1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_range(unsigned long size, unsigned long align, 154 unsigned long start, unsigned long end, gfp_t gfp_mask, 155 pgprot_t prot, unsigned long vm_flags, int node, 156 const void *caller) 157 { 158 return __vmalloc(size, gfp_mask); 159 } 160 161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 162 int node, const void *caller) 163 { 164 return __vmalloc(size, gfp_mask); 165 } 166 167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = __vmalloc(size, flags); 172 if (ret) { 173 struct vm_area_struct *vma; 174 175 mmap_write_lock(current->mm); 176 vma = find_vma(current->mm, (unsigned long)ret); 177 if (vma) 178 vma->vm_flags |= VM_USERMAP; 179 mmap_write_unlock(current->mm); 180 } 181 182 return ret; 183 } 184 185 void *vmalloc_user(unsigned long size) 186 { 187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 188 } 189 EXPORT_SYMBOL(vmalloc_user); 190 191 struct page *vmalloc_to_page(const void *addr) 192 { 193 return virt_to_page(addr); 194 } 195 EXPORT_SYMBOL(vmalloc_to_page); 196 197 unsigned long vmalloc_to_pfn(const void *addr) 198 { 199 return page_to_pfn(virt_to_page(addr)); 200 } 201 EXPORT_SYMBOL(vmalloc_to_pfn); 202 203 long vread(char *buf, char *addr, unsigned long count) 204 { 205 /* Don't allow overflow */ 206 if ((unsigned long) buf + count < count) 207 count = -(unsigned long) buf; 208 209 memcpy(buf, addr, count); 210 return count; 211 } 212 213 long vwrite(char *buf, char *addr, unsigned long count) 214 { 215 /* Don't allow overflow */ 216 if ((unsigned long) addr + count < count) 217 count = -(unsigned long) addr; 218 219 memcpy(addr, buf, count); 220 return count; 221 } 222 223 /* 224 * vmalloc - allocate virtually contiguous memory 225 * 226 * @size: allocation size 227 * 228 * Allocate enough pages to cover @size from the page level 229 * allocator and map them into contiguous kernel virtual space. 230 * 231 * For tight control over page level allocator and protection flags 232 * use __vmalloc() instead. 233 */ 234 void *vmalloc(unsigned long size) 235 { 236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(vmalloc); 239 240 /* 241 * vzalloc - allocate virtually contiguous memory with zero fill 242 * 243 * @size: allocation size 244 * 245 * Allocate enough pages to cover @size from the page level 246 * allocator and map them into contiguous kernel virtual space. 247 * The memory allocated is set to zero. 248 * 249 * For tight control over page level allocator and protection flags 250 * use __vmalloc() instead. 251 */ 252 void *vzalloc(unsigned long size) 253 { 254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 255 } 256 EXPORT_SYMBOL(vzalloc); 257 258 /** 259 * vmalloc_node - allocate memory on a specific node 260 * @size: allocation size 261 * @node: numa node 262 * 263 * Allocate enough pages to cover @size from the page level 264 * allocator and map them into contiguous kernel virtual space. 265 * 266 * For tight control over page level allocator and protection flags 267 * use __vmalloc() instead. 268 */ 269 void *vmalloc_node(unsigned long size, int node) 270 { 271 return vmalloc(size); 272 } 273 EXPORT_SYMBOL(vmalloc_node); 274 275 /** 276 * vzalloc_node - allocate memory on a specific node with zero fill 277 * @size: allocation size 278 * @node: numa node 279 * 280 * Allocate enough pages to cover @size from the page level 281 * allocator and map them into contiguous kernel virtual space. 282 * The memory allocated is set to zero. 283 * 284 * For tight control over page level allocator and protection flags 285 * use __vmalloc() instead. 286 */ 287 void *vzalloc_node(unsigned long size, int node) 288 { 289 return vzalloc(size); 290 } 291 EXPORT_SYMBOL(vzalloc_node); 292 293 /** 294 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 295 * @size: allocation size 296 * 297 * Allocate enough 32bit PA addressable pages to cover @size from the 298 * page level allocator and map them into contiguous kernel virtual space. 299 */ 300 void *vmalloc_32(unsigned long size) 301 { 302 return __vmalloc(size, GFP_KERNEL); 303 } 304 EXPORT_SYMBOL(vmalloc_32); 305 306 /** 307 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 308 * @size: allocation size 309 * 310 * The resulting memory area is 32bit addressable and zeroed so it can be 311 * mapped to userspace without leaking data. 312 * 313 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 314 * remap_vmalloc_range() are permissible. 315 */ 316 void *vmalloc_32_user(unsigned long size) 317 { 318 /* 319 * We'll have to sort out the ZONE_DMA bits for 64-bit, 320 * but for now this can simply use vmalloc_user() directly. 321 */ 322 return vmalloc_user(size); 323 } 324 EXPORT_SYMBOL(vmalloc_32_user); 325 326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 327 { 328 BUG(); 329 return NULL; 330 } 331 EXPORT_SYMBOL(vmap); 332 333 void vunmap(const void *addr) 334 { 335 BUG(); 336 } 337 EXPORT_SYMBOL(vunmap); 338 339 void *vm_map_ram(struct page **pages, unsigned int count, int node) 340 { 341 BUG(); 342 return NULL; 343 } 344 EXPORT_SYMBOL(vm_map_ram); 345 346 void vm_unmap_ram(const void *mem, unsigned int count) 347 { 348 BUG(); 349 } 350 EXPORT_SYMBOL(vm_unmap_ram); 351 352 void vm_unmap_aliases(void) 353 { 354 } 355 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 356 357 void free_vm_area(struct vm_struct *area) 358 { 359 BUG(); 360 } 361 EXPORT_SYMBOL_GPL(free_vm_area); 362 363 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 364 struct page *page) 365 { 366 return -EINVAL; 367 } 368 EXPORT_SYMBOL(vm_insert_page); 369 370 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 371 unsigned long num) 372 { 373 return -EINVAL; 374 } 375 EXPORT_SYMBOL(vm_map_pages); 376 377 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 