1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/vmacache.h> 21 #include <linux/mman.h> 22 #include <linux/swap.h> 23 #include <linux/file.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/blkdev.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <asm/uaccess.h> 39 #include <asm/tlb.h> 40 #include <asm/tlbflush.h> 41 #include <asm/mmu_context.h> 42 #include "internal.h" 43 44 void *high_memory; 45 EXPORT_SYMBOL(high_memory); 46 struct page *mem_map; 47 unsigned long max_mapnr; 48 EXPORT_SYMBOL(max_mapnr); 49 unsigned long highest_memmap_pfn; 50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 51 int heap_stack_gap = 0; 52 53 atomic_long_t mmap_pages_allocated; 54 55 EXPORT_SYMBOL(mem_map); 56 57 /* list of mapped, potentially shareable regions */ 58 static struct kmem_cache *vm_region_jar; 59 struct rb_root nommu_region_tree = RB_ROOT; 60 DECLARE_RWSEM(nommu_region_sem); 61 62 const struct vm_operations_struct generic_file_vm_ops = { 63 }; 64 65 /* 66 * Return the total memory allocated for this pointer, not 67 * just what the caller asked for. 68 * 69 * Doesn't have to be accurate, i.e. may have races. 70 */ 71 unsigned int kobjsize(const void *objp) 72 { 73 struct page *page; 74 75 /* 76 * If the object we have should not have ksize performed on it, 77 * return size of 0 78 */ 79 if (!objp || !virt_addr_valid(objp)) 80 return 0; 81 82 page = virt_to_head_page(objp); 83 84 /* 85 * If the allocator sets PageSlab, we know the pointer came from 86 * kmalloc(). 87 */ 88 if (PageSlab(page)) 89 return ksize(objp); 90 91 /* 92 * If it's not a compound page, see if we have a matching VMA 93 * region. This test is intentionally done in reverse order, 94 * so if there's no VMA, we still fall through and hand back 95 * PAGE_SIZE for 0-order pages. 96 */ 97 if (!PageCompound(page)) { 98 struct vm_area_struct *vma; 99 100 vma = find_vma(current->mm, (unsigned long)objp); 101 if (vma) 102 return vma->vm_end - vma->vm_start; 103 } 104 105 /* 106 * The ksize() function is only guaranteed to work for pointers 107 * returned by kmalloc(). So handle arbitrary pointers here. 108 */ 109 return PAGE_SIZE << compound_order(page); 110 } 111 112 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 113 unsigned long start, unsigned long nr_pages, 114 unsigned int foll_flags, struct page **pages, 115 struct vm_area_struct **vmas, int *nonblocking) 116 { 117 struct vm_area_struct *vma; 118 unsigned long vm_flags; 119 int i; 120 121 /* calculate required read or write permissions. 122 * If FOLL_FORCE is set, we only require the "MAY" flags. 123 */ 124 vm_flags = (foll_flags & FOLL_WRITE) ? 125 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 126 vm_flags &= (foll_flags & FOLL_FORCE) ? 127 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 128 129 for (i = 0; i < nr_pages; i++) { 130 vma = find_vma(mm, start); 131 if (!vma) 132 goto finish_or_fault; 133 134 /* protect what we can, including chardevs */ 135 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 136 !(vm_flags & vma->vm_flags)) 137 goto finish_or_fault; 138 139 if (pages) { 140 pages[i] = virt_to_page(start); 141 if (pages[i]) 142 get_page(pages[i]); 143 } 144 if (vmas) 145 vmas[i] = vma; 146 start = (start + PAGE_SIZE) & PAGE_MASK; 147 } 148 149 return i; 150 151 finish_or_fault: 152 return i ? : -EFAULT; 153 } 154 155 /* 156 * get a list of pages in an address range belonging to the specified process 157 * and indicate the VMA that covers each page 158 * - this is potentially dodgy as we may end incrementing the page count of a 159 * slab page or a secondary page from a compound page 160 * - don't permit access to VMAs that don't support it, such as I/O mappings 161 */ 162 long get_user_pages(unsigned long start, unsigned long nr_pages, 163 int write, int force, struct page **pages, 164 struct vm_area_struct **vmas) 165 { 166 int flags = 0; 167 168 if (write) 169 flags |= FOLL_WRITE; 170 if (force) 171 flags |= FOLL_FORCE; 172 173 return __get_user_pages(current, current->mm, start, nr_pages, flags, 174 pages, vmas, NULL); 175 } 176 EXPORT_SYMBOL(get_user_pages); 177 178 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 179 int write, int force, struct page **pages, 180 int *locked) 181 { 182 return get_user_pages(start, nr_pages, write, force, pages, NULL); 183 } 184 EXPORT_SYMBOL(get_user_pages_locked); 185 186 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 187 unsigned long start, unsigned long nr_pages, 188 int write, int force, struct page **pages, 189 unsigned int gup_flags) 190 { 191 long ret; 192 down_read(&mm->mmap_sem); 193 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 194 NULL, NULL); 195 up_read(&mm->mmap_sem); 196 return ret; 197 } 198 EXPORT_SYMBOL(__get_user_pages_unlocked); 199 200 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 201 int write, int force, struct page **pages) 202 { 203 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 204 write, force, pages, 0); 205 } 206 EXPORT_SYMBOL(get_user_pages_unlocked); 207 208 /** 209 * follow_pfn - look up PFN at a user virtual address 210 * @vma: memory mapping 211 * @address: user virtual address 212 * @pfn: location to store found PFN 213 * 214 * Only IO mappings and raw PFN mappings are allowed. 215 * 216 * Returns zero and the pfn at @pfn on success, -ve otherwise. 217 */ 218 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 219 unsigned long *pfn) 220 { 221 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 222 return -EINVAL; 223 224 *pfn = address >> PAGE_SHIFT; 225 return 0; 226 } 227 EXPORT_SYMBOL(follow_pfn); 228 229 LIST_HEAD(vmap_area_list); 230 231 void vfree(const void *addr) 232 { 233 kfree(addr); 234 } 235 EXPORT_SYMBOL(vfree); 236 237 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 238 { 239 /* 240 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 241 * returns only a logical address. 242 */ 243 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 244 } 245 EXPORT_SYMBOL(__vmalloc); 246 247 void *vmalloc_user(unsigned long size) 248 { 249 void *ret; 250 251 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 252 PAGE_KERNEL); 253 if (ret) { 254 struct vm_area_struct *vma; 255 256 down_write(¤t->mm->mmap_sem); 257 vma = find_vma(current->mm, (unsigned long)ret); 258 if (vma) 259 vma->vm_flags |= VM_USERMAP; 260 up_write(¤t->mm->mmap_sem); 261 } 262 263 return ret; 264 } 265 EXPORT_SYMBOL(vmalloc_user); 266 267 struct page *vmalloc_to_page(const void *addr) 268 { 269 return virt_to_page(addr); 270 } 271 EXPORT_SYMBOL(vmalloc_to_page); 272 273 unsigned long vmalloc_to_pfn(const void *addr) 274 { 275 return page_to_pfn(virt_to_page(addr)); 276 } 277 EXPORT_SYMBOL(vmalloc_to_pfn); 278 279 long vread(char *buf, char *addr, unsigned long count) 280 { 281 /* Don't allow overflow */ 282 if ((unsigned long) buf + count < count) 283 count = -(unsigned long) buf; 284 285 memcpy(buf, addr, count); 286 return count; 287 } 288 289 long vwrite(char *buf, char *addr, unsigned long count) 290 { 291 /* Don't allow overflow */ 292 if ((unsigned long) addr + count < count) 293 count = -(unsigned long) addr; 294 295 memcpy(addr, buf, count); 296 return count; 297 } 298 299 /* 300 * vmalloc - allocate virtually contiguous memory 301 * 302 * @size: allocation size 303 * 304 * Allocate enough pages to cover @size from the page level 305 * allocator and map them into contiguous kernel virtual space. 