1277 
1278 	/* we ignore the address hint */
1279 	addr = 0;
1280 	len = PAGE_ALIGN(len);
1281 
1282 	/* we've determined that we can make the mapping, now translate what we
1283 	 * now know into VMA flags */
1284 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1285 
1286 	/* we're going to need to record the mapping */
1287 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1288 	if (!region)
1289 		goto error_getting_region;
1290 
1291 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1292 	if (!vma)
1293 		goto error_getting_vma;
1294 
1295 	region->vm_usage = 1;
1296 	region->vm_flags = vm_flags;
1297 	region->vm_pgoff = pgoff;
1298 
1299 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1300 	vma->vm_flags = vm_flags;
1301 	vma->vm_pgoff = pgoff;
1302 
1303 	if (file) {
1304 		region->vm_file = get_file(file);
1305 		vma->vm_file = get_file(file);
1306 	}
1307 
1308 	down_write(&nommu_region_sem);
1309 
1310 	/* if we want to share, we need to check for regions created by other
1311 	 * mmap() calls that overlap with our proposed mapping
1312 	 * - we can only share with a superset match on most regular files
1313 	 * - shared mappings on character devices and memory backed files are
1314 	 *   permitted to overlap inexactly as far as we are concerned for in
1315 	 *   these cases, sharing is handled in the driver or filesystem rather
1316 	 *   than here
1317 	 */
1318 	if (vm_flags & VM_MAYSHARE) {
1319 		struct vm_region *pregion;
1320 		unsigned long pglen, rpglen, pgend, rpgend, start;
1321 
1322 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1323 		pgend = pgoff + pglen;
1324 
1325 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1326 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1327 
1328 			if (!(pregion->vm_flags & VM_MAYSHARE))
1329 				continue;
1330 
1331 			/* search for overlapping mappings on the same file */
1332 			if (file_inode(pregion->vm_file) !=
1333 			    file_inode(file))
1334 				continue;
1335 
1336 			if (pregion->vm_pgoff >= pgend)
1337 				continue;
1338 
1339 			rpglen = pregion->vm_end - pregion->vm_start;
1340 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1341 			rpgend = pregion->vm_pgoff + rpglen;
1342 			if (pgoff >= rpgend)
1343 				continue;
1344 
1345 			/* handle inexactly overlapping matches between
1346 			 * mappings */
1347 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1348 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1349 				/* new mapping is not a subset of the region */
1350 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1351 					goto sharing_violation;
1352 				continue;
1353 			}
1354 
1355 			/* we've found a region we can share */
1356 			pregion->vm_usage++;
1357 			vma->vm_region = pregion;
1358 			start = pregion->vm_start;
1359 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1360 			vma->vm_start = start;
1361 			vma->vm_end = start + len;
1362 
1363 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1364 				kdebug("share copy");
1365 				vma->vm_flags |= VM_MAPPED_COPY;
1366 			} else {
1367 				kdebug("share mmap");
1368 				ret = do_mmap_shared_file(vma);
1369 				if (ret < 0) {
1370 					vma->vm_region = NULL;
1371 					vma->vm_start = 0;
1372 					vma->vm_end = 0;
1373 					pregion->vm_usage--;
1374 					pregion = NULL;
1375 					goto error_just_free;
1376 				}
1377 			}
1378 			fput(region->vm_file);
1379 			kmem_cache_free(vm_region_jar, region);
1380 			region = pregion;
1381 			result = start;
1382 			goto share;
1383 		}
1384 
1385 		/* obtain the address at which to make a shared mapping
1386 		 * - this is the hook for quasi-memory character devices to
1387 		 *   tell us the location of a shared mapping
1388 		 */
1389 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1390 			addr = file->f_op->get_unmapped_area(file, addr, len,
1391 							     pgoff, flags);
1392 			if (IS_ERR_VALUE(addr)) {
1393 				ret = addr;
1394 				if (ret != -ENOSYS)
1395 					goto error_just_free;
1396 