378 unsigned long num) 379 { 380 return -EINVAL; 381 } 382 EXPORT_SYMBOL(vm_map_pages_zero); 383 384 /* 385 * sys_brk() for the most part doesn't need the global kernel 386 * lock, except when an application is doing something nasty 387 * like trying to un-brk an area that has already been mapped 388 * to a regular file. in this case, the unmapping will need 389 * to invoke file system routines that need the global lock. 390 */ 391 SYSCALL_DEFINE1(brk, unsigned long, brk) 392 { 393 struct mm_struct *mm = current->mm; 394 395 if (brk < mm->start_brk || brk > mm->context.end_brk) 396 return mm->brk; 397 398 if (mm->brk == brk) 399 return mm->brk; 400 401 /* 402 * Always allow shrinking brk 403 */ 404 if (brk <= mm->brk) { 405 mm->brk = brk; 406 return brk; 407 } 408 409 /* 410 * Ok, looks good - let it rip. 411 */ 412 flush_icache_user_range(mm->brk, brk); 413 return mm->brk = brk; 414 } 415 416 /* 417 * initialise the percpu counter for VM and region record slabs 418 */ 419 void __init mmap_init(void) 420 { 421 int ret; 422 423 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 424 VM_BUG_ON(ret); 425 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 426 } 427 428 /* 429 * validate the region tree 430 * - the caller must hold the region lock 431 */ 432 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 433 static noinline void validate_nommu_regions(void) 434 { 435 struct vm_region *region, *last; 436 struct rb_node *p, *lastp; 437 438 lastp = rb_first(&nommu_region_tree); 439 if (!lastp) 440 return; 441 442 last = rb_entry(lastp, struct vm_region, vm_rb); 443 BUG_ON(last->vm_end <= last->vm_start); 444 BUG_ON(last->vm_top < last->vm_end); 445 446 while ((p = rb_next(lastp))) { 447 region = rb_entry(p, struct vm_region, vm_rb); 448 last = rb_entry(lastp, struct vm_region, vm_rb); 449 450 BUG_ON(region->vm_end <= region->vm_start); 451 BUG_ON(region->vm_top < region->vm_end); 452 BUG_ON(region->vm_start < last->vm_top); 453 454 lastp = p; 455 } 456 } 457 #else 458 static void validate_nommu_regions(void) 459 { 460 } 461 #endif 462 463 /* 464 * add a region into the global tree 465 */ 466 static void add_nommu_region(struct vm_region *region) 467 { 468 struct vm_region *pregion; 469 struct rb_node **p, *parent; 470 471 validate_nommu_regions(); 472 473 parent = NULL; 474 p = &nommu_region_tree.rb_node; 475 while (*p) { 476 parent = *p; 477 pregion = rb_entry(parent, struct vm_region, vm_rb); 478 if (region->vm_start < pregion->vm_start) 479 p = &(*p)->rb_left; 480 else if (region->vm_start > pregion->vm_start) 481 p = &(*p)->rb_right; 482 else if (pregion == region) 483 return; 484 else 485 BUG(); 486 } 487 488 rb_link_node(®ion->vm_rb, parent, p); 489 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 490 491 validate_nommu_regions(); 492 } 493 494 /* 495 * delete a region from the global tree 496 */ 497 static void delete_nommu_region(struct vm_region *region) 498 { 499 BUG_ON(!nommu_region_tree.rb_node); 500 501 validate_nommu_regions(); 502 rb_erase(®ion->vm_rb, &nommu_region_tree); 503 validate_nommu_regions(); 504 } 505 506 /* 507 * free a contiguous series of pages 508 */ 509 static void free_page_series(unsigned long from, unsigned long to) 510 { 511 for (; from < to; from += PAGE_SIZE) { 512 struct page *page = virt_to_page(from); 513 514 atomic_long_dec(&mmap_pages_allocated); 515 put_page(page); 516 } 517 } 518 519 /* 520 * release a reference to a region 521 * - the caller must hold the region semaphore for writing, which this releases 522 * - the region may not have been added to the tree yet, in which case vm_top 523 * will equal vm_start 524 */ 525 static void __put_nommu_region(struct vm_region *region) 526 __releases(nommu_region_sem) 527 { 528 BUG_ON(!nommu_region_tree.rb_node); 529 530 if (--region->vm_usage == 0) { 531 if (region->vm_top > region->vm_start) 532 delete_nommu_region(region); 533 up_write(&nommu_region_sem); 534 535 if (region->vm_file) 536 fput(region->vm_file); 537 538 /* IO memory and memory shared directly out of the pagecache 539 * from ramfs/tmpfs mustn't be released here */ 540 if (region->vm_flags & VM_MAPPED_COPY) 541 free_page_series(region->vm_start, region->vm_top); 542 kmem_cache_free(vm_region_jar, region); 543 } else { 544 up_write(&nommu_region_sem); 545 } 546 } 547 548 /* 549 * release a reference to a region 550 */ 551 static void put_nommu_region(struct vm_region *region) 552 { 553 down_write(&nommu_region_sem); 554 __put_nommu_region(region); 555 } 556 557 /* 558 * add a VMA into a process's mm_struct in the appropriate place in the list 559 * and tree and add to the address space's page tree also if not an anonymous 560 * page 561 * - should be called with mm->mmap_lock held writelocked 562 */ 563 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 564 { 565 struct vm_area_struct *pvma, *prev; 566 struct address_space *mapping; 567 struct rb_node **p, *parent, *rb_prev; 568 569 BUG_ON(!vma->vm_region); 570 571 mm->map_count++; 572 vma->vm_mm = mm; 573 574 /* add the VMA to the mapping */ 575 if (vma->vm_file) { 576 mapping = vma->vm_file->f_mapping; 577 578 i_mmap_lock_write(mapping); 579 flush_dcache_mmap_lock(mapping); 580 vma_interval_tree_insert(vma, &mapping->i_mmap); 581 flush_dcache_mmap_unlock(mapping); 582 i_mmap_unlock_write(mapping); 583 } 584 585 /* add the VMA to the tree */ 586 parent = rb_prev = NULL; 587 p = &mm->mm_rb.rb_node; 588 while (*p) { 589 parent = *p; 590 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 591 592 /* sort by: start addr, end addr, VMA struct addr in that order 593 * (the latter is necessary as we may get identical VMAs) */ 594 if (vma->vm_start < pvma->vm_start) 595 p = &(*p)->rb_left; 596 else if (vma->vm_start > pvma->vm_start) { 597 rb_prev = parent; 