306 * 307 * For tight control over page level allocator and protection flags 308 * use __vmalloc() instead. 309 */ 310 void *vmalloc(unsigned long size) 311 { 312 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 313 } 314 EXPORT_SYMBOL(vmalloc); 315 316 /* 317 * vzalloc - allocate virtually contiguous memory with zero fill 318 * 319 * @size: allocation size 320 * 321 * Allocate enough pages to cover @size from the page level 322 * allocator and map them into contiguous kernel virtual space. 323 * The memory allocated is set to zero. 324 * 325 * For tight control over page level allocator and protection flags 326 * use __vmalloc() instead. 327 */ 328 void *vzalloc(unsigned long size) 329 { 330 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 331 PAGE_KERNEL); 332 } 333 EXPORT_SYMBOL(vzalloc); 334 335 /** 336 * vmalloc_node - allocate memory on a specific node 337 * @size: allocation size 338 * @node: numa node 339 * 340 * Allocate enough pages to cover @size from the page level 341 * allocator and map them into contiguous kernel virtual space. 342 * 343 * For tight control over page level allocator and protection flags 344 * use __vmalloc() instead. 345 */ 346 void *vmalloc_node(unsigned long size, int node) 347 { 348 return vmalloc(size); 349 } 350 EXPORT_SYMBOL(vmalloc_node); 351 352 /** 353 * vzalloc_node - allocate memory on a specific node with zero fill 354 * @size: allocation size 355 * @node: numa node 356 * 357 * Allocate enough pages to cover @size from the page level 358 * allocator and map them into contiguous kernel virtual space. 359 * The memory allocated is set to zero. 360 * 361 * For tight control over page level allocator and protection flags 362 * use __vmalloc() instead. 363 */ 364 void *vzalloc_node(unsigned long size, int node) 365 { 366 return vzalloc(size); 367 } 368 EXPORT_SYMBOL(vzalloc_node); 369 370 #ifndef PAGE_KERNEL_EXEC 371 # define PAGE_KERNEL_EXEC PAGE_KERNEL 372 #endif 373 374 /** 375 * vmalloc_exec - allocate virtually contiguous, executable memory 376 * @size: allocation size 377 * 378 * Kernel-internal function to allocate enough pages to cover @size 379 * the page level allocator and map them into contiguous and 380 * executable kernel virtual space. 381 * 382 * For tight control over page level allocator and protection flags 383 * use __vmalloc() instead. 384 */ 385 386 void *vmalloc_exec(unsigned long size) 387 { 388 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 389 } 390 391 /** 392 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 393 * @size: allocation size 394 * 395 * Allocate enough 32bit PA addressable pages to cover @size from the 396 * page level allocator and map them into contiguous kernel virtual space. 397 */ 398 void *vmalloc_32(unsigned long size) 399 { 400 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 401 } 402 EXPORT_SYMBOL(vmalloc_32); 403 404 /** 405 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 406 * @size: allocation size 407 * 408 * The resulting memory area is 32bit addressable and zeroed so it can be 409 * mapped to userspace without leaking data. 410 * 411 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 412 * remap_vmalloc_range() are permissible. 413 */ 414 void *vmalloc_32_user(unsigned long size) 415 { 416 /* 417 * We'll have to sort out the ZONE_DMA bits for 64-bit, 418 * but for now this can simply use vmalloc_user() directly. 419 */ 420 return vmalloc_user(size); 421 } 422 EXPORT_SYMBOL(vmalloc_32_user); 423 424 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 425 { 426 BUG(); 427 return NULL; 428 } 429 EXPORT_SYMBOL(vmap); 430 431 void vunmap(const void *addr) 432 { 433 BUG(); 434 } 435 EXPORT_SYMBOL(vunmap); 436 437 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 438 { 439 BUG(); 440 return NULL; 441 } 442 EXPORT_SYMBOL(vm_map_ram); 443 444 void vm_unmap_ram(const void *mem, unsigned int count) 445 { 446 BUG(); 447 } 448 EXPORT_SYMBOL(vm_unmap_ram); 449 450 void vm_unmap_aliases(void) 451 { 452 } 453 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 454 455 /* 456 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 457 * have one. 458 */ 459 void __weak vmalloc_sync_all(void) 460 { 461 } 462 463 /** 464 * alloc_vm_area - allocate a range of kernel address space 465 * @size: size of the area 466 * 467 * Returns: NULL on failure, vm_struct on success 468 * 469 * This function reserves a range of kernel address space, and 470 * allocates pagetables to map that range. No actual mappings 471 * are created. If the kernel address space is not shared 472 * between processes, it syncs the pagetable across all 473 * processes. 474 */ 475 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 476 { 477 BUG(); 478 return NULL; 479 } 480 EXPORT_SYMBOL_GPL(alloc_vm_area); 481 482 void free_vm_area(struct vm_struct *area) 483 { 484 BUG(); 485 } 486 EXPORT_SYMBOL_GPL(free_vm_area); 487 488 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 489 struct page *page) 490 { 491 return -EINVAL; 492 } 493 EXPORT_SYMBOL(vm_insert_page); 494 495 /* 496 * sys_brk() for the most part doesn't need the global kernel 497 * lock, except when an application is doing something nasty 498 * like trying to un-brk an area that has already been mapped 499 * to a regular file. in this case, the unmapping will need 500 * to invoke file system routines that need the global lock. 501 */ 502 SYSCALL_DEFINE1(brk, unsigned long, brk) 503 { 504 struct mm_struct *mm = current->mm; 505 506 if (brk < mm->start_brk || brk > mm->context.end_brk) 507 return mm->brk; 508 509 if (mm->brk == brk) 510 return mm->brk; 511 512 /* 513 * Always allow shrinking brk 514 */ 515 if (brk <= mm->brk) { 516 mm->brk = brk; 517 return brk; 518 } 519 520 /* 521 * Ok, looks good - let it rip. 522 */ 523 flush_icache_range(mm->brk, brk); 524 return mm->brk = brk; 525 } 526 527 /* 528 * initialise the VMA and region record slabs 529 */ 530 void __init mmap_init(void) 531 { 532 int ret; 533 