1397 				/* the driver refused to tell us where to site
1398 				 * the mapping so we'll have to attempt to copy
1399 				 * it */
1400 				ret = -ENODEV;
1401 				if (!(capabilities & BDI_CAP_MAP_COPY))
1402 					goto error_just_free;
1403 
1404 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1405 			} else {
1406 				vma->vm_start = region->vm_start = addr;
1407 				vma->vm_end = region->vm_end = addr + len;
1408 			}
1409 		}
1410 	}
1411 
1412 	vma->vm_region = region;
1413 
1414 	/* set up the mapping
1415 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1416 	 */
1417 	if (file && vma->vm_flags & VM_SHARED)
1418 		ret = do_mmap_shared_file(vma);
1419 	else
1420 		ret = do_mmap_private(vma, region, len, capabilities);
1421 	if (ret < 0)
1422 		goto error_just_free;
1423 	add_nommu_region(region);
1424 
1425 	/* clear anonymous mappings that don't ask for uninitialized data */
1426 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1427 		memset((void *)region->vm_start, 0,
1428 		       region->vm_end - region->vm_start);
1429 
1430 	/* okay... we have a mapping; now we have to register it */
1431 	result = vma->vm_start;
1432 
1433 	current->mm->total_vm += len >> PAGE_SHIFT;
1434 
1435 share:
1436 	add_vma_to_mm(current->mm, vma);
1437 
1438 	/* we flush the region from the icache only when the first executable
1439 	 * mapping of it is made  */
1440 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1441 		flush_icache_range(region->vm_start, region->vm_end);
1442 		region->vm_icache_flushed = true;
1443 	}
1444 
1445 	up_write(&nommu_region_sem);
1446 
1447 	kleave(" = %lx", result);
1448 	return result;
1449 
1450 error_just_free:
1451 	up_write(&nommu_region_sem);
1452 error:
1453 	if (region->vm_file)
1454 		fput(region->vm_file);
1455 	kmem_cache_free(vm_region_jar, region);
1456 	if (vma->vm_file)
1457 		fput(vma->vm_file);
1458 	kmem_cache_free(vm_area_cachep, vma);
1459 	kleave(" = %d", ret);
1460 	return ret;
1461 
1462 sharing_violation:
1463 	up_write(&nommu_region_sem);
1464 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1465 	ret = -EINVAL;
1466 	goto error;
1467 
1468 error_getting_vma:
1469 	kmem_cache_free(vm_region_jar, region);
1470 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1471 	       " from process %d failed\n",
1472 	       len, current->pid);
1473 	show_free_areas(0);
1474 	return -ENOMEM;
1475 
1476 error_getting_region:
1477 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1478 	       " from process %d failed\n",
1479 	       len, current->pid);
1480 	show_free_areas(0);
1481 	return -ENOMEM;
1482 }
1483 
1484 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1485 		unsigned long, prot, unsigned long, flags,
1486 		unsigned long, fd, unsigned long, pgoff)
1487 {
1488 	struct file *file = NULL;
1489 	unsigned long retval = -EBADF;
1490 
1491 	audit_mmap_fd(fd, flags);
1492 	if (!(flags & MAP_ANONYMOUS)) {
1493 		file = fget(fd);
1494 		if (!file)
1495 			goto out;
1496 	}
1497 
1498 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499 
1500 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501 
1502 	if (file)
1503 		fput(file);
1504 out:
1505 	return retval;
1506 }
1507 
1508 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1509 struct mmap_arg_struct {
1510 	unsigned long addr;
1511 	unsigned long len;
1512 	unsigned long prot;
1513 	unsigned long flags;
1514 	unsigned long fd;
1515 	unsigned long offset;
1516 };
1517 
1518 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1519 {
1520 	struct mmap_arg_struct a;
1521 
1522 	if (copy_from_user(&a, arg, sizeof(a)))
1523 		return -EFAULT;
1524 	if (a.offset & ~PAGE_MASK)
1525 		return -EINVAL;
1526 
1527 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1528 			      a.offset >> PAGE_SHIFT);
1529 }
1530 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1531 
1532 /*
1533  * split a vma into two pieces at address 'addr', a new vma is allocated either
1534  * for the first part or the tail.