598 p = &(*p)->rb_right; 599 } else if (vma->vm_end < pvma->vm_end) 600 p = &(*p)->rb_left; 601 else if (vma->vm_end > pvma->vm_end) { 602 rb_prev = parent; 603 p = &(*p)->rb_right; 604 } else if (vma < pvma) 605 p = &(*p)->rb_left; 606 else if (vma > pvma) { 607 rb_prev = parent; 608 p = &(*p)->rb_right; 609 } else 610 BUG(); 611 } 612 613 rb_link_node(&vma->vm_rb, parent, p); 614 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 615 616 /* add VMA to the VMA list also */ 617 prev = NULL; 618 if (rb_prev) 619 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 620 621 __vma_link_list(mm, vma, prev); 622 } 623 624 /* 625 * delete a VMA from its owning mm_struct and address space 626 */ 627 static void delete_vma_from_mm(struct vm_area_struct *vma) 628 { 629 int i; 630 struct address_space *mapping; 631 struct mm_struct *mm = vma->vm_mm; 632 struct task_struct *curr = current; 633 634 mm->map_count--; 635 for (i = 0; i < VMACACHE_SIZE; i++) { 636 /* if the vma is cached, invalidate the entire cache */ 637 if (curr->vmacache.vmas[i] == vma) { 638 vmacache_invalidate(mm); 639 break; 640 } 641 } 642 643 /* remove the VMA from the mapping */ 644 if (vma->vm_file) { 645 mapping = vma->vm_file->f_mapping; 646 647 i_mmap_lock_write(mapping); 648 flush_dcache_mmap_lock(mapping); 649 vma_interval_tree_remove(vma, &mapping->i_mmap); 650 flush_dcache_mmap_unlock(mapping); 651 i_mmap_unlock_write(mapping); 652 } 653 654 /* remove from the MM's tree and list */ 655 rb_erase(&vma->vm_rb, &mm->mm_rb); 656 657 __vma_unlink_list(mm, vma); 658 } 659 660 /* 661 * destroy a VMA record 662 */ 663 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 664 { 665 if (vma->vm_ops && vma->vm_ops->close) 666 vma->vm_ops->close(vma); 667 if (vma->vm_file) 668 fput(vma->vm_file); 669 put_nommu_region(vma->vm_region); 670 vm_area_free(vma); 671 } 672 673 /* 674 * look up the first VMA in which addr resides, NULL if none 675 * - should be called with mm->mmap_lock at least held readlocked 676 */ 677 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 678 { 679 struct vm_area_struct *vma; 680 681 /* check the cache first */ 682 vma = vmacache_find(mm, addr); 683 if (likely(vma)) 684 return vma; 685 686 /* trawl the list (there may be multiple mappings in which addr 687 * resides) */ 688 for (vma = mm->mmap; vma; vma = vma->vm_next) { 689 if (vma->vm_start > addr) 690 return NULL; 691 if (vma->vm_end > addr) { 692 vmacache_update(addr, vma); 693 return vma; 694 } 695 } 696 697 return NULL; 698 } 699 EXPORT_SYMBOL(find_vma); 700 701 /* 702 * find a VMA 703 * - we don't extend stack VMAs under NOMMU conditions 704 */ 705 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 706 { 707 return find_vma(mm, addr); 708 } 709 710 /* 711 * expand a stack to a given address 712 * - not supported under NOMMU conditions 713 */ 714 int expand_stack(struct vm_area_struct *vma, unsigned long address) 715 { 716 return -ENOMEM; 717 } 718 719 /* 720 * look up the first VMA exactly that exactly matches addr 721 * - should be called with mm->mmap_lock at least held readlocked 722 */ 723 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 724 unsigned long addr, 725 unsigned long len) 726 { 727 struct vm_area_struct *vma; 728 unsigned long end = addr + len; 729 730 /* check the cache first */ 731 vma = vmacache_find_exact(mm, addr, end); 732 if (vma) 733 return vma; 734 735 /* trawl the list (there may be multiple mappings in which addr 736 * resides) */ 737 for (vma = mm->mmap; vma; vma = vma->vm_next) { 738 if (vma->vm_start < addr) 739 continue; 740 if (vma->vm_start > addr) 741 return NULL; 742 if (vma->vm_end == end) { 743 vmacache_update(addr, vma); 744 return vma; 745 } 746 } 747 748 return NULL; 749 } 750 751 /* 752 * determine whether a mapping should be permitted and, if so, what sort of 753 * mapping we're capable of supporting 754 */ 755 static int validate_mmap_request(struct file *file, 756 unsigned long addr, 757 unsigned long len, 758 unsigned long prot, 759 unsigned long flags, 760 unsigned long pgoff, 761 unsigned long *_capabilities) 762 { 763 unsigned long capabilities, rlen; 764 int ret; 765 766 /* do the simple checks first */ 767 if (flags & MAP_FIXED) 768 return -EINVAL; 769 770 if ((flags & MAP_TYPE) != MAP_PRIVATE && 771 (flags & MAP_TYPE) != MAP_SHARED) 772 return -EINVAL; 773 774 if (!len) 775 return -EINVAL; 776 777 /* Careful about overflows.. */ 778 rlen = PAGE_ALIGN(len); 779 if (!rlen || rlen > TASK_SIZE) 780 return -ENOMEM; 781 782 /* offset overflow? */ 783 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 784 return -EOVERFLOW; 785 786 if (file) { 787 /* files must support mmap */ 788 if (!file->f_op->mmap) 789 return -ENODEV; 790 791 /* work out if what we've got could possibly be shared 792 * - we support chardevs that provide their own "memory" 793 * - we support files/blockdevs that are memory backed 794 */ 795 if (file->f_op->mmap_capabilities) { 796 capabilities = file->f_op->mmap_capabilities(file); 797 } else { 798 /* no explicit capabilities set, so assume some 799 * defaults */ 800 switch (file_inode(file)->i_mode & S_IFMT) { 801 case S_IFREG: 802 case S_IFBLK: 803 capabilities = NOMMU_MAP_COPY; 804 break; 805 806 case S_IFCHR: 807 capabilities = 808 NOMMU_MAP_DIRECT | 809 NOMMU_MAP_READ | 810 NOMMU_MAP_WRITE; 811 break; 812 813 default: 814 return -EINVAL; 815 } 816 } 817 818 /* eliminate any capabilities that we can't support on this 819 * device */ 820 if (!file->f_op->get_unmapped_area) 821 capabilities &= ~NOMMU_MAP_DIRECT; 822 if (!(file->f_mode & FMODE_CAN_READ)) 823 capabilities &= ~NOMMU_MAP_COPY; 824 825 /* The file shall have been opened with read permission. */ 826 if (!