534 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 535 VM_BUG_ON(ret); 536 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 537 } 538 539 /* 540 * validate the region tree 541 * - the caller must hold the region lock 542 */ 543 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 544 static noinline void validate_nommu_regions(void) 545 { 546 struct vm_region *region, *last; 547 struct rb_node *p, *lastp; 548 549 lastp = rb_first(&nommu_region_tree); 550 if (!lastp) 551 return; 552 553 last = rb_entry(lastp, struct vm_region, vm_rb); 554 BUG_ON(last->vm_end <= last->vm_start); 555 BUG_ON(last->vm_top < last->vm_end); 556 557 while ((p = rb_next(lastp))) { 558 region = rb_entry(p, struct vm_region, vm_rb); 559 last = rb_entry(lastp, struct vm_region, vm_rb); 560 561 BUG_ON(region->vm_end <= region->vm_start); 562 BUG_ON(region->vm_top < region->vm_end); 563 BUG_ON(region->vm_start < last->vm_top); 564 565 lastp = p; 566 } 567 } 568 #else 569 static void validate_nommu_regions(void) 570 { 571 } 572 #endif 573 574 /* 575 * add a region into the global tree 576 */ 577 static void add_nommu_region(struct vm_region *region) 578 { 579 struct vm_region *pregion; 580 struct rb_node **p, *parent; 581 582 validate_nommu_regions(); 583 584 parent = NULL; 585 p = &nommu_region_tree.rb_node; 586 while (*p) { 587 parent = *p; 588 pregion = rb_entry(parent, struct vm_region, vm_rb); 589 if (region->vm_start < pregion->vm_start) 590 p = &(*p)->rb_left; 591 else if (region->vm_start > pregion->vm_start) 592 p = &(*p)->rb_right; 593 else if (pregion == region) 594 return; 595 else 596 BUG(); 597 } 598 599 rb_link_node(®ion->vm_rb, parent, p); 600 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 601 602 validate_nommu_regions(); 603 } 604 605 /* 606 * delete a region from the global tree 607 */ 608 static void delete_nommu_region(struct vm_region *region) 609 { 610 BUG_ON(!nommu_region_tree.rb_node); 611 612 validate_nommu_regions(); 613 rb_erase(®ion->vm_rb, &nommu_region_tree); 614 validate_nommu_regions(); 615 } 616 617 /* 618 * free a contiguous series of pages 619 */ 620 static void free_page_series(unsigned long from, unsigned long to) 621 { 622 for (; from < to; from += PAGE_SIZE) { 623 struct page *page = virt_to_page(from); 624 625 atomic_long_dec(&mmap_pages_allocated); 626 put_page(page); 627 } 628 } 629 630 /* 631 * release a reference to a region 632 * - the caller must hold the region semaphore for writing, which this releases 633 * - the region may not have been added to the tree yet, in which case vm_top 634 * will equal vm_start 635 */ 636 static void __put_nommu_region(struct vm_region *region) 637 __releases(nommu_region_sem) 638 { 639 BUG_ON(!nommu_region_tree.rb_node); 640 641 if (--region->vm_usage == 0) { 642 if (region->vm_top > region->vm_start) 643 delete_nommu_region(region); 644 up_write(&nommu_region_sem); 645 646 if (region->vm_file) 647 fput(region->vm_file); 648 649 /* IO memory and memory shared directly out of the pagecache 650 * from ramfs/tmpfs mustn't be released here */ 651 if (region->vm_flags & VM_MAPPED_COPY) 652 free_page_series(region->vm_start, region->vm_top); 653 kmem_cache_free(vm_region_jar, region); 654 } else { 655 up_write(&nommu_region_sem); 656 } 657 } 658 659 /* 660 * release a reference to a region 661 */ 662 static void put_nommu_region(struct vm_region *region) 663 { 664 down_write(&nommu_region_sem); 665 __put_nommu_region(region); 666 } 667 668 /* 669 * update protection on a vma 670 */ 671 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 672 { 673 #ifdef CONFIG_MPU 674 struct mm_struct *mm = vma->vm_mm; 675 long start = vma->vm_start & PAGE_MASK; 676 while (start < vma->vm_end) { 677 protect_page(mm, start, flags); 678 start += PAGE_SIZE; 679 } 680 update_protections(mm); 681 #endif 682 } 683 684 /* 685 * add a VMA into a process's mm_struct in the appropriate place in the list 686 * and tree and add to the address space's page tree also if not an anonymous 687 * page 688 * - should be called with mm->mmap_sem held writelocked 689 */ 690 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 691 { 692 struct vm_area_struct *pvma, *prev; 693 struct address_space *mapping; 694 struct rb_node **p, *parent, *rb_prev; 695 696 BUG_ON(!vma->vm_region); 697 698 mm->map_count++; 699 vma->vm_mm = mm; 700 701 protect_vma(vma, vma->vm_flags); 702 703 /* add the VMA to the mapping */ 704 if (vma->vm_file) { 705 mapping = vma->vm_file->f_mapping; 706 707 i_mmap_lock_write(mapping); 708 flush_dcache_mmap_lock(mapping); 709 vma_interval_tree_insert(vma, &mapping->i_mmap); 710 flush_dcache_mmap_unlock(mapping); 711 i_mmap_unlock_write(mapping); 712 } 713 714 /* add the VMA to the tree */ 715 parent = rb_prev = NULL; 716 p = &mm->mm_rb.rb_node; 717 while (*p) { 718 parent = *p; 719 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 720 721 /* sort by: start addr, end addr, VMA struct addr in that order 722 * (the latter is necessary as we may get identical VMAs) */ 723 if (vma->vm_start < pvma->vm_start) 724 p = &(*p)->rb_left; 725 else if (vma->vm_start > pvma->vm_start) { 726 rb_prev = parent; 727 p = &(*p)->rb_right; 728 } else if (vma->vm_end < pvma->vm_end) 729 p = &(*p)->rb_left; 730 else if (vma->vm_end > pvma->vm_end) { 731 rb_prev = parent; 732 p = &(*p)->rb_right; 733 } else if (vma < pvma) 734 p = &(*p)->rb_left; 735 else if (vma > pvma) { 736 rb_prev = parent; 737 p = &(*p)->rb_right; 738 } else 739 BUG(); 740 } 741 742 rb_link_node(&vma->vm_rb, parent, p); 743 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 744 745 /* add VMA to the VMA list also */ 746 prev = NULL; 747 if (rb_prev) 748 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 749 750 __vma_link_list(mm, vma, prev, parent); 751 } 752 753 /* 754 * delete a VMA from its owning mm_struct and address space 755 */ 756 static void delete_vma_from_mm(struct vm_area_struct *vma) 757 { 758 int i; 759 struct address_space *mapping; 760 struct mm_struct *mm = vma->vm_mm; 761 struct task_struct *curr = current; 762 763 protect_vma(vma, 0); 764 765 mm->map_count--; 766 for (i = 0; i < VMACACHE_SIZE; i++) { 767 /* if the vma is cached, invalidate the entire cache */ 768 if (curr->vmacache[i] == vma) { 769 vmacache_invalidate(mm); 770 break; 771 } 772 } 773 774 /* remove the VMA from the mapping */ 775 if (vma->vm_file) { 776 mapping = vma->vm_file->f_mapping; 777 778 i_mmap_lock_write(mapping); 779 flush_dcache_mmap_lock(mapping); 780 vma_interval_tree_remove(vma, &mapping->i_mmap); 781 flush_dcache_mmap_unlock(mapping); 782 i_mmap_unlock_write(mapping); 783 } 784 785 /* remove from the MM's tree and list */ 786 rb_erase(&vma->vm_rb, &mm->mm_rb); 