1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/tlb.h> 40 #include <asm/tlbflush.h> 41 #include <asm/mmu_context.h> 42 #include "internal.h" 43 44 void *high_memory; 45 EXPORT_SYMBOL(high_memory); 46 struct page *mem_map; 47 unsigned long max_mapnr; 48 EXPORT_SYMBOL(max_mapnr); 49 unsigned long highest_memmap_pfn; 50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 51 int heap_stack_gap = 0; 52 53 atomic_long_t mmap_pages_allocated; 54 55 EXPORT_SYMBOL(mem_map); 56 57 /* list of mapped, potentially shareable regions */ 58 static struct kmem_cache *vm_region_jar; 59 struct rb_root nommu_region_tree = RB_ROOT; 60 DECLARE_RWSEM(nommu_region_sem); 61 62 const struct vm_operations_struct generic_file_vm_ops = { 63 }; 64 65 /* 66 * Return the total memory allocated for this pointer, not 67 * just what the caller asked for. 68 * 69 * Doesn't have to be accurate, i.e. may have races. 70 */ 71 unsigned int kobjsize(const void *objp) 72 { 73 struct page *page; 74 75 /* 76 * If the object we have should not have ksize performed on it, 77 * return size of 0 78 */ 79 if (!objp || !virt_addr_valid(objp)) 80 return 0; 81 82 page = virt_to_head_page(objp); 83 84 /* 85 * If the allocator sets PageSlab, we know the pointer came from 86 * kmalloc(). 87 */ 88 if (PageSlab(page)) 89 return ksize(objp); 90 91 /* 92 * If it's not a compound page, see if we have a matching VMA 93 * region. This test is intentionally done in reverse order, 94 * so if there's no VMA, we still fall through and hand back 95 * PAGE_SIZE for 0-order pages. 96 */ 97 if (!PageCompound(page)) { 98 struct vm_area_struct *vma; 99 100 vma = find_vma(current->mm, (unsigned long)objp); 101 if (vma) 102 return vma->vm_end - vma->vm_start; 103 } 104 105 /* 106 * The ksize() function is only guaranteed to work for pointers 107 * returned by kmalloc(). So handle arbitrary pointers here. 108 */ 109 return page_size(page); 110 } 111 112 /** 113 * follow_pfn - look up PFN at a user virtual address 114 * @vma: memory mapping 115 * @address: user virtual address 116 * @pfn: location to store found PFN 117 * 118 * Only IO mappings and raw PFN mappings are allowed. 119 * 120 * Returns zero and the pfn at @pfn on success, -ve otherwise. 121 */ 122 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 123 unsigned long *pfn) 124 { 125 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 126 return -EINVAL; 127 128 *pfn = address >> PAGE_SHIFT; 129 return 0; 130 } 131 EXPORT_SYMBOL(follow_pfn); 132 133 LIST_HEAD(vmap_area_list); 134 135 void vfree(const void *addr) 136 { 137 kfree(addr); 138 } 139 EXPORT_SYMBOL(vfree); 140 141 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 142 { 143 /* 144 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 145 * returns only a logical address. 146 */ 147 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 148 } 149 EXPORT_SYMBOL(__vmalloc); 150 151 void *__vmalloc_node_range(unsigned long size, unsigned long align, 152 unsigned long start, unsigned long end, gfp_t gfp_mask, 153 pgprot_t prot, unsigned long vm_flags, int node, 154 const void *caller) 155 { 156 return __vmalloc(size, gfp_mask); 157 } 158 159 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 160 int node, const void *caller) 161 { 162 return __vmalloc(size, gfp_mask); 163 } 164 165 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 166 { 167 void *ret; 168 169 ret = __vmalloc(size, flags); 170 if (ret) { 171 struct vm_area_struct *vma; 172 173 mmap_write_lock(current->mm); 174 vma = find_vma(current->mm, (unsigned long)ret); 175 if (vma) 176 vma->vm_flags |= VM_USERMAP; 177 mmap_write_unlock(current->mm); 178 } 179 180 return ret; 181 } 182 183 void *vmalloc_user(unsigned long size) 184 { 185 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 186 } 187 EXPORT_SYMBOL(vmalloc_user); 188 189 struct page *vmalloc_to_page(const void *addr) 190 { 191 return virt_to_page(addr); 192 } 193 EXPORT_SYMBOL(vmalloc_to_page); 194 195 unsigned long vmalloc_to_pfn(const void *addr) 196 { 197 return page_to_pfn(virt_to_page(addr)); 198 } 199 EXPORT_SYMBOL(vmalloc_to_pfn); 200 201 long vread(char *buf, char *addr, unsigned long count) 202 { 203 /* Don't allow overflow */ 204 if ((unsigned long) buf + count < count) 205 count = -(unsigned long) buf; 206 207 memcpy(buf, addr, count); 208 return count; 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas) 548 { 549 mas_set_range(mas, vma->vm_start, vma->vm_end - 1); 550 mas_store_prealloc(mas, vma); 551 } 552 553 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas) 554 { 555 mas->index = vma->vm_start; 556 mas->last = vma->vm_end - 1; 557 mas_store_prealloc(mas, NULL); 558 } 559 560 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 561 { 562 mm->map_count++; 563 vma->vm_mm = mm; 564 565 /* add the VMA to the mapping */ 566 if (vma->vm_file) { 567 struct address_space *mapping = vma->vm_file->f_mapping; 568 569 i_mmap_lock_write(mapping); 570 flush_dcache_mmap_lock(mapping); 571 vma_interval_tree_insert(vma, &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 } 576 577 /* 578 * mas_add_vma_to_mm() - Maple state variant of add_mas_to_mm(). 