(file->f_mode & FMODE_READ)) 827 return -EACCES; 828 829 if (flags & MAP_SHARED) { 830 /* do checks for writing, appending and locking */ 831 if ((prot & PROT_WRITE) && 832 !(file->f_mode & FMODE_WRITE)) 833 return -EACCES; 834 835 if (IS_APPEND(file_inode(file)) && 836 (file->f_mode & FMODE_WRITE)) 837 return -EACCES; 838 839 if (locks_verify_locked(file)) 840 return -EAGAIN; 841 842 if (!(capabilities & NOMMU_MAP_DIRECT)) 843 return -ENODEV; 844 845 /* we mustn't privatise shared mappings */ 846 capabilities &= ~NOMMU_MAP_COPY; 847 } else { 848 /* we're going to read the file into private memory we 849 * allocate */ 850 if (!(capabilities & NOMMU_MAP_COPY)) 851 return -ENODEV; 852 853 /* we don't permit a private writable mapping to be 854 * shared with the backing device */ 855 if (prot & PROT_WRITE) 856 capabilities &= ~NOMMU_MAP_DIRECT; 857 } 858 859 if (capabilities & NOMMU_MAP_DIRECT) { 860 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 861 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 862 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 863 ) { 864 capabilities &= ~NOMMU_MAP_DIRECT; 865 if (flags & MAP_SHARED) { 866 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 867 return -EINVAL; 868 } 869 } 870 } 871 872 /* handle executable mappings and implied executable 873 * mappings */ 874 if (path_noexec(&file->f_path)) { 875 if (prot & PROT_EXEC) 876 return -EPERM; 877 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 878 /* handle implication of PROT_EXEC by PROT_READ */ 879 if (current->personality & READ_IMPLIES_EXEC) { 880 if (capabilities & NOMMU_MAP_EXEC) 881 prot |= PROT_EXEC; 882 } 883 } else if ((prot & PROT_READ) && 884 (prot & PROT_EXEC) && 885 !(capabilities & NOMMU_MAP_EXEC) 886 ) { 887 /* backing file is not executable, try to copy */ 888 capabilities &= ~NOMMU_MAP_DIRECT; 889 } 890 } else { 891 /* anonymous mappings are always memory backed and can be 892 * privately mapped 893 */ 894 capabilities = NOMMU_MAP_COPY; 895 896 /* handle PROT_EXEC implication by PROT_READ */ 897 if ((prot & PROT_READ) && 898 (current->personality & READ_IMPLIES_EXEC)) 899 prot |= PROT_EXEC; 900 } 901 902 /* allow the security API to have its say */ 903 ret = security_mmap_addr(addr); 904 if (ret < 0) 905 return ret; 906 907 /* looks okay */ 908 *_capabilities = capabilities; 909 return 0; 910 } 911 912 /* 913 * we've determined that we can make the mapping, now translate what we 914 * now know into VMA flags 915 */ 916 static unsigned long determine_vm_flags(struct file *file, 917 unsigned long prot, 918 unsigned long flags, 919 unsigned long capabilities) 920 { 921 unsigned long vm_flags; 922 923 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 924 /* vm_flags |= mm->def_flags; */ 925 926 if (!(capabilities & NOMMU_MAP_DIRECT)) { 927 /* attempt to share read-only copies of mapped file chunks */ 928 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 929 if (file && !(prot & PROT_WRITE)) 930 vm_flags |= VM_MAYSHARE; 931 } else { 932 /* overlay a shareable mapping on the backing device or inode 933 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 934 * romfs/cramfs */ 935 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 936 if (flags & MAP_SHARED) 937 vm_flags |= VM_SHARED; 938 } 939 940 /* refuse to let anyone share private mappings with this process if 941 * it's being traced - otherwise breakpoints set in it may interfere 942 * with another untraced process 943 */ 944 if ((flags & MAP_PRIVATE) && current->ptrace) 945 vm_flags &= ~VM_MAYSHARE; 946 947 return vm_flags; 948 } 949 950 /* 951 * set up a shared mapping on a file (the driver or filesystem provides and 952 * pins the storage) 953 */ 954 static int do_mmap_shared_file(struct vm_area_struct *vma) 955 { 956 int ret; 957 958 ret = call_mmap(vma->vm_file, vma); 959 if (ret == 0) { 960 vma->vm_region->vm_top = vma->vm_region->vm_end; 961 return 0; 962 } 963 if (ret != -ENOSYS) 964 return ret; 965 966 /* getting -ENOSYS indicates that direct mmap isn't possible (as 967 * opposed to tried but failed) so we can only give a suitable error as 968 * it's not possible to make a private copy if MAP_SHARED was given */ 969 return -ENODEV; 970 } 971 972 /* 973 * set up a private mapping or an anonymous shared mapping 974 */ 975 static int do_mmap_private(struct vm_area_struct *vma, 976 struct vm_region *region, 977 unsigned long len, 978 unsigned long capabilities) 979 { 980 unsigned long total, point; 981 void *base; 982 int ret, order; 983 984 /* invoke the file's mapping function so that it can keep track of 985 * shared mappings on devices or memory 986 * - VM_MAYSHARE will be set if it may attempt to share 987 */ 988 if (capabilities & NOMMU_MAP_DIRECT) { 989 ret = call_mmap(vma->vm_file, vma); 990 if (ret == 0) { 991 /* shouldn't return success if we're not sharing */ 992 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 993 vma->vm_region->vm_top = vma->vm_region->vm_end; 994 return 0; 995 } 996 if (ret != -ENOSYS) 997 return ret; 998 999 /* getting an ENOSYS error indicates that direct mmap isn't 1000 * possible (as opposed to tried but failed) so we'll try to 1001 * make a private copy of the data and map that instead */ 1002 } 1003 1004 1005 /* allocate some memory to hold the mapping 1006 * - note that this may not return a page-aligned address if the object 1007 * we're allocating is smaller than a page 1008 */ 1009 order = get_order(len); 1010 total = 1 << order; 1011 point = len >> PAGE_SHIFT; 1012 1013 /* we don't want to allocate a power-of-2 sized page set */ 1014 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1015 total = point; 1016 1017 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1018 if (!base) 1019 goto enomem; 1020 1021 atomic_long_add(total, &mmap_pages_allocated); 1022 1023 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1024 