787 788 if (vma->vm_prev) 789 vma->vm_prev->vm_next = vma->vm_next; 790 else 791 mm->mmap = vma->vm_next; 792 793 if (vma->vm_next) 794 vma->vm_next->vm_prev = vma->vm_prev; 795 } 796 797 /* 798 * destroy a VMA record 799 */ 800 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 801 { 802 if (vma->vm_ops && vma->vm_ops->close) 803 vma->vm_ops->close(vma); 804 if (vma->vm_file) 805 fput(vma->vm_file); 806 put_nommu_region(vma->vm_region); 807 kmem_cache_free(vm_area_cachep, vma); 808 } 809 810 /* 811 * look up the first VMA in which addr resides, NULL if none 812 * - should be called with mm->mmap_sem at least held readlocked 813 */ 814 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 815 { 816 struct vm_area_struct *vma; 817 818 /* check the cache first */ 819 vma = vmacache_find(mm, addr); 820 if (likely(vma)) 821 return vma; 822 823 /* trawl the list (there may be multiple mappings in which addr 824 * resides) */ 825 for (vma = mm->mmap; vma; vma = vma->vm_next) { 826 if (vma->vm_start > addr) 827 return NULL; 828 if (vma->vm_end > addr) { 829 vmacache_update(addr, vma); 830 return vma; 831 } 832 } 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(find_vma); 837 838 /* 839 * find a VMA 840 * - we don't extend stack VMAs under NOMMU conditions 841 */ 842 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 843 { 844 return find_vma(mm, addr); 845 } 846 847 /* 848 * expand a stack to a given address 849 * - not supported under NOMMU conditions 850 */ 851 int expand_stack(struct vm_area_struct *vma, unsigned long address) 852 { 853 return -ENOMEM; 854 } 855 856 /* 857 * look up the first VMA exactly that exactly matches addr 858 * - should be called with mm->mmap_sem at least held readlocked 859 */ 860 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 861 unsigned long addr, 862 unsigned long len) 863 { 864 struct vm_area_struct *vma; 865 unsigned long end = addr + len; 866 867 /* check the cache first */ 868 vma = vmacache_find_exact(mm, addr, end); 869 if (vma) 870 return vma; 871 872 /* trawl the list (there may be multiple mappings in which addr 873 * resides) */ 874 for (vma = mm->mmap; vma; vma = vma->vm_next) { 875 if (vma->vm_start < addr) 876 continue; 877 if (vma->vm_start > addr) 878 return NULL; 879 if (vma->vm_end == end) { 880 vmacache_update(addr, vma); 881 return vma; 882 } 883 } 884 885 return NULL; 886 } 887 888 /* 889 * determine whether a mapping should be permitted and, if so, what sort of 890 * mapping we're capable of supporting 891 */ 892 static int validate_mmap_request(struct file *file, 893 unsigned long addr, 894 unsigned long len, 895 unsigned long prot, 896 unsigned long flags, 897 unsigned long pgoff, 898 unsigned long *_capabilities) 899 { 900 unsigned long capabilities, rlen; 901 int ret; 902 903 /* do the simple checks first */ 904 if (flags & MAP_FIXED) 905 return -EINVAL; 906 907 if ((flags & MAP_TYPE) != MAP_PRIVATE && 908 (flags & MAP_TYPE) != MAP_SHARED) 909 return -EINVAL; 910 911 if (!len) 912 return -EINVAL; 913 914 /* Careful about overflows.. */ 915 rlen = PAGE_ALIGN(len); 916 if (!rlen || rlen > TASK_SIZE) 917 return -ENOMEM; 918 919 /* offset overflow? */ 920 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 921 return -EOVERFLOW; 922 923 if (file) { 924 /* files must support mmap */ 925 if (!file->f_op->mmap) 926 return -ENODEV; 927 928 /* work out if what we've got could possibly be shared 929 * - we support chardevs that provide their own "memory" 930 * - we support files/blockdevs that are memory backed 931 */ 932 if (file->f_op->mmap_capabilities) { 933 capabilities = file->f_op->mmap_capabilities(file); 934 } else { 935 /* no explicit capabilities set, so assume some 936 * defaults */ 937 switch (file_inode(file)->i_mode & S_IFMT) { 938 case S_IFREG: 939 case S_IFBLK: 940 capabilities = NOMMU_MAP_COPY; 941 break; 942 943 case S_IFCHR: 944 capabilities = 945 NOMMU_MAP_DIRECT | 946 NOMMU_MAP_READ | 947 NOMMU_MAP_WRITE; 948 break; 949 950 default: 951 return -EINVAL; 952 } 953 } 954 955 /* eliminate any capabilities that we can't support on this 956 * device */ 957 if (!file->f_op->get_unmapped_area) 958 capabilities &= ~NOMMU_MAP_DIRECT; 959 if (!(file->f_mode & FMODE_CAN_READ)) 960 capabilities &= ~NOMMU_MAP_COPY; 961 962 /* The file shall have been opened with read permission. */ 963 if (!(file->f_mode & FMODE_READ)) 964 return -EACCES; 965 966 if (flags & MAP_SHARED) { 967 /* do checks for writing, appending and locking */ 968 if ((prot & PROT_WRITE) && 969 !(file->f_mode & FMODE_WRITE)) 970 return -EACCES; 971 972 if (IS_APPEND(file_inode(file)) && 973 (file->f_mode & FMODE_WRITE)) 974 return -EACCES; 975 976 if (locks_verify_locked(file)) 977 return -EAGAIN; 978 979 if (!(capabilities & NOMMU_MAP_DIRECT)) 980 return -ENODEV; 981 982 /* we mustn't privatise shared mappings */ 983 capabilities &= ~NOMMU_MAP_COPY; 984 } else { 985 /* we're going to read the file into private memory we 986 * allocate */ 987 if (!(capabilities & NOMMU_MAP_COPY)) 988 return -ENODEV; 989 990 /* we don't permit a private writable mapping to be 991 * shared with the backing device */ 992 if (prot & PROT_WRITE) 993 capabilities &= ~NOMMU_MAP_DIRECT; 994 } 995 996 if (capabilities & NOMMU_MAP_DIRECT) { 997 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 998 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 999 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 1000 ) { 1001 capabilities &= ~NOMMU_MAP_DIRECT; 1002 if (flags & MAP_SHARED) { 1003 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 1004 return -EINVAL; 1005 } 1006 } 1007 } 1008 1009 /* handle executable mappings and implied executable 1010 * mappings */ 1011 if (path_noexec(&file->f_path)) { 1012 if (prot & PROT_EXEC) 1013 return -EPERM; 1014 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1015 /* handle implication of PROT_EXEC by PROT_READ */ 1016 if (current->personality & READ_IMPLIES_EXEC) { 1017 if (capabilities & NOMMU_MAP_EXEC) 1018 prot |= PROT_EXEC; 1019 } 1020 } else if ((prot & PROT_READ) && 1021 (prot & PROT_EXEC) && 1022 !