579 * @mas: The maple state with preallocations. 580 * @mm: The mm_struct 581 * @vma: The vma to add 582 * 583 */ 584 static void mas_add_vma_to_mm(struct ma_state *mas, struct mm_struct *mm, 585 struct vm_area_struct *vma) 586 { 587 BUG_ON(!vma->vm_region); 588 589 setup_vma_to_mm(vma, mm); 590 591 /* add the VMA to the tree */ 592 vma_mas_store(vma, mas); 593 } 594 595 /* 596 * add a VMA into a process's mm_struct in the appropriate place in the list 597 * and tree and add to the address space's page tree also if not an anonymous 598 * page 599 * - should be called with mm->mmap_lock held writelocked 600 */ 601 static int add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 602 { 603 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end); 604 605 if (mas_preallocate(&mas, vma, GFP_KERNEL)) { 606 pr_warn("Allocation of vma tree for process %d failed\n", 607 current->pid); 608 return -ENOMEM; 609 } 610 mas_add_vma_to_mm(&mas, mm, vma); 611 return 0; 612 } 613 614 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 615 { 616 vma->vm_mm->map_count--; 617 /* remove the VMA from the mapping */ 618 if (vma->vm_file) { 619 struct address_space *mapping; 620 mapping = vma->vm_file->f_mapping; 621 622 i_mmap_lock_write(mapping); 623 flush_dcache_mmap_lock(mapping); 624 vma_interval_tree_remove(vma, &mapping->i_mmap); 625 flush_dcache_mmap_unlock(mapping); 626 i_mmap_unlock_write(mapping); 627 } 628 } 629 /* 630 * delete a VMA from its owning mm_struct and address space 631 */ 632 static int delete_vma_from_mm(struct vm_area_struct *vma) 633 { 634 MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0); 635 636 if (mas_preallocate(&mas, vma, GFP_KERNEL)) { 637 pr_warn("Allocation of vma tree for process %d failed\n", 638 current->pid); 639 return -ENOMEM; 640 } 641 cleanup_vma_from_mm(vma); 642 643 /* remove from the MM's tree and list */ 644 vma_mas_remove(vma, &mas); 645 return 0; 646 } 647 648 /* 649 * destroy a VMA record 650 */ 651 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 652 { 653 if (vma->vm_ops && vma->vm_ops->close) 654 vma->vm_ops->close(vma); 655 if (vma->vm_file) 656 fput(vma->vm_file); 657 put_nommu_region(vma->vm_region); 658 vm_area_free(vma); 659 } 660 661 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 662 unsigned long start_addr, 663 unsigned long end_addr) 664 { 665 unsigned long index = start_addr; 666 667 mmap_assert_locked(mm); 668 return mt_find(&mm->mm_mt, &index, end_addr - 1); 669 } 670 EXPORT_SYMBOL(find_vma_intersection); 671 672 /* 673 * look up the first VMA in which addr resides, NULL if none 674 * - should be called with mm->mmap_lock at least held readlocked 675 */ 676 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 677 { 678 MA_STATE(mas, &mm->mm_mt, addr, addr); 679 680 return mas_walk(&mas); 681 } 682 EXPORT_SYMBOL(find_vma); 683 684 /* 685 * find a VMA 686 * - we don't extend stack VMAs under NOMMU conditions 687 */ 688 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 689 { 690 return find_vma(mm, addr); 691 } 692 693 /* 694 * expand a stack to a given address 695 * - not supported under NOMMU conditions 696 */ 697 int expand_stack(struct vm_area_struct *vma, unsigned long address) 698 { 699 return -ENOMEM; 700 } 701 702 /* 703 * look up the first VMA exactly that exactly matches addr 704 * - should be called with mm->mmap_lock at least held readlocked 705 */ 706 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 707 unsigned long addr, 708 unsigned long len) 709 { 710 struct vm_area_struct *vma; 711 unsigned long end = addr + len; 712 MA_STATE(mas, &mm->mm_mt, addr, addr); 713 714 vma = mas_walk(&mas); 715 if (!vma) 716 return NULL; 717 if (vma->vm_start != addr) 718 return NULL; 719 if (vma->vm_end != end) 720 return NULL; 721 722 return vma; 723 } 724 725 /* 726 * determine whether a mapping should be permitted and, if so, what sort of 727 * mapping we're capable of supporting 728 */ 729 static int validate_mmap_request(struct file *file, 730 unsigned long addr, 731 unsigned long len, 732 unsigned long prot, 733 unsigned long flags, 734 unsigned long pgoff, 735 unsigned long *_capabilities) 736 { 737 unsigned long capabilities, rlen; 738 int ret; 739 740 /* do the simple checks first */ 741 if (flags & MAP_FIXED) 742 return -EINVAL; 743 744 if ((flags & MAP_TYPE) != MAP_PRIVATE && 745 (flags & MAP_TYPE) != MAP_SHARED) 746 return -EINVAL; 747 748 if (!len) 749 return -EINVAL; 750 751 /* Careful about overflows.. */ 752 rlen = PAGE_ALIGN(len); 753 if (!rlen || rlen > TASK_SIZE) 754 return -ENOMEM; 755 756 /* offset