region->vm_start = (unsigned long) base; 1025 region->vm_end = region->vm_start + len; 1026 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1027 1028 vma->vm_start = region->vm_start; 1029 vma->vm_end = region->vm_start + len; 1030 1031 if (vma->vm_file) { 1032 /* read the contents of a file into the copy */ 1033 loff_t fpos; 1034 1035 fpos = vma->vm_pgoff; 1036 fpos <<= PAGE_SHIFT; 1037 1038 ret = kernel_read(vma->vm_file, base, len, &fpos); 1039 if (ret < 0) 1040 goto error_free; 1041 1042 /* clear the last little bit */ 1043 if (ret < len) 1044 memset(base + ret, 0, len - ret); 1045 1046 } else { 1047 vma_set_anonymous(vma); 1048 } 1049 1050 return 0; 1051 1052 error_free: 1053 free_page_series(region->vm_start, region->vm_top); 1054 region->vm_start = vma->vm_start = 0; 1055 region->vm_end = vma->vm_end = 0; 1056 region->vm_top = 0; 1057 return ret; 1058 1059 enomem: 1060 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1061 len, current->pid, current->comm); 1062 show_free_areas(0, NULL); 1063 return -ENOMEM; 1064 } 1065 1066 /* 1067 * handle mapping creation for uClinux 1068 */ 1069 unsigned long do_mmap(struct file *file, 1070 unsigned long addr, 1071 unsigned long len, 1072 unsigned long prot, 1073 unsigned long flags, 1074 unsigned long pgoff, 1075 unsigned long *populate, 1076 struct list_head *uf) 1077 { 1078 struct vm_area_struct *vma; 1079 struct vm_region *region; 1080 struct rb_node *rb; 1081 vm_flags_t vm_flags; 1082 unsigned long capabilities, result; 1083 int ret; 1084 1085 *populate = 0; 1086 1087 /* decide whether we should attempt the mapping, and if so what sort of 1088 * mapping */ 1089 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1090 &capabilities); 1091 if (ret < 0) 1092 return ret; 1093 1094 /* we ignore the address hint */ 1095 addr = 0; 1096 len = PAGE_ALIGN(len); 1097 1098 /* we've determined that we can make the mapping, now translate what we 1099 * now know into VMA flags */ 1100 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1101 1102 /* we're going to need to record the mapping */ 1103 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1104 if (!region) 1105 goto error_getting_region; 1106 1107 vma = vm_area_alloc(current->mm); 1108 if (!vma) 1109 goto error_getting_vma; 1110 1111 region->vm_usage = 1; 1112 region->vm_flags = vm_flags; 1113 region->vm_pgoff = pgoff; 1114 1115 vma->vm_flags = vm_flags; 1116 vma->vm_pgoff = pgoff; 1117 1118 if (file) { 1119 region->vm_file = get_file(file); 1120 vma->vm_file = get_file(file); 1121 } 1122 1123 down_write(&nommu_region_sem); 1124 1125 /* if we want to share, we need to check for regions created by other 1126 * mmap() calls that overlap with our proposed mapping 1127 * - we can only share with a superset match on most regular files 1128 * - shared mappings on character devices and memory backed files are 1129 * permitted to overlap inexactly as far as we are concerned for in 1130 * these cases, sharing is handled in the driver or filesystem rather 1131 * than here 1132 */ 1133 if (vm_flags & VM_MAYSHARE) { 1134 struct vm_region *pregion; 1135 unsigned long pglen, rpglen, pgend, rpgend, start; 1136 1137 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1138 pgend = pgoff + pglen; 1139 1140 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1141 pregion = rb_entry(rb, struct vm_region, vm_rb); 1142 1143 if (!(pregion->vm_flags & VM_MAYSHARE)) 1144 continue; 1145 1146 /* search for overlapping mappings on the same file */ 1147 if (file_inode(pregion->vm_file) != 1148 file_inode(file)) 1149 continue; 1150 1151 if (pregion->vm_pgoff >= pgend) 1152 continue; 1153 1154 rpglen = pregion->vm_end - pregion->vm_start; 1155 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1156 rpgend = pregion->vm_pgoff + rpglen; 1157 if (pgoff >= rpgend) 1158 continue; 1159 1160 /* handle inexactly overlapping matches between 1161 * mappings */ 1162 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1163 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1164 /* new mapping is not a subset of the region */ 1165 if (!(capabilities & NOMMU_MAP_DIRECT)) 1166 goto sharing_violation; 1167 continue; 1168 } 1169 1170 /* we've found a region we can share */ 1171 pregion->vm_usage++; 1172 vma->vm_region = pregion; 1173 start = pregion->vm_start; 1174 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1175 vma->vm_start = start; 1176 vma->vm_end = start + len; 1177 1178 if (pregion->vm_flags & VM_MAPPED_COPY) 1179 vma->vm_flags |= VM_MAPPED_COPY; 1180 else { 1181 ret = do_mmap_shared_file(vma); 1182 if (ret < 0) { 1183 vma->vm_region = NULL; 1184 vma->vm_start = 0; 1185 vma->vm_end = 0; 1186 pregion->vm_usage--; 1187 pregion = NULL; 1188 goto error_just_free; 1189 } 1190 } 1191 fput(region->vm_file); 1192 kmem_cache_free(vm_region_jar, region); 1193 region = pregion; 1194 result = start; 1195 goto share; 1196 } 1197 1198 /* obtain the address at which to make a shared mapping 1199 * - this is the hook for quasi-memory character devices to 1200 * tell us the location of a shared mapping 1201 */ 1202 if (capabilities & NOMMU_MAP_DIRECT) { 1203 addr = file->f_op->get_unmapped_area(file, addr, len, 1204 pgoff, flags); 1205 if (IS_ERR_VALUE(addr)) { 1206 ret = addr; 1207 if (ret != -ENOSYS) 1208 goto error_just_free; 1209 1210 /* the driver refused to tell us where to site 1211 * the mapping so we'll have to attempt to copy 1212 * it */ 1213 ret = -ENODEV; 1214 if (!