1535  */
1536 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1537 	      unsigned long addr, int new_below)
1538 {
1539 	struct vm_area_struct *new;
1540 	struct vm_region *region;
1541 	unsigned long npages;
1542 
1543 	kenter("");
1544 
1545 	/* we're only permitted to split anonymous regions (these should have
1546 	 * only a single usage on the region) */
1547 	if (vma->vm_file)
1548 		return -ENOMEM;
1549 
1550 	if (mm->map_count >= sysctl_max_map_count)
1551 		return -ENOMEM;
1552 
1553 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1554 	if (!region)
1555 		return -ENOMEM;
1556 
1557 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1558 	if (!new) {
1559 		kmem_cache_free(vm_region_jar, region);
1560 		return -ENOMEM;
1561 	}
1562 
1563 	/* most fields are the same, copy all, and then fixup */
1564 	*new = *vma;
1565 	*region = *vma->vm_region;
1566 	new->vm_region = region;
1567 
1568 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1569 
1570 	if (new_below) {
1571 		region->vm_top = region->vm_end = new->vm_end = addr;
1572 	} else {
1573 		region->vm_start = new->vm_start = addr;
1574 		region->vm_pgoff = new->vm_pgoff += npages;
1575 	}
1576 
1577 	if (new->vm_ops && new->vm_ops->open)
1578 		new->vm_ops->open(new);
1579 
1580 	delete_vma_from_mm(vma);
1581 	down_write(&nommu_region_sem);
1582 	delete_nommu_region(vma->vm_region);
1583 	if (new_below) {
1584 		vma->vm_region->vm_start = vma->vm_start = addr;
1585 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1586 	} else {
1587 		vma->vm_region->vm_end = vma->vm_end = addr;
1588 		vma->vm_region->vm_top = addr;
1589 	}
1590 	add_nommu_region(vma->vm_region);
1591 	add_nommu_region(new->vm_region);
1592 	up_write(&nommu_region_sem);
1593 	add_vma_to_mm(mm, vma);
1594 	add_vma_to_mm(mm, new);
1595 	return 0;
1596 }
1597 
1598 /*
1599  * shrink a VMA by removing the specified chunk from either the beginning or
1600  * the end
1601  */
1602 static int shrink_vma(struct mm_struct *mm,
1603 		      struct vm_area_struct *vma,
1604 		      unsigned long from, unsigned long to)
1605 {
1606 	struct vm_region *region;
1607 
1608 	kenter("");
1609 
1610 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1611 	 * and list */
1612 	delete_vma_from_mm(vma);
1613 	if (from > vma->vm_start)
1614 		vma->vm_end = from;
1615 	else
1616 		vma->vm_start = to;
1617 	add_vma_to_mm(mm, vma);
1618 
1619 	/* cut the backing region down to size */
1620 	region = vma->vm_region;
1621 	BUG_ON(region->vm_usage != 1);
1622 
1623 	down_write(&nommu_region_sem);
1624 	delete_nommu_region(region);
1625 	if (from > region->vm_start) {
1626 		to = region->vm_top;
1627 		region->vm_top = region->vm_end = from;
1628 	} else {
1629 		region->vm_start = to;
1630 	}
1631 	add_nommu_region(region);
1632 	up_write(&nommu_region_sem);
1633 
1634 	free_page_series(from, to);
1635 	return 0;
1636 }
1637 
1638 /*
1639  * release a mapping
1640  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1641  *   VMA, though it need not cover the whole VMA
1642  */
1643 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1644 {
1645 	struct vm_area_struct *vma;
1646 	unsigned long end;
1647 	int ret;
1648 
1649 	kenter(",%lx,%zx", start, len);
1650 
1651 	len = PAGE_ALIGN(len);
1652 	if (len == 0)
1653 		return -EINVAL;
1654 
1655 	end = start + len;