overflow? */ 757 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 758 return -EOVERFLOW; 759 760 if (file) { 761 /* files must support mmap */ 762 if (!file->f_op->mmap) 763 return -ENODEV; 764 765 /* work out if what we've got could possibly be shared 766 * - we support chardevs that provide their own "memory" 767 * - we support files/blockdevs that are memory backed 768 */ 769 if (file->f_op->mmap_capabilities) { 770 capabilities = file->f_op->mmap_capabilities(file); 771 } else { 772 /* no explicit capabilities set, so assume some 773 * defaults */ 774 switch (file_inode(file)->i_mode & S_IFMT) { 775 case S_IFREG: 776 case S_IFBLK: 777 capabilities = NOMMU_MAP_COPY; 778 break; 779 780 case S_IFCHR: 781 capabilities = 782 NOMMU_MAP_DIRECT | 783 NOMMU_MAP_READ | 784 NOMMU_MAP_WRITE; 785 break; 786 787 default: 788 return -EINVAL; 789 } 790 } 791 792 /* eliminate any capabilities that we can't support on this 793 * device */ 794 if (!file->f_op->get_unmapped_area) 795 capabilities &= ~NOMMU_MAP_DIRECT; 796 if (!(file->f_mode & FMODE_CAN_READ)) 797 capabilities &= ~NOMMU_MAP_COPY; 798 799 /* The file shall have been opened with read permission. */ 800 if (!(file->f_mode & FMODE_READ)) 801 return -EACCES; 802 803 if (flags & MAP_SHARED) { 804 /* do checks for writing, appending and locking */ 805 if ((prot & PROT_WRITE) && 806 !(file->f_mode & FMODE_WRITE)) 807 return -EACCES; 808 809 if (IS_APPEND(file_inode(file)) && 810 (file->f_mode & FMODE_WRITE)) 811 return -EACCES; 812 813 if (!(capabilities & NOMMU_MAP_DIRECT)) 814 return -ENODEV; 815 816 /* we mustn't privatise shared mappings */ 817 capabilities &= ~NOMMU_MAP_COPY; 818 } else { 819 /* we're going to read the file into private memory we 820 * allocate */ 821 if (!(capabilities & NOMMU_MAP_COPY)) 822 return -ENODEV; 823 824 /* we don't permit a private writable mapping to be 825 * shared with the backing device */ 826 if (prot & PROT_WRITE) 827 capabilities &= ~NOMMU_MAP_DIRECT; 828 } 829 830 if (capabilities & NOMMU_MAP_DIRECT) { 831 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 832 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 833 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 834 ) { 835 capabilities &= ~NOMMU_MAP_DIRECT; 836 if (flags & MAP_SHARED) { 837 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 838 return -EINVAL; 839 } 840 } 841 } 842 843 /* handle executable mappings and implied executable 844 * mappings */ 845 if (path_noexec(&file->f_path)) { 846 if (prot & PROT_EXEC) 847 return -EPERM; 848 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 849 /* handle implication of PROT_EXEC by PROT_READ */ 850 if (current->personality & READ_IMPLIES_EXEC) { 851 if (capabilities & NOMMU_MAP_EXEC) 852 prot |= PROT_EXEC; 853 } 854 } else if ((prot & PROT_READ) && 855 (prot & PROT_EXEC) && 856 !(capabilities & NOMMU_MAP_EXEC) 857 ) { 858 /* backing file is not executable, try to copy */ 859 capabilities &= ~NOMMU_MAP_DIRECT; 860 } 861 } else { 862 /* anonymous mappings are always memory backed and can be 863 * privately mapped 864 */ 865 capabilities = NOMMU_MAP_COPY; 866 867 /* handle PROT_EXEC implication by PROT_READ */ 868 if ((prot & PROT_READ) && 869 (current->personality & READ_IMPLIES_EXEC)) 870 prot |= PROT_EXEC; 871 } 872 873 /* allow the security API to have its say */ 874 ret = security_mmap_addr(addr); 875 if (ret < 0) 876 return ret; 877 878 /* looks okay */ 879 *_capabilities = capabilities; 880 return 0; 881 } 882 883 /* 884 * we've determined that we can make the mapping, now translate what we 885 * now know into VMA flags 886 */ 887 static unsigned long determine_vm_flags(struct file *file, 888 unsigned long prot, 889 unsigned long flags, 890 unsigned long capabilities) 891 { 892 unsigned long vm_flags; 893 894 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 895 /* vm_flags |= mm->def_flags; */ 896 897 if (!(capabilities & NOMMU_MAP_DIRECT)) { 898 /* attempt to share read-only copies of mapped file chunks */ 899 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 900 if (file && !(prot & PROT_WRITE)) 901 vm_flags |= VM_MAYSHARE; 902 } else { 903 /* overlay a shareable mapping on the backing device or inode 904 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 905 * romfs/cramfs */ 906 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 907 if (flags & MAP_SHARED) 908 vm_flags |= VM_SHARED; 909 } 910 911 /* refuse to let anyone share private mappings with this process if 912 * it's being traced - otherwise breakpoints set in it may interfere 913 * with another untraced process 914 */ 915 if ((flags & MAP_PRIVATE) && current->ptrace) 916 vm_flags &= ~VM_MAYSHARE; 917 918 return vm_flags; 919 } 920 921 /* 922 * set up a shared mapping on a file (the driver or filesystem provides and 923 * pins the storage) 924 */ 925 static int do_mmap_shared_file(struct