(capabilities & NOMMU_MAP_COPY)) 1215 goto error_just_free; 1216 1217 capabilities &= ~NOMMU_MAP_DIRECT; 1218 } else { 1219 vma->vm_start = region->vm_start = addr; 1220 vma->vm_end = region->vm_end = addr + len; 1221 } 1222 } 1223 } 1224 1225 vma->vm_region = region; 1226 1227 /* set up the mapping 1228 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1229 */ 1230 if (file && vma->vm_flags & VM_SHARED) 1231 ret = do_mmap_shared_file(vma); 1232 else 1233 ret = do_mmap_private(vma, region, len, capabilities); 1234 if (ret < 0) 1235 goto error_just_free; 1236 add_nommu_region(region); 1237 1238 /* clear anonymous mappings that don't ask for uninitialized data */ 1239 if (!vma->vm_file && 1240 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1241 !(flags & MAP_UNINITIALIZED))) 1242 memset((void *)region->vm_start, 0, 1243 region->vm_end - region->vm_start); 1244 1245 /* okay... we have a mapping; now we have to register it */ 1246 result = vma->vm_start; 1247 1248 current->mm->total_vm += len >> PAGE_SHIFT; 1249 1250 share: 1251 add_vma_to_mm(current->mm, vma); 1252 1253 /* we flush the region from the icache only when the first executable 1254 * mapping of it is made */ 1255 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1256 flush_icache_user_range(region->vm_start, region->vm_end); 1257 region->vm_icache_flushed = true; 1258 } 1259 1260 up_write(&nommu_region_sem); 1261 1262 return result; 1263 1264 error_just_free: 1265 up_write(&nommu_region_sem); 1266 error: 1267 if (region->vm_file) 1268 fput(region->vm_file); 1269 kmem_cache_free(vm_region_jar, region); 1270 if (vma->vm_file) 1271 fput(vma->vm_file); 1272 vm_area_free(vma); 1273 return ret; 1274 1275 sharing_violation: 1276 up_write(&nommu_region_sem); 1277 pr_warn("Attempt to share mismatched mappings\n"); 1278 ret = -EINVAL; 1279 goto error; 1280 1281 error_getting_vma: 1282 kmem_cache_free(vm_region_jar, region); 1283 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1284 len, current->pid); 1285 show_free_areas(0, NULL); 1286 return -ENOMEM; 1287 1288 error_getting_region: 1289 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1290 len, current->pid); 1291 show_free_areas(0, NULL); 1292 return -ENOMEM; 1293 } 1294 1295 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1296 unsigned long prot, unsigned long flags, 1297 unsigned long fd, unsigned long pgoff) 1298 { 1299 struct file *file = NULL; 1300 unsigned long retval = -EBADF; 1301 1302 audit_mmap_fd(fd, flags); 1303 if (!(flags & MAP_ANONYMOUS)) { 1304 file = fget(fd); 1305 if (!file) 1306 goto out; 1307 } 1308 1309 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1310 1311 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1312 1313 if (file) 1314 fput(file); 1315 out: 1316 return retval; 1317 } 1318 1319 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1320 unsigned long, prot, unsigned long, flags, 1321 unsigned long, fd, unsigned long, pgoff) 1322 { 1323 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1324 } 1325 1326 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1327 struct mmap_arg_struct { 1328 unsigned long addr; 1329 unsigned long len; 1330 unsigned long prot; 1331 unsigned long flags; 1332 unsigned long fd; 1333 unsigned long offset; 1334 }; 1335 1336 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1337 { 1338 struct mmap_arg_struct a; 1339 1340 if (copy_from_user(&a, arg, sizeof(a))) 1341 return -EFAULT; 1342 if (offset_in_page(a.offset)) 1343 return -EINVAL; 1344 1345 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1346 a.offset >> PAGE_SHIFT); 1347 } 1348 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1349 1350 /* 1351 * split a vma into two pieces at address 'addr', a new vma is allocated either 1352 * for the first part or the tail. 1353 */ 1354 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1355 unsigned long addr, int new_below) 1356 { 1357 struct vm_area_struct *new; 1358 struct vm_region *region; 1359 unsigned long npages; 1360 1361 /* we're only permitted to split anonymous regions (these should have 1362 * only a single usage on the region) */ 1363 if (vma->vm_file) 1364 return -ENOMEM; 1365 1366 if (mm->map_count >= sysctl_max_map_count) 1367 return -ENOMEM; 1368 1369 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1370 if (!region) 1371 return -ENOMEM; 1372 1373 new = vm_area_dup(vma); 1374 if (!new) { 1375 kmem_cache_free(vm_region_jar, region); 1376 return -ENOMEM; 1377 } 1378 1379 /* most fields are the same, copy all, and then fixup */ 1380 *region = *vma->vm_region; 1381 new->vm_region = region; 1382 1383 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1384 1385 if (new_below) { 1386 region->vm_top = region->vm_end = new->vm_end = addr; 1387 } else { 1388 region->vm_start = new->vm_start = addr; 1389 region->vm_pgoff = new->vm_pgoff += npages; 1390 } 1391 1392 if (new->vm_ops && new->vm_ops->open) 1393 new->vm_ops->open(new); 1394 1395 delete_vma_from_mm(vma); 1396 down_write(&nommu_region_sem); 1397 delete_nommu_region(vma->vm_region); 1398 if (new_below) { 1399 vma->vm_region->vm_start = vma->vm_start = addr; 1400 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1401 } else { 1402 vma->vm_region->vm_end = vma->vm_end = addr; 1403 vma->vm_region->vm_top = addr; 1404 } 1405 add_nommu_region(vma->vm_region); 1406 add_nommu_region(new->vm_region); 1407 up_write(&nommu_region_sem); 1408 add_vma_to_mm(mm, vma); 1409 add_vma_to_mm(mm, new); 1410 return 0; 1411 } 1412 1413 /* 1414 * shrink a VMA by removing the specified chunk from either the beginning or 1415 * the end 1416 */ 1417 static int shrink_vma(struct mm_struct *mm, 1418 struct vm_area_struct *vma, 1419 unsigned long from, unsigned long to) 1420 { 1421 struct vm_region *region; 1422 1423 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1424 * and list */ 1425 delete_vma_from_mm(vma); 1426 if (from > vma->vm_start) 1427 vma->vm_end = from; 1428 else 1429 vma->vm_start = to; 1430 add_vma_to_mm(mm, vma); 1431 1432 /* cut the backing region down to size */ 1433 region = vma->vm_region; 1434 BUG_ON(region->vm_usage != 1); 1435 1436 down_write(&nommu_region_sem); 1437 delete_nommu_region(region); 1438 if (from > region->vm_start) { 1439 to = region->vm_top; 1440 region->vm_top = region->vm_end = from; 1441 } else { 1442 region->vm_start = to; 1443 } 1444 add_nommu_region(region); 1445 up_write(&nommu_region_sem); 1446 1447 free_page_series(from, to); 1448 return 0; 1449 } 1450 1451 /* 1452 * release a mapping 1453 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1454 * VMA, though it need not cover the whole VMA 1455 */ 1456 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1457 { 1458 struct vm_area_struct *vma; 1459 unsigned long end; 1460 int ret; 1461 1462 len = PAGE_ALIGN(len); 1463 if (len == 0) 1464 return -EINVAL; 1465 1466 end = start + len; 1467 1468 /* find the first potentially overlapping VMA */ 1469 vma = find_vma(mm, start); 1470 if (!vma) { 1471 static int limit; 1472 if (limit < 5) { 1473 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1474 current->pid, current->comm, 1475 start, start + len - 1); 1476 limit++; 1477 } 1478 return -EINVAL; 1479 } 1480 1481 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1482 if (vma->vm_file) { 1483 do { 1484 if (start > vma->vm_start) 1485 return -EINVAL; 1486 if (end == vma->vm_end) 1487 goto erase_whole_vma; 1488 vma = vma->vm_next; 1489 } while (vma); 1490 return -EINVAL; 1491 } else { 1492 /* the chunk must be a subset of the VMA found */ 1493 if (start == vma->vm_start && end == vma->vm_end) 1494 goto erase_whole_vma; 1495 if (start < vma->vm_start || end > vma->vm_end) 1496 return -EINVAL; 1497 if (offset_in_page(start)) 1498 return -EINVAL; 1499 if (end != vma->vm_end && offset_in_page(end)) 1500 return -EINVAL; 1501 if (start != vma->vm_start && end != vma->vm_end) { 1502 ret = split_vma(mm, vma, start, 1); 1503 if (ret < 0) 1504 return ret; 1505 } 1506 return shrink_vma(mm, vma, start, end); 1507 } 1508 1509 erase_whole_vma: 1510 delete_vma_from_mm(vma); 1511 delete_vma(mm, vma); 1512 return 0; 1513 } 1514 EXPORT_SYMBOL(do_munmap); 1515 1516 int vm_munmap(unsigned long addr, size_t len) 1517 { 1518 struct mm_struct *mm = current->mm; 1519 int ret; 1520 1521 mmap_write_lock(mm); 1522 ret = do_munmap(mm, addr, len, NULL); 1523 mmap_write_unlock(mm); 1524 return ret; 1525 } 1526 EXPORT_SYMBOL(vm_munmap); 1527 1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1529 { 1530 return vm_munmap(addr, len); 1531 } 1532 1533 /* 1534 * release all the mappings made in a process's VM space 1535 */ 1536 void exit_mmap(struct mm_struct *mm) 1537 { 1538 struct vm_area_struct *vma; 1539 1540 if (!mm) 1541 return; 1542 1543 mm->total_vm = 0; 1544 1545 while ((vma = mm->mmap)) { 1546 mm->mmap = vma->vm_next; 1547 delete_vma_from_mm(vma); 1548 delete_vma(mm, vma); 1549 cond_resched(); 1550 } 1551 } 1552 1553 int vm_brk(unsigned long addr, unsigned long len) 1554 { 1555 return -ENOMEM; 1556 } 1557 1558 /* 1559 * expand (or shrink) an existing mapping, potentially moving it at the same 1560 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1561 * 1562 * under NOMMU conditions, we only permit changing a mapping's size, and only 1563 * as long as it stays within the region allocated by do_mmap_private() and the 1564 * block is not shareable 1565 * 1566 * MREMAP_FIXED is not supported under NOMMU conditions 1567 */ 1568 static unsigned long do_mremap(unsigned long addr, 1569 unsigned long old_len, unsigned long new_len, 1570 unsigned long flags, unsigned long new_addr) 1571 { 1572 struct vm_area_struct *vma; 1573 1574 /* insanity checks first */ 1575 old_len = PAGE_ALIGN(old_len); 1576 new_len = PAGE_ALIGN(new_len); 1577 if (old_len == 0 || new_len == 0) 1578 return (unsigned long) -EINVAL; 1579 1580 if (offset_in_page(addr)) 1581 return -EINVAL; 1582 1583 if (flags & MREMAP_FIXED && new_addr != addr) 1584 return (unsigned long) -EINVAL; 1585 1586 vma = find_vma_exact(current->mm, addr, old_len); 1587 if (!vma) 1588 return (unsigned long) -EINVAL; 1589 1590 if (vma->vm_end != vma->vm_start + old_len) 1591 return (unsigned long) -EFAULT; 1592 1593 if (vma->vm_flags & VM_MAYSHARE) 1594 return (unsigned long) -EPERM; 1595 1596 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1597 return (unsigned long) -ENOMEM; 1598 1599 /* all checks complete - do it */ 1600 vma->vm_end = vma->vm_start + new_len; 1601 return vma->vm_start; 1602 } 1603 1604 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1605 unsigned long, new_len, unsigned long, flags, 1606 unsigned long, new_addr) 1607 { 1608 unsigned long ret; 1609 1610 mmap_write_lock(current->mm); 1611 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1612 mmap_write_unlock(current->mm); 1613 return ret; 1614 } 1615 1616 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1617 unsigned int foll_flags) 1618 { 1619 return NULL; 1620 } 1621 1622 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1623 unsigned long pfn, unsigned long size, pgprot_t prot) 1624 { 1625 if (addr != (pfn << PAGE_SHIFT)) 1626 return -EINVAL; 1627 1628 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(remap_pfn_range); 1632 1633 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1634 { 1635 unsigned long pfn = start >> PAGE_SHIFT; 1636 unsigned long vm_len = vma->vm_end - vma->vm_start; 1637 1638 pfn += vma->vm_pgoff; 1639 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1640 } 1641 EXPORT_SYMBOL(vm_iomap_memory); 1642 1643 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1644 unsigned long pgoff) 1645 { 1646 unsigned int size = vma->vm_end - vma->vm_start; 1647 1648 if (!