1656 
1657 	/* find the first potentially overlapping VMA */
1658 	vma = find_vma(mm, start);
1659 	if (!vma) {
1660 		static int limit;
1661 		if (limit < 5) {
1662 			printk(KERN_WARNING
1663 			       "munmap of memory not mmapped by process %d"
1664 			       " (%s): 0x%lx-0x%lx\n",
1665 			       current->pid, current->comm,
1666 			       start, start + len - 1);
1667 			limit++;
1668 		}
1669 		return -EINVAL;
1670 	}
1671 
1672 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1673 	if (vma->vm_file) {
1674 		do {
1675 			if (start > vma->vm_start) {
1676 				kleave(" = -EINVAL [miss]");
1677 				return -EINVAL;
1678 			}
1679 			if (end == vma->vm_end)
1680 				goto erase_whole_vma;
1681 			vma = vma->vm_next;
1682 		} while (vma);
1683 		kleave(" = -EINVAL [split file]");
1684 		return -EINVAL;
1685 	} else {
1686 		/* the chunk must be a subset of the VMA found */
1687 		if (start == vma->vm_start && end == vma->vm_end)
1688 			goto erase_whole_vma;
1689 		if (start < vma->vm_start || end > vma->vm_end) {
1690 			kleave(" = -EINVAL [superset]");
1691 			return -EINVAL;
1692 		}
1693 		if (start & ~PAGE_MASK) {
1694 			kleave(" = -EINVAL [unaligned start]");
1695 			return -EINVAL;
1696 		}
1697 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1698 			kleave(" = -EINVAL [unaligned split]");
1699 			return -EINVAL;
1700 		}
1701 		if (start != vma->vm_start && end != vma->vm_end) {
1702 			ret = split_vma(mm, vma, start, 1);
1703 			if (ret < 0) {
1704 				kleave(" = %d [split]", ret);
1705 				return ret;
1706 			}
1707 		}
1708 		return shrink_vma(mm, vma, start, end);
1709 	}
1710 
1711 erase_whole_vma:
1712 	delete_vma_from_mm(vma);
1713 	delete_vma(mm, vma);
1714 	kleave(" = 0");
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(do_munmap);
1718 
1719 int vm_munmap(unsigned long addr, size_t len)
1720 {
1721 	struct mm_struct *mm = current->mm;
1722 	int ret;
1723 
1724 	down_write(&mm->mmap_sem);
1725 	ret = do_munmap(mm, addr, len);
1726 	up_write(&mm->mmap_sem);
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(vm_munmap);
1730 
1731 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1732 {
1733 	return vm_munmap(addr, len);
1734 }
1735 
1736 /*
1737  * release all the mappings made in a process's VM space
1738  */
1739 void exit_mmap(struct mm_struct *mm)
1740 {
1741 	struct vm_area_struct *vma;
1742 
1743 	if (!mm)
1744 		return;
1745 
1746 	kenter("");
1747 
1748 	mm->total_vm = 0;
1749 
1750 	while ((vma = mm->mmap)) {
1751 		mm->mmap = vma->vm_next;
1752 		delete_vma_from_mm(vma);
1753 		delete_vma(mm, vma);
1754 		cond_resched();
1755 	}
1756 
1757 	kleave("");
1758 }
1759 
1760 unsigned long vm_brk(unsigned long addr, unsigned long len)
1761 {
1762 	return -ENOMEM;
1763 }
1764 
1765 /*
1766  * expand (or shrink) an existing mapping, potentially moving it at the same
1767  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1768  *
1769  * under NOMMU conditions, we only permit changing a mapping's size, and only
1770  * as long as it stays within the region allocated by do_mmap_private() and the
1771  * block is not shareable
1772  *
1773  * MREMAP_FIXED is not supported under NOMMU conditions
1774  */
1775 static unsigned long do_mremap(unsigned long addr,
1776 			unsigned long old_len, unsigned long new_len,