(capabilities & NOMMU_MAP_EXEC) 1023 ) { 1024 /* backing file is not executable, try to copy */ 1025 capabilities &= ~NOMMU_MAP_DIRECT; 1026 } 1027 } else { 1028 /* anonymous mappings are always memory backed and can be 1029 * privately mapped 1030 */ 1031 capabilities = NOMMU_MAP_COPY; 1032 1033 /* handle PROT_EXEC implication by PROT_READ */ 1034 if ((prot & PROT_READ) && 1035 (current->personality & READ_IMPLIES_EXEC)) 1036 prot |= PROT_EXEC; 1037 } 1038 1039 /* allow the security API to have its say */ 1040 ret = security_mmap_addr(addr); 1041 if (ret < 0) 1042 return ret; 1043 1044 /* looks okay */ 1045 *_capabilities = capabilities; 1046 return 0; 1047 } 1048 1049 /* 1050 * we've determined that we can make the mapping, now translate what we 1051 * now know into VMA flags 1052 */ 1053 static unsigned long determine_vm_flags(struct file *file, 1054 unsigned long prot, 1055 unsigned long flags, 1056 unsigned long capabilities) 1057 { 1058 unsigned long vm_flags; 1059 1060 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1061 /* vm_flags |= mm->def_flags; */ 1062 1063 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1064 /* attempt to share read-only copies of mapped file chunks */ 1065 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1066 if (file && !(prot & PROT_WRITE)) 1067 vm_flags |= VM_MAYSHARE; 1068 } else { 1069 /* overlay a shareable mapping on the backing device or inode 1070 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1071 * romfs/cramfs */ 1072 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1073 if (flags & MAP_SHARED) 1074 vm_flags |= VM_SHARED; 1075 } 1076 1077 /* refuse to let anyone share private mappings with this process if 1078 * it's being traced - otherwise breakpoints set in it may interfere 1079 * with another untraced process 1080 */ 1081 if ((flags & MAP_PRIVATE) && current->ptrace) 1082 vm_flags &= ~VM_MAYSHARE; 1083 1084 return vm_flags; 1085 } 1086 1087 /* 1088 * set up a shared mapping on a file (the driver or filesystem provides and 1089 * pins the storage) 1090 */ 1091 static int do_mmap_shared_file(struct vm_area_struct *vma) 1092 { 1093 int ret; 1094 1095 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1096 if (ret == 0) { 1097 vma->vm_region->vm_top = vma->vm_region->vm_end; 1098 return 0; 1099 } 1100 if (ret != -ENOSYS) 1101 return ret; 1102 1103 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1104 * opposed to tried but failed) so we can only give a suitable error as 1105 * it's not possible to make a private copy if MAP_SHARED was given */ 1106 return -ENODEV; 1107 } 1108 1109 /* 1110 * set up a private mapping or an anonymous shared mapping 1111 */ 1112 static int do_mmap_private(struct vm_area_struct *vma, 1113 struct vm_region *region, 1114 unsigned long len, 1115 unsigned long capabilities) 1116 { 1117 unsigned long total, point; 1118 void *base; 1119 int ret, order; 1120 1121 /* invoke the file's mapping function so that it can keep track of 1122 * shared mappings on devices or memory 1123 * - VM_MAYSHARE will be set if it may attempt to share 1124 */ 1125 if (capabilities & NOMMU_MAP_DIRECT) { 1126 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1127 if (ret == 0) { 1128 /* shouldn't return success if we're not sharing */ 1129 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1130 vma->vm_region->vm_top = vma->vm_region->vm_end; 1131 return 0; 1132 } 1133 if (ret != -ENOSYS) 1134 return ret; 1135 1136 /* getting an ENOSYS error indicates that direct mmap isn't 1137 * possible (as opposed to tried but failed) so we'll try to 1138 * make a private copy of the data and map that instead */ 1139 } 1140 1141 1142 /* allocate some memory to hold the mapping 1143 * - note that this may not return a page-aligned address if the object 1144 * we're allocating is smaller than a page 1145 */ 1146 order = get_order(len); 1147 total = 1 << order; 1148 point = len >> PAGE_SHIFT; 1149 1150 /* we don't want to allocate a power-of-2 sized page set */ 1151 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1152 total = point; 1153 1154 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1155 if (!base) 1156 goto enomem; 1157 1158 atomic_long_add(total, &mmap_pages_allocated); 1159 1160 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1161 region->vm_start = (unsigned long) base; 1162 region->vm_end = region->vm_start + len; 1163 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1164 1165 vma->vm_start = region->vm_start; 1166 vma->vm_end = region->vm_start + len; 1167 1168 if (vma->vm_file) { 1169 /* read the contents of a file into the copy */ 1170 mm_segment_t old_fs; 1171 loff_t fpos; 1172 1173 fpos = vma->vm_pgoff; 1174 fpos <<= PAGE_SHIFT; 1175 1176 old_fs = get_fs(); 1177 set_fs(KERNEL_DS); 1178 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1179 set_fs(old_fs); 1180 1181 if (ret < 0) 1182 goto error_free; 1183 1184 /* clear the last little bit */ 1185 if (ret < len) 1186 memset(base + ret, 0, len - ret); 1187 1188 } 1189 1190 return 0; 1191 1192 error_free: 1193 free_page_series(region->vm_start, region->vm_top); 1194 region->vm_start = vma->vm_start = 0; 1195 region->vm_end = vma->vm_end = 0; 1196 region->vm_top = 0; 1197 return ret; 1198 1199 enomem: 1200 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1201 len, current->pid, current->comm); 1202 show_free_areas(0); 1203 return -ENOMEM; 1204 } 1205 1206 /* 1207 * handle mapping creation for uClinux 1208 */ 1209 unsigned long do_mmap(struct file *file, 1210 unsigned long addr, 1211 unsigned long len, 1212 unsigned long prot, 1213 unsigned long flags, 1214 vm_flags_t vm_flags, 1215 unsigned long pgoff, 1216 unsigned long *populate) 1217 { 1218 struct vm_area_struct *vma; 1219 struct vm_region *region; 1220 struct rb_node *rb; 1221 unsigned long capabilities, result; 1222 int ret; 1223 1224 *populate = 0; 1225 1226 /* decide whether we should attempt the mapping, and if so what sort of 1227 * mapping */ 1228 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1229 &capabilities); 1230 if (ret < 0) 1231 return ret; 1232 1233 /* we ignore the address hint */ 1234 addr = 0; 1235 len = PAGE_ALIGN(len); 1236 1237 /* we've determined that we can make the mapping, now translate what we 1238 * now know into VMA flags */ 1239 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1240 1241 /* we're going to need to record the mapping */ 1242 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1243 if (!region) 1244 goto error_getting_region; 1245 1246 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1247 if (!vma) 1248 goto error_getting_vma; 1249 1250 region->vm_usage = 1; 1251 region->vm_flags = vm_flags; 1252 region->vm_pgoff = pgoff; 1253 1254 INIT_LIST_HEAD(&vma->anon_vma_chain); 1255 vma->vm_flags = vm_flags; 1256 vma->vm_pgoff = pgoff; 1257 1258 if (file) { 1259 region->vm_file = get_file(file); 1260 vma->vm_file = get_file(file); 1261 } 1262 1263 down_write(&nommu_region_sem); 1264 1265 /* if we want to share, we need to check for regions created by other 1266 * mmap() calls that overlap with our proposed mapping 1267 * - we can only share with a superset match on most regular files 1268 * - shared mappings on character devices and memory backed files are 1269 * permitted to overlap inexactly as far as we are concerned for in 1270 * these cases, sharing is handled in the driver or filesystem rather 1271 * than here 1272 */ 1273 if (vm_flags & VM_MAYSHARE) { 1274 struct vm_region *pregion; 1275 unsigned long pglen, rpglen, pgend, rpgend, start; 1276 1277 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1278 pgend = pgoff + pglen; 1279 1280 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1281 pregion = rb_entry(rb, struct vm_region, vm_rb); 1282 1283 if (!