vm_area_struct *vma) 926 { 927 int ret; 928 929 ret = call_mmap(vma->vm_file, vma); 930 if (ret == 0) { 931 vma->vm_region->vm_top = vma->vm_region->vm_end; 932 return 0; 933 } 934 if (ret != -ENOSYS) 935 return ret; 936 937 /* getting -ENOSYS indicates that direct mmap isn't possible (as 938 * opposed to tried but failed) so we can only give a suitable error as 939 * it's not possible to make a private copy if MAP_SHARED was given */ 940 return -ENODEV; 941 } 942 943 /* 944 * set up a private mapping or an anonymous shared mapping 945 */ 946 static int do_mmap_private(struct vm_area_struct *vma, 947 struct vm_region *region, 948 unsigned long len, 949 unsigned long capabilities) 950 { 951 unsigned long total, point; 952 void *base; 953 int ret, order; 954 955 /* invoke the file's mapping function so that it can keep track of 956 * shared mappings on devices or memory 957 * - VM_MAYSHARE will be set if it may attempt to share 958 */ 959 if (capabilities & NOMMU_MAP_DIRECT) { 960 ret = call_mmap(vma->vm_file, vma); 961 if (ret == 0) { 962 /* shouldn't return success if we're not sharing */ 963 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 964 vma->vm_region->vm_top = vma->vm_region->vm_end; 965 return 0; 966 } 967 if (ret != -ENOSYS) 968 return ret; 969 970 /* getting an ENOSYS error indicates that direct mmap isn't 971 * possible (as opposed to tried but failed) so we'll try to 972 * make a private copy of the data and map that instead */ 973 } 974 975 976 /* allocate some memory to hold the mapping 977 * - note that this may not return a page-aligned address if the object 978 * we're allocating is smaller than a page 979 */ 980 order = get_order(len); 981 total = 1 << order; 982 point = len >> PAGE_SHIFT; 983 984 /* we don't want to allocate a power-of-2 sized page set */ 985 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 986 total = point; 987 988 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 989 if (!base) 990 goto enomem; 991 992 atomic_long_add(total, &mmap_pages_allocated); 993 994 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 995 region->vm_start = (unsigned long) base; 996 region->vm_end = region->vm_start + len; 997 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 998 999 vma->vm_start = region->vm_start; 1000 vma->vm_end = region->vm_start + len; 1001 1002 if (vma->vm_file) { 1003 /* read the contents of a file into the copy */ 1004 loff_t fpos; 1005 1006 fpos = vma->vm_pgoff; 1007 fpos <<= PAGE_SHIFT; 1008 1009 ret = kernel_read(vma->vm_file, base, len, &fpos); 1010 if (ret < 0) 1011 goto error_free; 1012 1013 /* clear the last little bit */ 1014 if (ret < len) 1015 memset(base + ret, 0, len - ret); 1016 1017 } else { 1018 vma_set_anonymous(vma); 1019 } 1020 1021 return 0; 1022 1023 error_free: 1024 free_page_series(region->vm_start, region->vm_top); 1025 region->vm_start = vma->vm_start = 0; 1026 region->vm_end = vma->vm_end = 0; 1027 region->vm_top = 0; 1028 return ret; 1029 1030 enomem: 1031 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1032 len, current->pid, current->comm); 1033 show_free_areas(0, NULL); 1034 return -ENOMEM; 1035 } 1036 1037 /* 1038 * handle mapping creation for uClinux 1039 */ 1040 unsigned long do_mmap(struct file *file, 1041 unsigned long addr, 1042 unsigned long len, 1043 unsigned long prot, 1044 unsigned long flags, 1045 unsigned long pgoff, 1046 unsigned long *populate, 1047 struct list_head *uf) 1048 { 1049 struct vm_area_struct *vma; 1050 struct vm_region *region; 1051 struct rb_node *rb; 1052 vm_flags_t vm_flags; 1053 unsigned long capabilities, result; 1054 int ret; 1055 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0); 1056 1057 *populate = 0; 1058 1059 /* decide whether we should attempt the mapping, and if so what sort of 1060 * mapping */ 1061 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1062 &capabilities); 1063 if (ret < 0) 1064 return ret; 1065 1066 /* we ignore the address hint */ 1067 addr = 0; 1068 len = PAGE_ALIGN(len); 1069 1070 /* we've determined that we can make the mapping, now translate what we 1071 * now know into VMA flags */ 1072 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1073 1074 1075 /* we're going to need to record the mapping */ 1076 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1077 if (!region) 1078 goto error_getting_region; 1079 1080 vma = vm_area_alloc(current->mm); 1081 if (!vma) 1082 goto error_getting_vma; 1083 1084 if (mas_preallocate(&mas, vma, GFP_KERNEL)) 1085 goto error_maple_preallocate; 1086 1087 region->vm_usage = 1; 1088 region->vm_flags = vm_flags; 1089 region->vm_pgoff = pgoff; 1090 1091 vma->vm_flags = vm_flags; 1092 vma->vm_pgoff = pgoff; 1093 1094 if (file) { 1095 region->vm_file = get_file(file); 1096 vma->vm_file = get_file(file); 1097 } 1098 1099 down_write(&nommu_region_sem); 1100 1101 /* if we want to