1777 			unsigned long flags, unsigned long new_addr)
1778 {
1779 	struct vm_area_struct *vma;
1780 
1781 	/* insanity checks first */
1782 	old_len = PAGE_ALIGN(old_len);
1783 	new_len = PAGE_ALIGN(new_len);
1784 	if (old_len == 0 || new_len == 0)
1785 		return (unsigned long) -EINVAL;
1786 
1787 	if (addr & ~PAGE_MASK)
1788 		return -EINVAL;
1789 
1790 	if (flags & MREMAP_FIXED && new_addr != addr)
1791 		return (unsigned long) -EINVAL;
1792 
1793 	vma = find_vma_exact(current->mm, addr, old_len);
1794 	if (!vma)
1795 		return (unsigned long) -EINVAL;
1796 
1797 	if (vma->vm_end != vma->vm_start + old_len)
1798 		return (unsigned long) -EFAULT;
1799 
1800 	if (vma->vm_flags & VM_MAYSHARE)
1801 		return (unsigned long) -EPERM;
1802 
1803 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1804 		return (unsigned long) -ENOMEM;
1805 
1806 	/* all checks complete - do it */
1807 	vma->vm_end = vma->vm_start + new_len;
1808 	return vma->vm_start;
1809 }
1810 
1811 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1812 		unsigned long, new_len, unsigned long, flags,
1813 		unsigned long, new_addr)
1814 {
1815 	unsigned long ret;
1816 
1817 	down_write(&current->mm->mmap_sem);
1818 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1819 	up_write(&current->mm->mmap_sem);
1820 	return ret;
1821 }
1822 
1823 struct page *follow_page_mask(struct vm_area_struct *vma,
1824 			      unsigned long address, unsigned int flags,
1825 			      unsigned int *page_mask)
1826 {
1827 	*page_mask = 0;
1828 	return NULL;
1829 }
1830 
1831 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1832 		unsigned long pfn, unsigned long size, pgprot_t prot)
1833 {
1834 	if (addr != (pfn << PAGE_SHIFT))
1835 		return -EINVAL;
1836 
1837 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(remap_pfn_range);
1841 
1842 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1843 {
1844 	unsigned long pfn = start >> PAGE_SHIFT;
1845 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1846 
1847 	pfn += vma->vm_pgoff;
1848 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1849 }
1850 EXPORT_SYMBOL(vm_iomap_memory);
1851 
1852 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1853 			unsigned long pgoff)
1854 {
1855 	unsigned int size = vma->vm_end - vma->vm_start;
1856 
1857 	if (!(vma->vm_flags & VM_USERMAP))
1858 		return -EINVAL;
1859 
1860 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1861 	vma->vm_end = vma->vm_start + size;
1862 
1863 	return 0;
1864 }
1865 EXPORT_SYMBOL(remap_vmalloc_range);
1866 
1867 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1868 	unsigned long len, unsigned long pgoff, unsigned long flags)
1869 {
1870 	return -ENOMEM;
1871 }
1872 
1873 void unmap_mapping_range(struct address_space *mapping,
1874 			 loff_t const holebegin, loff_t const holelen,
1875 			 int even_cows)
1876 {
1877 }
1878 EXPORT_SYMBOL(unmap_mapping_range);
1879 
1880 /*
1881  * Check that a process has enough memory to allocate a new virtual
1882  * mapping. 0 means there is enough memory for the allocation to
1883  * succeed and -ENOMEM implies there is not.
1884  *
1885  * We currently support three overcommit policies, which are set via the
1886  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1887  *
1888  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1889  * Additional code 2002 Jul 20 by Robert Love.