(pregion->vm_flags & VM_MAYSHARE)) 1284 continue; 1285 1286 /* search for overlapping mappings on the same file */ 1287 if (file_inode(pregion->vm_file) != 1288 file_inode(file)) 1289 continue; 1290 1291 if (pregion->vm_pgoff >= pgend) 1292 continue; 1293 1294 rpglen = pregion->vm_end - pregion->vm_start; 1295 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1296 rpgend = pregion->vm_pgoff + rpglen; 1297 if (pgoff >= rpgend) 1298 continue; 1299 1300 /* handle inexactly overlapping matches between 1301 * mappings */ 1302 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1303 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1304 /* new mapping is not a subset of the region */ 1305 if (!(capabilities & NOMMU_MAP_DIRECT)) 1306 goto sharing_violation; 1307 continue; 1308 } 1309 1310 /* we've found a region we can share */ 1311 pregion->vm_usage++; 1312 vma->vm_region = pregion; 1313 start = pregion->vm_start; 1314 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1315 vma->vm_start = start; 1316 vma->vm_end = start + len; 1317 1318 if (pregion->vm_flags & VM_MAPPED_COPY) 1319 vma->vm_flags |= VM_MAPPED_COPY; 1320 else { 1321 ret = do_mmap_shared_file(vma); 1322 if (ret < 0) { 1323 vma->vm_region = NULL; 1324 vma->vm_start = 0; 1325 vma->vm_end = 0; 1326 pregion->vm_usage--; 1327 pregion = NULL; 1328 goto error_just_free; 1329 } 1330 } 1331 fput(region->vm_file); 1332 kmem_cache_free(vm_region_jar, region); 1333 region = pregion; 1334 result = start; 1335 goto share; 1336 } 1337 1338 /* obtain the address at which to make a shared mapping 1339 * - this is the hook for quasi-memory character devices to 1340 * tell us the location of a shared mapping 1341 */ 1342 if (capabilities & NOMMU_MAP_DIRECT) { 1343 addr = file->f_op->get_unmapped_area(file, addr, len, 1344 pgoff, flags); 1345 if (IS_ERR_VALUE(addr)) { 1346 ret = addr; 1347 if (ret != -ENOSYS) 1348 goto error_just_free; 1349 1350 /* the driver refused to tell us where to site 1351 * the mapping so we'll have to attempt to copy 1352 * it */ 1353 ret = -ENODEV; 1354 if (!(capabilities & NOMMU_MAP_COPY)) 1355 goto error_just_free; 1356 1357 capabilities &= ~NOMMU_MAP_DIRECT; 1358 } else { 1359 vma->vm_start = region->vm_start = addr; 1360 vma->vm_end = region->vm_end = addr + len; 1361 } 1362 } 1363 } 1364 1365 vma->vm_region = region; 1366 1367 /* set up the mapping 1368 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1369 */ 1370 if (file && vma->vm_flags & VM_SHARED) 1371 ret = do_mmap_shared_file(vma); 1372 else 1373 ret = do_mmap_private(vma, region, len, capabilities); 1374 if (ret < 0) 1375 goto error_just_free; 1376 add_nommu_region(region); 1377 1378 /* clear anonymous mappings that don't ask for uninitialized data */ 1379 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1380 memset((void *)region->vm_start, 0, 1381 region->vm_end - region->vm_start); 1382 1383 /* okay... we have a mapping; now we have to register it */ 1384 result = vma->vm_start; 1385 1386 current->mm->total_vm += len >> PAGE_SHIFT; 1387 1388 share: 1389 add_vma_to_mm(current->mm, vma); 1390 1391 /* we flush the region from the icache only when the first executable 1392 * mapping of it is made */ 1393 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1394 flush_icache_range(region->vm_start, region->vm_end); 1395 region->vm_icache_flushed = true; 1396 } 1397 1398 up_write(&nommu_region_sem); 1399 1400 return result; 1401 1402 error_just_free: 1403 up_write(&nommu_region_sem); 1404 error: 1405 if (region->vm_file) 1406 fput(region->vm_file); 1407 kmem_cache_free(vm_region_jar, region); 1408 if (vma->vm_file) 1409 fput(vma->vm_file); 1410 kmem_cache_free(vm_area_cachep, vma); 1411 return ret; 1412 1413 sharing_violation: 1414 up_write(&nommu_region_sem); 1415 pr_warn("Attempt to share mismatched mappings\n"); 1416 ret = -EINVAL; 1417 goto error; 1418 1419 error_getting_vma: 1420 kmem_cache_free(vm_region_jar, region); 1421 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1422 len, current->pid); 1423 show_free_areas(0); 1424 return -ENOMEM; 1425 1426 error_getting_region: 1427 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1428 len, current->pid); 1429 show_free_areas(0); 1430 return -ENOMEM; 1431 } 1432 1433 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1434 unsigned long, prot, unsigned long, flags, 1435 unsigned long, fd, unsigned long, pgoff) 1436 { 1437 struct file *file = NULL; 1438 unsigned long retval = -EBADF; 1439 1440 audit_mmap_fd(fd, flags); 1441 if (!(flags & MAP_ANONYMOUS)) { 1442 file = fget(fd); 1443 if (!file) 1444 goto out; 1445 } 1446 1447 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1448 1449 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1450 1451 if (file) 1452 fput(file); 1453 out: 1454 return retval; 1455 } 1456 1457 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1458 struct mmap_arg_struct { 1459 unsigned long addr; 1460 unsigned long len; 1461 unsigned long prot; 1462 unsigned long flags; 1463 unsigned long fd; 1464 unsigned long offset; 1465 }; 1466 1467 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1468 { 1469 struct mmap_arg_struct a; 1470 1471 if (copy_from_user(&a, arg, sizeof(a))) 1472 return -EFAULT; 1473 if (offset_in_page(a.offset)) 1474 return -EINVAL; 1475 1476 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1477 a.offset >> PAGE_SHIFT); 1478 } 1479 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1480 1481 /* 1482 * split a vma into two pieces at address 'addr', a new vma is allocated either 1483 * for the first part or the tail. 1484 */ 1485 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1486 unsigned long addr, int new_below) 1487 { 1488 struct vm_area_struct *new; 1489 struct vm_region *region; 1490 unsigned long npages; 1491 1492 /* we're only permitted to split anonymous regions (these should have 1493 * only a single usage on the region) */ 1494 if (vma->vm_file) 1495 return -ENOMEM; 1496 1497 if (mm->map_count >= sysctl_max_map_count) 1498 return -ENOMEM; 1499 1500 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1501 if (!region) 1502 return -ENOMEM; 1503 1504 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1505 if (!new) { 