(vma->vm_flags & VM_USERMAP)) 1649 return -EINVAL; 1650 1651 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1652 vma->vm_end = vma->vm_start + size; 1653 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(remap_vmalloc_range); 1657 1658 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1659 unsigned long len, unsigned long pgoff, unsigned long flags) 1660 { 1661 return -ENOMEM; 1662 } 1663 1664 vm_fault_t filemap_fault(struct vm_fault *vmf) 1665 { 1666 BUG(); 1667 return 0; 1668 } 1669 EXPORT_SYMBOL(filemap_fault); 1670 1671 void filemap_map_pages(struct vm_fault *vmf, 1672 pgoff_t start_pgoff, pgoff_t end_pgoff) 1673 { 1674 BUG(); 1675 } 1676 EXPORT_SYMBOL(filemap_map_pages); 1677 1678 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1679 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1680 { 1681 struct vm_area_struct *vma; 1682 int write = gup_flags & FOLL_WRITE; 1683 1684 if (mmap_read_lock_killable(mm)) 1685 return 0; 1686 1687 /* the access must start within one of the target process's mappings */ 1688 vma = find_vma(mm, addr); 1689 if (vma) { 1690 /* don't overrun this mapping */ 1691 if (addr + len >= vma->vm_end) 1692 len = vma->vm_end - addr; 1693 1694 /* only read or write mappings where it is permitted */ 1695 if (write && vma->vm_flags & VM_MAYWRITE) 1696 copy_to_user_page(vma, NULL, addr, 1697 (void *) addr, buf, len); 1698 else if (!write && vma->vm_flags & VM_MAYREAD) 1699 copy_from_user_page(vma, NULL, addr, 1700 buf, (void *) addr, len); 1701 else 1702 len = 0; 1703 } else { 1704 len = 0; 1705 } 1706 1707 mmap_read_unlock(mm); 1708 1709 return len; 1710 } 1711 1712 /** 1713 * access_remote_vm - access another process' address space 1714 * @mm: the mm_struct of the target address space 1715 * @addr: start address to access 1716 * @buf: source or destination buffer 1717 * @len: number of bytes to transfer 1718 * @gup_flags: flags modifying lookup behaviour 1719 * 1720 * The caller must hold a reference on @mm. 1721 */ 1722 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1723 void *buf, int len, unsigned int gup_flags) 1724 { 1725 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1726 } 1727 1728 /* 1729 * Access another process' address space. 1730 * - source/target buffer must be kernel space 1731 */ 1732 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1733 unsigned int gup_flags) 1734 { 1735 struct mm_struct *mm; 1736 1737 if (addr + len < addr) 1738 return 0; 1739 1740 mm = get_task_mm(tsk); 1741 if (!mm) 1742 return 0; 1743 1744 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1745 1746 mmput(mm); 1747 return len; 1748 } 1749 EXPORT_SYMBOL_GPL(access_process_vm); 1750 1751 /** 1752 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1753 * @inode: The inode to check 1754 * @size: The current filesize of the inode 1755 * @newsize: The proposed filesize of the inode 1756 * 1757 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1758 * make sure that any outstanding VMAs aren't broken and then shrink the 1759 * vm_regions that extend beyond so that do_mmap() doesn't 1760 * automatically grant mappings that are too large. 1761 */ 1762 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1763 size_t newsize) 1764 { 1765 struct vm_area_struct *vma; 1766 struct vm_region *region; 1767 pgoff_t low, high; 1768 size_t r_size, r_top; 1769 1770 low = newsize >> PAGE_SHIFT; 1771 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1772 1773 down_write(&nommu_region_sem); 1774 i_mmap_lock_read(inode->i_mapping); 1775 1776 /* search for VMAs that fall within the dead zone */ 1777 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1778 /* found one - only interested if it's shared out of the page 1779 * cache */ 1780 if (vma->vm_flags & VM_SHARED) { 1781 i_mmap_unlock_read(inode->i_mapping); 1782 up_write(&nommu_region_sem); 1783 return -ETXTBSY; /* not quite true, but near enough */ 1784 } 1785 } 1786 1787 /* reduce any regions that overlap the dead zone - if in existence, 1788 * these will be pointed to by VMAs that don't overlap the dead zone 1789 * 1790 * we don't check for any regions that start beyond the EOF as there 1791 * shouldn't be any 1792 */ 1793 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1794 if (!(vma->vm_flags & VM_SHARED)) 1795 continue; 1796 1797 region = vma->vm_region; 1798 r_size = region->vm_top - region->vm_start; 1799 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1800 1801 if (r_top > newsize) { 1802 region->vm_top -= r_top - newsize; 1803 if (region->vm_end > region->vm_top) 1804 region->vm_end = region->vm_top; 1805 } 1806 } 1807 1808 i_mmap_unlock_read(inode->i_mapping); 1809 up_write(&nommu_region_sem); 1810 return 0; 1811 } 1812 1813 /* 1814 * Initialise sysctl_user_reserve_kbytes. 1815 * 1816 * This is intended to prevent a user from starting a single memory hogging 1817 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1818 * mode. 1819 * 1820 * The default value is min(3% of free memory, 128MB) 1821 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1822 */ 1823 static int __meminit init_user_reserve(void) 1824 { 1825 unsigned long free_kbytes; 1826 1827 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1828 1829 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1830 return 0; 1831 } 1832 subsys_initcall(init_user_reserve); 1833 1834 /* 1835 * Initialise sysctl_admin_reserve_kbytes. 1836 * 1837 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1838 * to log in and kill a memory hogging process. 1839 * 1840 * Systems with more than 256MB will reserve 8MB, enough to recover 1841 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1842 * only reserve 3% of free pages by default. 1843 */ 1844 static int __meminit init_admin_reserve(void) 1845 { 1846 unsigned long free_kbytes; 1847 1848 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1849 1850 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1851 return 0; 1852 } 1853 subsys_initcall(init_admin_reserve); 1854