1890  *
1891  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1892  *
1893  * Note this is a helper function intended to be used by LSMs which
1894  * wish to use this logic.
1895  */
1896 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1897 {
1898 	unsigned long free, allowed, reserve;
1899 
1900 	vm_acct_memory(pages);
1901 
1902 	/*
1903 	 * Sometimes we want to use more memory than we have
1904 	 */
1905 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1906 		return 0;
1907 
1908 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1909 		free = global_page_state(NR_FREE_PAGES);
1910 		free += global_page_state(NR_FILE_PAGES);
1911 
1912 		/*
1913 		 * shmem pages shouldn't be counted as free in this
1914 		 * case, they can't be purged, only swapped out, and
1915 		 * that won't affect the overall amount of available
1916 		 * memory in the system.
1917 		 */
1918 		free -= global_page_state(NR_SHMEM);
1919 
1920 		free += get_nr_swap_pages();
1921 
1922 		/*
1923 		 * Any slabs which are created with the
1924 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1925 		 * which are reclaimable, under pressure.  The dentry
1926 		 * cache and most inode caches should fall into this
1927 		 */
1928 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1929 
1930 		/*
1931 		 * Leave reserved pages. The pages are not for anonymous pages.
1932 		 */
1933 		if (free <= totalreserve_pages)
1934 			goto error;
1935 		else
1936 			free -= totalreserve_pages;
1937 
1938 		/*
1939 		 * Reserve some for root
1940 		 */
1941 		if (!cap_sys_admin)
1942 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1943 
1944 		if (free > pages)
1945 			return 0;
1946 
1947 		goto error;
1948 	}
1949 
1950 	allowed = vm_commit_limit();
1951 	/*
1952 	 * Reserve some 3% for root
1953 	 */
1954 	if (!cap_sys_admin)
1955 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1956 
1957 	/*
1958 	 * Don't let a single process grow so big a user can't recover
1959 	 */
1960 	if (mm) {
1961 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1962 		allowed -= min(mm->total_vm / 32, reserve);
1963 	}
1964 
1965 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1966 		return 0;
1967 
1968 error:
1969 	vm_unacct_memory(pages);
1970 
1971 	return -ENOMEM;
1972 }
1973 
1974 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1975 {
1976 	BUG();
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL(filemap_fault);
1980 
1981 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1982 {
1983 	BUG();
1984 }
1985 EXPORT_SYMBOL(filemap_map_pages);
1986 
1987 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1988 			     unsigned long size, pgoff_t pgoff)
1989 {
1990 	BUG();
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(generic_file_remap_pages);
1994 
1995 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1996 		unsigned long addr, void *buf, int len, int write)
1997 {
1998 	struct vm_area_struct *vma;
1999 
2000 	down_read(&mm->mmap_sem);
2001 
2002 	/* the access must start within one of the target process's mappings */
2003 	vma = find_vma(mm, addr);
2004 	if (vma) {
2005 		/* don't overrun this mapping */
2006 		if (addr + len >= vma->vm_end)
2007 			len = vma->vm_end - addr;
2008 
2009 		/* only read or write mappings where it is permitted */
2010 		if (write && vma->vm_flags & VM_MAYWRITE)
2011 			copy_to_user_page(vma, NULL, addr,
2012 					 (void *) addr, buf, len);
2013 		else if (!write && vma->vm_flags & VM_MAYREAD)
2014 			copy_from_user_page(vma, NULL, addr,
2015 					    buf, (void *) addr, len);
2016 		else
2017 			len = 0;
2018 	} else {
2019 		len = 0;
2020 	}
2021 
2022 	up_read(&mm->mmap_sem);
2023 
2024 	return len;
2025 }
2026 
2027 /**
2028  * @access_remote_vm - access another process' address space
2029  * @mm:		the mm_struct of the target address space
2030  * @addr:	start address to access
2031  * @buf:	source or destination buffer
2032  * @len:	number of bytes to transfer
2033  * @write:	whether the access is a write
2034  *
2035  * The caller must hold a reference on @mm.