share, we need to check for regions created by other 1102 * mmap() calls that overlap with our proposed mapping 1103 * - we can only share with a superset match on most regular files 1104 * - shared mappings on character devices and memory backed files are 1105 * permitted to overlap inexactly as far as we are concerned for in 1106 * these cases, sharing is handled in the driver or filesystem rather 1107 * than here 1108 */ 1109 if (vm_flags & VM_MAYSHARE) { 1110 struct vm_region *pregion; 1111 unsigned long pglen, rpglen, pgend, rpgend, start; 1112 1113 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1114 pgend = pgoff + pglen; 1115 1116 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1117 pregion = rb_entry(rb, struct vm_region, vm_rb); 1118 1119 if (!(pregion->vm_flags & VM_MAYSHARE)) 1120 continue; 1121 1122 /* search for overlapping mappings on the same file */ 1123 if (file_inode(pregion->vm_file) != 1124 file_inode(file)) 1125 continue; 1126 1127 if (pregion->vm_pgoff >= pgend) 1128 continue; 1129 1130 rpglen = pregion->vm_end - pregion->vm_start; 1131 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1132 rpgend = pregion->vm_pgoff + rpglen; 1133 if (pgoff >= rpgend) 1134 continue; 1135 1136 /* handle inexactly overlapping matches between 1137 * mappings */ 1138 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1139 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1140 /* new mapping is not a subset of the region */ 1141 if (!(capabilities & NOMMU_MAP_DIRECT)) 1142 goto sharing_violation; 1143 continue; 1144 } 1145 1146 /* we've found a region we can share */ 1147 pregion->vm_usage++; 1148 vma->vm_region = pregion; 1149 start = pregion->vm_start; 1150 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1151 vma->vm_start = start; 1152 vma->vm_end = start + len; 1153 1154 if (pregion->vm_flags & VM_MAPPED_COPY) 1155 vma->vm_flags |= VM_MAPPED_COPY; 1156 else { 1157 ret = do_mmap_shared_file(vma); 1158 if (ret < 0) { 1159 vma->vm_region = NULL; 1160 vma->vm_start = 0; 1161 vma->vm_end = 0; 1162 pregion->vm_usage--; 1163 pregion = NULL; 1164 goto error_just_free; 1165 } 1166 } 1167 fput(region->vm_file); 1168 kmem_cache_free(vm_region_jar, region); 1169 region = pregion; 1170 result = start; 1171 goto share; 1172 } 1173 1174 /* obtain the address at which to make a shared mapping 1175 * - this is the hook for quasi-memory character devices to 1176 * tell us the location of a shared mapping 1177 */ 1178 if (capabilities & NOMMU_MAP_DIRECT) { 1179 addr = file->f_op->get_unmapped_area(file, addr, len, 1180 pgoff, flags); 1181 if (IS_ERR_VALUE(addr)) { 1182 ret = addr; 1183 if (ret != -ENOSYS) 1184 goto error_just_free; 1185 1186 /* the driver refused to tell us where to site 1187 * the mapping so we'll have to attempt to copy 1188 * it */ 1189 ret = -ENODEV; 1190 if (!(capabilities & NOMMU_MAP_COPY)) 1191 goto error_just_free; 1192 1193 capabilities &= ~NOMMU_MAP_DIRECT; 1194 } else { 1195 vma->vm_start = region->vm_start = addr; 1196 vma->vm_end = region->vm_end = addr + len; 1197 } 1198 } 1199 } 1200 1201 vma->vm_region = region; 1202 1203 /* set up the mapping 1204 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1205 */ 1206 if (file && vma->vm_flags & VM_SHARED) 1207 ret = do_mmap_shared_file(vma); 1208 else 1209 ret = do_mmap_private(vma, region, len, capabilities); 1210 if (ret < 0) 1211 goto error_just_free; 1212 add_nommu_region(region); 1213 1214 /* clear anonymous mappings that don't ask for uninitialized data */ 1215 if (!vma->vm_file && 1216 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1217 !(flags & MAP_UNINITIALIZED))) 1218 memset((void *)region->vm_start, 0, 1219 region->vm_end - region->vm_start); 1220 1221 /* okay... we have a mapping; now we have to register it */ 1222 result = vma->vm_start; 1223 1224 current->mm->total_vm += len >> PAGE_SHIFT; 1225 1226 share: 1227 mas_add_vma_to_mm(&mas, current->mm, vma); 1228 1229 /* we flush the region from the icache only when the first executable 1230 * mapping of it is made */ 1231 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1232 flush_icache_user_range(region->vm_start, region->vm_end); 1233 region->vm_icache_flushed = true; 1234 } 1235 1236 up_write(&nommu_region_sem); 1237 1238 return result; 1239 1240 error_just_free: 1241 up_write(&nommu_region_sem); 1242 error: 1243 if (region->vm_file) 1244 fput(region->vm_file); 1245 kmem_cache_free(vm_region_jar, region); 1246 if (vma->vm_file) 1247 fput(vma->vm_file); 1248 vm_area_free(vma); 1249 return ret; 1250 1251 sharing_violation: 1252 up_write(&nommu_region_sem); 1253 mas_destroy(&mas); 1254 pr_warn("Attempt to share mismatched mappings\n"); 1255 ret = -EINVAL; 1256 goto error; 1257 1258 error_getting_vma: 1259 kmem_cache_free(vm_region_jar, region); 1260 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1261 