1506 kmem_cache_free(vm_region_jar, region); 1507 return -ENOMEM; 1508 } 1509 1510 /* most fields are the same, copy all, and then fixup */ 1511 *new = *vma; 1512 *region = *vma->vm_region; 1513 new->vm_region = region; 1514 1515 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1516 1517 if (new_below) { 1518 region->vm_top = region->vm_end = new->vm_end = addr; 1519 } else { 1520 region->vm_start = new->vm_start = addr; 1521 region->vm_pgoff = new->vm_pgoff += npages; 1522 } 1523 1524 if (new->vm_ops && new->vm_ops->open) 1525 new->vm_ops->open(new); 1526 1527 delete_vma_from_mm(vma); 1528 down_write(&nommu_region_sem); 1529 delete_nommu_region(vma->vm_region); 1530 if (new_below) { 1531 vma->vm_region->vm_start = vma->vm_start = addr; 1532 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1533 } else { 1534 vma->vm_region->vm_end = vma->vm_end = addr; 1535 vma->vm_region->vm_top = addr; 1536 } 1537 add_nommu_region(vma->vm_region); 1538 add_nommu_region(new->vm_region); 1539 up_write(&nommu_region_sem); 1540 add_vma_to_mm(mm, vma); 1541 add_vma_to_mm(mm, new); 1542 return 0; 1543 } 1544 1545 /* 1546 * shrink a VMA by removing the specified chunk from either the beginning or 1547 * the end 1548 */ 1549 static int shrink_vma(struct mm_struct *mm, 1550 struct vm_area_struct *vma, 1551 unsigned long from, unsigned long to) 1552 { 1553 struct vm_region *region; 1554 1555 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1556 * and list */ 1557 delete_vma_from_mm(vma); 1558 if (from > vma->vm_start) 1559 vma->vm_end = from; 1560 else 1561 vma->vm_start = to; 1562 add_vma_to_mm(mm, vma); 1563 1564 /* cut the backing region down to size */ 1565 region = vma->vm_region; 1566 BUG_ON(region->vm_usage != 1); 1567 1568 down_write(&nommu_region_sem); 1569 delete_nommu_region(region); 1570 if (from > region->vm_start) { 1571 to = region->vm_top; 1572 region->vm_top = region->vm_end = from; 1573 } else { 1574 region->vm_start = to; 1575 } 1576 add_nommu_region(region); 1577 up_write(&nommu_region_sem); 1578 1579 free_page_series(from, to); 1580 return 0; 1581 } 1582 1583 /* 1584 * release a mapping 1585 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1586 * VMA, though it need not cover the whole VMA 1587 */ 1588 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1589 { 1590 struct vm_area_struct *vma; 1591 unsigned long end; 1592 int ret; 1593 1594 len = PAGE_ALIGN(len); 1595 if (len == 0) 1596 return -EINVAL; 1597 1598 end = start + len; 1599 1600 /* find the first potentially overlapping VMA */ 1601 vma = find_vma(mm, start); 1602 if (!vma) { 1603 static int limit; 1604 if (limit < 5) { 1605 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1606 current->pid, current->comm, 1607 start, start + len - 1); 1608 limit++; 1609 } 1610 return -EINVAL; 1611 } 1612 1613 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1614 if (vma->vm_file) { 1615 do { 1616 if (start > vma->vm_start) 1617 return -EINVAL; 1618 if (end == vma->vm_end) 1619 goto erase_whole_vma; 1620 vma = vma->vm_next; 1621 } while (vma); 1622 return -EINVAL; 1623 } else { 1624 /* the chunk must be a subset of the VMA found */ 1625 if (start == vma->vm_start && end == vma->vm_end) 1626 goto erase_whole_vma; 1627 if (start < vma->vm_start || end > vma->vm_end) 1628 return -EINVAL; 1629 if (offset_in_page(start)) 1630 return -EINVAL; 1631 if (end != vma->vm_end && offset_in_page(end)) 1632 return -EINVAL; 1633 if (start != vma->vm_start && end != vma->vm_end) { 1634 ret = split_vma(mm, vma, start, 1); 1635 if (ret < 0) 1636 return ret; 1637 } 1638 return shrink_vma(mm, vma, start, end); 1639 } 1640 1641 erase_whole_vma: 1642 delete_vma_from_mm(vma); 1643 delete_vma(mm, vma); 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(do_munmap); 1647 1648 int vm_munmap(unsigned long addr, size_t len) 1649 { 1650 struct mm_struct *mm = current->mm; 1651 int ret; 1652 1653 down_write(&mm->mmap_sem); 1654 ret = do_munmap(mm, addr, len); 1655 up_write(&mm->mmap_sem); 1656 return ret; 1657 } 1658 EXPORT_SYMBOL(vm_munmap); 1659 1660 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1661 { 1662 return vm_munmap(addr, len); 1663 } 1664 1665 /* 1666 * release all the mappings made in a process's VM space 1667 */ 1668 void exit_mmap(struct mm_struct *mm) 1669 { 1670 struct vm_area_struct *vma; 1671 1672 if (!mm) 1673 return; 1674 1675 mm->total_vm = 0; 1676 1677 while ((vma = mm->mmap)) { 1678 mm->mmap = vma->vm_next; 1679 delete_vma_from_mm(vma); 1680 delete_vma(mm, vma); 1681 cond_resched(); 1682 } 1683 } 1684 1685 int vm_brk(unsigned long addr, unsigned long len) 1686 { 1687 return -ENOMEM; 1688 } 1689 1690 /* 1691 * expand (or shrink) an existing mapping, potentially moving it at the same 1692 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1693 * 1694 * under NOMMU conditions, we only permit changing a mapping's size, and only 1695 * as long as it stays within the region allocated by do_mmap_private() and the 1696 * block is not shareable 1697 * 1698 * MREMAP_FIXED is not supported under NOMMU conditions 1699 */ 1700 static unsigned long do_mremap(unsigned long addr, 1701 unsigned long old_len, unsigned long new_len, 1702 unsigned long flags, unsigned long new_addr) 1703 { 1704 struct vm_area_struct *vma; 1705 1706 /* insanity checks first */ 1707 old_len = PAGE_ALIGN(old_len); 1708 new_len = PAGE_ALIGN(new_len); 1709 if (old_len == 0 || new_len == 0) 1710 return (unsigned long) -EINVAL; 1711 1712 if (offset_in_page(addr)) 1713 return -EINVAL; 1714 1715 if (flags & MREMAP_FIXED && new_addr != addr) 1716 return (unsigned long) -EINVAL; 1717 1718 vma = find_vma_exact(current->mm, addr, old_len); 1719 if (!vma) 1720 return (unsigned long) -EINVAL; 1721 1722 if (vma->vm_end != vma->vm_start + old_len) 1723 return (unsigned long) -EFAULT; 1724 1725 if (vma->vm_flags & VM_MAYSHARE) 1726 return (unsigned long) -EPERM; 1727 1728 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1729 return (unsigned long) -ENOMEM; 1730 1731 /* all checks complete - do it */ 1732 vma->vm_end = vma->vm_start + new_len; 1733 return vma->vm_start; 1734 } 1735 1736 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1737 unsigned long, new_len, unsigned long, flags, 1738 unsigned long, new_addr) 1739 { 1740 unsigned long ret; 1741 1742 down_write(¤t->mm->mmap_sem); 1743 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1744 up_write(¤t->mm->mmap_sem); 1745 return ret; 1746 } 1747 1748 struct page *follow_page_mask(struct vm_area_struct *vma, 1749 unsigned long address, unsigned int flags, 1750 unsigned int *page_mask) 1751 { 1752 *page_mask = 0; 1753 return NULL; 1754 } 1755 1756 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1757 unsigned long pfn, unsigned long size, pgprot_t prot) 1758 { 1759 if (addr != (pfn << PAGE_SHIFT)) 1760 return -EINVAL; 1761 1762 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(remap_pfn_range); 1766 1767 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1768 { 1769 unsigned long pfn = start >> PAGE_SHIFT; 1770 unsigned long vm_len = vma->vm_end - vma->vm_start; 1771 1772 pfn += vma->vm_pgoff; 1773 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1774 } 1775 EXPORT_SYMBOL(vm_iomap_memory); 1776 1777 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1778 unsigned long pgoff) 1779 { 1780 unsigned int size = vma->vm_end - vma->vm_start; 1781 1782 if (!