2036  */
2037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2038 		void *buf, int len, int write)
2039 {
2040 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2041 }
2042 
2043 /*
2044  * Access another process' address space.
2045  * - source/target buffer must be kernel space
2046  */
2047 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2048 {
2049 	struct mm_struct *mm;
2050 
2051 	if (addr + len < addr)
2052 		return 0;
2053 
2054 	mm = get_task_mm(tsk);
2055 	if (!mm)
2056 		return 0;
2057 
2058 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2059 
2060 	mmput(mm);
2061 	return len;
2062 }
2063 
2064 /**
2065  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2066  * @inode: The inode to check
2067  * @size: The current filesize of the inode
2068  * @newsize: The proposed filesize of the inode
2069  *
2070  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2071  * make sure that that any outstanding VMAs aren't broken and then shrink the
2072  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2073  * automatically grant mappings that are too large.
2074  */
2075 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2076 				size_t newsize)
2077 {
2078 	struct vm_area_struct *vma;
2079 	struct vm_region *region;
2080 	pgoff_t low, high;
2081 	size_t r_size, r_top;
2082 
2083 	low = newsize >> PAGE_SHIFT;
2084 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2085 
2086 	down_write(&nommu_region_sem);
2087 	i_mmap_lock_read(inode->i_mapping);
2088 
2089 	/* search for VMAs that fall within the dead zone */
2090 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2091 		/* found one - only interested if it's shared out of the page
2092 		 * cache */
2093 		if (vma->vm_flags & VM_SHARED) {
2094 			i_mmap_unlock_read(inode->i_mapping);
2095 			up_write(&nommu_region_sem);
2096 			return -ETXTBSY; /* not quite true, but near enough */
2097 		}
2098 	}
2099 
2100 	/* reduce any regions that overlap the dead zone - if in existence,
2101 	 * these will be pointed to by VMAs that don't overlap the dead zone
2102 	 *
2103 	 * we don't check for any regions that start beyond the EOF as there
2104 	 * shouldn't be any
2105 	 */
2106 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2107 		if (!(vma->vm_flags & VM_SHARED))
2108 			continue;
2109 
2110 		region = vma->vm_region;
2111 		r_size = region->vm_top - region->vm_start;
2112 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2113 
2114 		if (r_top > newsize) {
2115 			region->vm_top -= r_top - newsize;
2116 			if (region->vm_end > region->vm_top)
2117 				region->vm_end = region->vm_top;
2118 		}
2119 	}
2120 
2121 	i_mmap_unlock_read(inode->i_mapping);
2122 	up_write(&nommu_region_sem);
2123 	return 0;
2124 }
2125 
2126 /*
2127  * Initialise sysctl_user_reserve_kbytes.
2128  *
2129  * This is intended to prevent a user from starting a single memory hogging
2130  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2131  * mode.
2132  *
2133  * The default value is min(3% of free memory, 128MB)
2134  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2135  */
2136 static int __meminit init_user_reserve(void)
2137 {
2138 	unsigned long free_kbytes;
2139 
2140 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2141 
2142 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2143 	return 0;
2144 }
2145 module_init(init_user_reserve)
2146 
2147 /*
2148  * Initialise sysctl_admin_reserve_kbytes.
2149  *
2150  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2151  * to log in and kill a memory hogging process.
2152  *
2153  * Systems with more than 256MB will reserve 8MB, enough to recover
2154  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2155  * only reserve 3% of free pages by default.
2156  */
2157 static int __meminit init_admin_reserve(void)
2158 {
2159 	unsigned long free_kbytes;
2160 
2161 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2162 
2163 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2164 	return 0;
2165 }
2166 module_init(init_admin_reserve)
2167