len, current->pid); 1262 show_free_areas(0, NULL); 1263 return -ENOMEM; 1264 1265 error_getting_region: 1266 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1267 len, current->pid); 1268 show_free_areas(0, NULL); 1269 return -ENOMEM; 1270 1271 error_maple_preallocate: 1272 kmem_cache_free(vm_region_jar, region); 1273 vm_area_free(vma); 1274 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1275 show_free_areas(0, NULL); 1276 return -ENOMEM; 1277 1278 } 1279 1280 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1281 unsigned long prot, unsigned long flags, 1282 unsigned long fd, unsigned long pgoff) 1283 { 1284 struct file *file = NULL; 1285 unsigned long retval = -EBADF; 1286 1287 audit_mmap_fd(fd, flags); 1288 if (!(flags & MAP_ANONYMOUS)) { 1289 file = fget(fd); 1290 if (!file) 1291 goto out; 1292 } 1293 1294 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1295 1296 if (file) 1297 fput(file); 1298 out: 1299 return retval; 1300 } 1301 1302 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1303 unsigned long, prot, unsigned long, flags, 1304 unsigned long, fd, unsigned long, pgoff) 1305 { 1306 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1307 } 1308 1309 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1310 struct mmap_arg_struct { 1311 unsigned long addr; 1312 unsigned long len; 1313 unsigned long prot; 1314 unsigned long flags; 1315 unsigned long fd; 1316 unsigned long offset; 1317 }; 1318 1319 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1320 { 1321 struct mmap_arg_struct a; 1322 1323 if (copy_from_user(&a, arg, sizeof(a))) 1324 return -EFAULT; 1325 if (offset_in_page(a.offset)) 1326 return -EINVAL; 1327 1328 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1329 a.offset >> PAGE_SHIFT); 1330 } 1331 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1332 1333 /* 1334 * split a vma into two pieces at address 'addr', a new vma is allocated either 1335 * for the first part or the tail. 1336 */ 1337 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1338 unsigned long addr, int new_below) 1339 { 1340 struct vm_area_struct *new; 1341 struct vm_region *region; 1342 unsigned long npages; 1343 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end); 1344 1345 /* we're only permitted to split anonymous regions (these should have 1346 * only a single usage on the region) */ 1347 if (vma->vm_file) 1348 return -ENOMEM; 1349 1350 if (mm->map_count >= sysctl_max_map_count) 1351 return -ENOMEM; 1352 1353 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1354 if (!region) 1355 return -ENOMEM; 1356 1357 new = vm_area_dup(vma); 1358 if (!new) 1359 goto err_vma_dup; 1360 1361 if (mas_preallocate(&mas, vma, GFP_KERNEL)) { 1362 pr_warn("Allocation of vma tree for process %d failed\n", 1363 current->pid); 1364 goto err_mas_preallocate; 1365 } 1366 1367 /* most fields are the same, copy all, and then fixup */ 1368 *region = *vma->vm_region; 1369 new->vm_region = region; 1370 1371 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1372 1373 if (new_below) { 1374 region->vm_top = region->vm_end = new->vm_end = addr; 1375 } else { 1376 region->vm_start = new->vm_start = addr; 1377 region->vm_pgoff = new->vm_pgoff += npages; 1378 } 1379 1380 if (new->vm_ops && new->vm_ops->open) 1381 new->vm_ops->open(new); 1382 1383 down_write(&nommu_region_sem); 1384 delete_nommu_region(vma->vm_region); 1385 if (new_below) { 1386 vma->vm_region->vm_start = vma->vm_start = addr; 1387 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1388 } else { 1389 vma->vm_region->vm_end = vma->vm_end = addr; 1390 vma->vm_region->vm_top = addr; 1391 } 1392 add_nommu_region(vma->vm_region); 1393 add_nommu_region(new->vm_region); 1394 up_write(&nommu_region_sem); 1395 1396 setup_vma_to_mm(vma, mm); 1397 setup_vma_to_mm(new, mm); 1398 mas_set_range(&mas, vma->vm_start, vma->vm_end - 1); 1399 mas_store(&mas, vma); 1400 vma_mas_store(new, &mas); 1401 return 0; 1402 1403 err_mas_preallocate: 1404 vm_area_free(new); 1405 err_vma_dup: 1406 kmem_cache_free(vm_region_jar, region); 1407 return -ENOMEM; 1408 } 1409 1410 /* 1411 * shrink a VMA by removing the specified chunk from either the beginning or 1412 * the end 1413 */ 1414 static int shrink_vma(struct mm_struct *mm, 1415 struct vm_area_struct *vma, 1416 unsigned long from, unsigned long to) 1417 { 1418 struct vm_region *region; 1419 1420 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1421 * and list */ 1422 if (delete_vma_from_mm(vma)) 1423 return -ENOMEM; 1424 if (from > vma->vm_start) 1425 vma->vm_end = from; 1426 else 1427 vma->vm_start = to; 1428 if (add_vma_to_mm(mm, vma)) 1429 return -ENOMEM; 1430 1431 /* cut the backing region down to size */ 1432 region = vma->vm_region; 1433 BUG_ON(region->vm_usage != 1); 1434 1435 down_write(&nommu_region_sem); 1436 delete_nommu_region(region); 1437 if (from > region->vm_start) { 