(vma->vm_flags & VM_USERMAP)) 1783 return -EINVAL; 1784 1785 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1786 vma->vm_end = vma->vm_start + size; 1787 1788 return 0; 1789 } 1790 EXPORT_SYMBOL(remap_vmalloc_range); 1791 1792 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1793 unsigned long len, unsigned long pgoff, unsigned long flags) 1794 { 1795 return -ENOMEM; 1796 } 1797 1798 void unmap_mapping_range(struct address_space *mapping, 1799 loff_t const holebegin, loff_t const holelen, 1800 int even_cows) 1801 { 1802 } 1803 EXPORT_SYMBOL(unmap_mapping_range); 1804 1805 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1806 { 1807 BUG(); 1808 return 0; 1809 } 1810 EXPORT_SYMBOL(filemap_fault); 1811 1812 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1813 { 1814 BUG(); 1815 } 1816 EXPORT_SYMBOL(filemap_map_pages); 1817 1818 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1819 unsigned long addr, void *buf, int len, int write) 1820 { 1821 struct vm_area_struct *vma; 1822 1823 down_read(&mm->mmap_sem); 1824 1825 /* the access must start within one of the target process's mappings */ 1826 vma = find_vma(mm, addr); 1827 if (vma) { 1828 /* don't overrun this mapping */ 1829 if (addr + len >= vma->vm_end) 1830 len = vma->vm_end - addr; 1831 1832 /* only read or write mappings where it is permitted */ 1833 if (write && vma->vm_flags & VM_MAYWRITE) 1834 copy_to_user_page(vma, NULL, addr, 1835 (void *) addr, buf, len); 1836 else if (!write && vma->vm_flags & VM_MAYREAD) 1837 copy_from_user_page(vma, NULL, addr, 1838 buf, (void *) addr, len); 1839 else 1840 len = 0; 1841 } else { 1842 len = 0; 1843 } 1844 1845 up_read(&mm->mmap_sem); 1846 1847 return len; 1848 } 1849 1850 /** 1851 * @access_remote_vm - access another process' address space 1852 * @mm: the mm_struct of the target address space 1853 * @addr: start address to access 1854 * @buf: source or destination buffer 1855 * @len: number of bytes to transfer 1856 * @write: whether the access is a write 1857 * 1858 * The caller must hold a reference on @mm. 1859 */ 1860 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1861 void *buf, int len, int write) 1862 { 1863 return __access_remote_vm(NULL, mm, addr, buf, len, write); 1864 } 1865 1866 /* 1867 * Access another process' address space. 1868 * - source/target buffer must be kernel space 1869 */ 1870 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1871 { 1872 struct mm_struct *mm; 1873 1874 if (addr + len < addr) 1875 return 0; 1876 1877 mm = get_task_mm(tsk); 1878 if (!mm) 1879 return 0; 1880 1881 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 1882 1883 mmput(mm); 1884 return len; 1885 } 1886 1887 /** 1888 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1889 * @inode: The inode to check 1890 * @size: The current filesize of the inode 1891 * @newsize: The proposed filesize of the inode 1892 * 1893 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1894 * make sure that that any outstanding VMAs aren't broken and then shrink the 1895 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1896 * automatically grant mappings that are too large. 1897 */ 1898 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1899 size_t newsize) 1900 { 1901 struct vm_area_struct *vma; 1902 struct vm_region *region; 1903 pgoff_t low, high; 1904 size_t r_size, r_top; 1905 1906 low = newsize >> PAGE_SHIFT; 1907 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1908 1909 down_write(&nommu_region_sem); 1910 i_mmap_lock_read(inode->i_mapping); 1911 1912 /* search for VMAs that fall within the dead zone */ 1913 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1914 /* found one - only interested if it's shared out of the page 1915 * cache */ 1916 if (vma->vm_flags & VM_SHARED) { 1917 i_mmap_unlock_read(inode->i_mapping); 1918 up_write(&nommu_region_sem); 1919 return -ETXTBSY; /* not quite true, but near enough */ 1920 } 1921 } 1922 1923 /* reduce any regions that overlap the dead zone - if in existence, 1924 * these will be pointed to by VMAs that don't overlap the dead zone 1925 * 1926 * we don't check for any regions that start beyond the EOF as there 1927 * shouldn't be any 1928 */ 1929 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1930 if (!(vma->vm_flags & VM_SHARED)) 1931 continue; 1932 1933 region = vma->vm_region; 1934 r_size = region->vm_top - region->vm_start; 1935 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1936 1937 if (r_top > newsize) { 1938 region->vm_top -= r_top - newsize; 1939 if (region->vm_end > region->vm_top) 1940 region->vm_end = region->vm_top; 1941 } 1942 } 1943 1944 i_mmap_unlock_read(inode->i_mapping); 1945 up_write(&nommu_region_sem); 1946 return 0; 1947 } 1948 1949 /* 1950 * Initialise sysctl_user_reserve_kbytes. 1951 * 1952 * This is intended to prevent a user from starting a single memory hogging 1953 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1954 * mode. 1955 * 1956 * The default value is min(3% of free memory, 128MB) 1957 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1958 */ 1959 static int __meminit init_user_reserve(void) 1960 { 1961 unsigned long free_kbytes; 1962 1963 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1964 1965 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1966 return 0; 1967 } 1968 subsys_initcall(init_user_reserve); 1969 1970 /* 1971 * Initialise sysctl_admin_reserve_kbytes. 1972 * 1973 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1974 * to log in and kill a memory hogging process. 1975 * 1976 * Systems with more than 256MB will reserve 8MB, enough to recover 1977 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1978 * only reserve 3% of free pages by default. 1979 */ 1980 static int __meminit init_admin_reserve(void) 1981 { 1982 unsigned long free_kbytes; 1983 1984 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1985 1986 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1987 return 0; 1988 } 1989 subsys_initcall(init_admin_reserve); 1990