1438 to = region->vm_top; 1439 region->vm_top = region->vm_end = from; 1440 } else { 1441 region->vm_start = to; 1442 } 1443 add_nommu_region(region); 1444 up_write(&nommu_region_sem); 1445 1446 free_page_series(from, to); 1447 return 0; 1448 } 1449 1450 /* 1451 * release a mapping 1452 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1453 * VMA, though it need not cover the whole VMA 1454 */ 1455 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1456 { 1457 MA_STATE(mas, &mm->mm_mt, start, start); 1458 struct vm_area_struct *vma; 1459 unsigned long end; 1460 int ret = 0; 1461 1462 len = PAGE_ALIGN(len); 1463 if (len == 0) 1464 return -EINVAL; 1465 1466 end = start + len; 1467 1468 /* find the first potentially overlapping VMA */ 1469 vma = mas_find(&mas, end - 1); 1470 if (!vma) { 1471 static int limit; 1472 if (limit < 5) { 1473 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1474 current->pid, current->comm, 1475 start, start + len - 1); 1476 limit++; 1477 } 1478 return -EINVAL; 1479 } 1480 1481 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1482 if (vma->vm_file) { 1483 do { 1484 if (start > vma->vm_start) 1485 return -EINVAL; 1486 if (end == vma->vm_end) 1487 goto erase_whole_vma; 1488 vma = mas_next(&mas, end - 1); 1489 } while (vma); 1490 return -EINVAL; 1491 } else { 1492 /* the chunk must be a subset of the VMA found */ 1493 if (start == vma->vm_start && end == vma->vm_end) 1494 goto erase_whole_vma; 1495 if (start < vma->vm_start || end > vma->vm_end) 1496 return -EINVAL; 1497 if (offset_in_page(start)) 1498 return -EINVAL; 1499 if (end != vma->vm_end && offset_in_page(end)) 1500 return -EINVAL; 1501 if (start != vma->vm_start && end != vma->vm_end) { 1502 ret = split_vma(mm, vma, start, 1); 1503 if (ret < 0) 1504 return ret; 1505 } 1506 return shrink_vma(mm, vma, start, end); 1507 } 1508 1509 erase_whole_vma: 1510 if (delete_vma_from_mm(vma)) 1511 ret = -ENOMEM; 1512 delete_vma(mm, vma); 1513 return ret; 1514 } 1515 1516 int vm_munmap(unsigned long addr, size_t len) 1517 { 1518 struct mm_struct *mm = current->mm; 1519 int ret; 1520 1521 mmap_write_lock(mm); 1522 ret = do_munmap(mm, addr, len, NULL); 1523 mmap_write_unlock(mm); 1524 return ret; 1525 } 1526 EXPORT_SYMBOL(vm_munmap); 1527 1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1529 { 1530 return vm_munmap(addr, len); 1531 } 1532 1533 /* 1534 * release all the mappings made in a process's VM space 1535 */ 1536 void exit_mmap(struct mm_struct *mm) 1537 { 1538 VMA_ITERATOR(vmi, mm, 0); 1539 struct vm_area_struct *vma; 1540 1541 if (!mm) 1542 return; 1543 1544 mm->total_vm = 0; 1545 1546 /* 1547 * Lock the mm to avoid assert complaining even though this is the only 1548 * user of the mm 1549 */ 1550 mmap_write_lock(mm); 1551 for_each_vma(vmi, vma) { 1552 cleanup_vma_from_mm(vma); 1553 delete_vma(mm, vma); 1554 cond_resched(); 1555 } 1556 __mt_destroy(&mm->mm_mt); 1557 mmap_write_unlock(mm); 1558 } 1559 1560 int vm_brk(unsigned long addr, unsigned long len) 1561 { 1562 return -ENOMEM; 1563 } 1564 1565 /* 1566 * expand (or shrink) an existing mapping, potentially moving it at the same 1567 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1568 * 1569 * under NOMMU conditions, we only permit changing a mapping's size, and only 1570 * as long as it stays within the region allocated by do_mmap_private() and the 1571 * block is not shareable 1572 * 1573 * MREMAP_FIXED is not supported under NOMMU conditions 1574 */ 1575 static unsigned long do_mremap(unsigned long addr, 1576 unsigned long old_len, unsigned long new_len, 1577 unsigned long flags, unsigned long new_addr) 1578 { 1579 struct vm_area_struct *vma; 1580 1581 /* insanity checks first */ 1582 old_len = PAGE_ALIGN(old_len); 1583 new_len = PAGE_ALIGN(new_len); 1584 if (old_len == 0 || new_len == 0) 1585 return (unsigned long) -EINVAL; 1586 1587 if (offset_in_page(addr)) 1588 return -EINVAL; 1589 1590 if (flags & MREMAP_FIXED && new_addr != addr) 1591 return (unsigned long) -EINVAL; 1592 1593 vma = find_vma_exact(current->mm, addr, old_len); 1594 if (!vma) 1595 return (unsigned long) -EINVAL; 1596 1597 if (vma->vm_end != vma->vm_start + old_len) 1598 return (unsigned long) -EFAULT; 1599 1600 if (vma->vm_flags & VM_MAYSHARE) 1601 return (unsigned long) -EPERM; 1602 1603 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1604 return (unsigned long) -ENOMEM; 1605 1606 /* all checks complete - do it */ 1607 vma->vm_end = vma->vm_start + new_len; 1608 return vma->vm_start; 1609 } 1610 1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1612 unsigned long, new_len, unsigned long, flags, 1613 unsigned long, new_addr) 1614 { 1615 unsigned long ret; 1616 1617 mmap_write_lock(current->mm); 1618 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1619 mmap_write_unlock(current->mm); 1620 return ret; 1621 } 1622 1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1624 unsigned int foll_flags) 1625 { 1626 return NULL; 1627 } 1628 1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1630 unsigned long pfn, unsigned long size, pgprot_t prot) 1631 { 1632 if (addr != (pfn << PAGE_SHIFT)) 1633 return -EINVAL; 1634 1635 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1636 return 0; 1637 } 1638 EXPORT_SYMBOL(remap_pfn_range); 1639 1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1641 { 1642 unsigned long pfn = start >> PAGE_SHIFT; 1643 unsigned long vm_len = vma->vm_end - vma->vm_start; 1644 1645 pfn += vma->vm_pgoff; 1646 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1647 } 1648 EXPORT_SYMBOL(vm_iomap_memory); 1649 1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1651 unsigned long pgoff) 1652 { 1653 unsigned int size = vma->vm_end - vma->vm_start; 1654 1655 if (!(vma->vm_flags & VM_USERMAP)) 1656 return -EINVAL; 1657 1658 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1659 vma->vm_end = vma->vm_start + size; 1660 1661 return 0; 1662 } 1663 EXPORT_SYMBOL(remap_vmalloc_range); 1664 1665 vm_fault_t filemap_fault(struct vm_fault *vmf) 1666 { 1667 BUG(); 1668 return 0; 1669 } 1670 EXPORT_SYMBOL(filemap_fault); 1671 1672 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1673 pgoff_t start_pgoff, pgoff_t end_pgoff) 1674 { 1675 BUG(); 1676 return 0; 1677 } 1678 EXPORT_SYMBOL(filemap_map_pages); 1679 1680 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1681 int len, unsigned int gup_flags) 1682 { 1683 struct vm_area_struct *vma; 1684 int write = gup_flags & FOLL_WRITE; 1685 1686 if (mmap_read_lock_killable(mm)) 1687 return 0; 1688 1689 /* the access must start within one of the target process's mappings */ 1690 vma = find_vma(mm, addr); 1691 if (vma) { 1692 /* don't overrun this mapping */ 1693 if (addr + len >= vma->vm_end) 1694 len = vma->vm_end - addr; 1695 1696 /* only read or write mappings where it is permitted */ 1697 if (write && vma->vm_flags & VM_MAYWRITE) 1698 copy_to_user_page(vma, NULL, addr, 1699 (void *) addr, buf, len); 1700 else if (!write && vma->vm_flags & VM_MAYREAD) 1701 copy_from_user_page(vma, NULL, addr, 1702 buf, (void *) addr, len); 1703 else 1704 len = 0; 1705 } else { 1706 len = 0; 1707 } 1708 1709 mmap_read_unlock(mm); 1710 1711 return len; 1712 } 1713 1714 /** 1715 * access_remote_vm - access another process' address space 1716 * @mm: the mm_struct of the target address space 1717 * @addr: start address to access 1718 * @buf: source or destination buffer 1719 * @len: number of bytes to transfer 1720 * @gup_flags: flags modifying lookup behaviour 1721 * 1722 * The caller must hold a reference on @mm. 1723 */ 1724 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1725 void *buf, int len, unsigned int gup_flags) 1726 { 1727 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1728 } 1729 1730 /* 1731 * Access another process' address space. 1732 * - source/target buffer must be kernel space 1733 */ 1734 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1735 unsigned int gup_flags) 1736 { 1737 struct mm_struct *mm; 1738 1739 if (addr + len < addr) 1740 return 0; 1741 1742 mm = get_task_mm(tsk); 1743 if (!mm) 1744 return 0; 1745 1746 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1747 1748 mmput(mm); 1749 return len; 1750 } 1751 EXPORT_SYMBOL_GPL(access_process_vm); 1752 1753 /** 1754 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1755 * @inode: The inode to check 1756 * @size: The current filesize of the inode 1757 * @newsize: The proposed filesize of the inode 1758 * 1759 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1760 * make sure that any outstanding VMAs aren't broken and then shrink the 1761 * vm_regions that extend beyond so that do_mmap() doesn't 1762 * automatically grant mappings that are too large. 1763 */ 1764 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1765 size_t newsize) 1766 { 1767 struct vm_area_struct *vma; 1768 struct vm_region *region; 1769 pgoff_t low, high; 1770 size_t r_size, r_top; 1771 1772 low = newsize >> PAGE_SHIFT; 1773 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1774 1775 down_write(&nommu_region_sem); 1776 i_mmap_lock_read(inode->i_mapping); 1777 1778 /* search for VMAs that fall within the dead zone */ 1779 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1780 /* found one - only interested if it's shared out of the page 1781 * cache */ 1782 if (vma->vm_flags & VM_SHARED) { 1783 i_mmap_unlock_read(inode->i_mapping); 1784 up_write(&nommu_region_sem); 1785 return -ETXTBSY; /* not quite true, but near enough */ 1786 } 1787 } 1788 1789 /* reduce any regions that overlap the dead zone - if in existence, 1790 * these will be pointed to by VMAs that don't overlap the dead zone 1791 * 1792 * we don't check for any regions that start beyond the EOF as there 1793 * shouldn't be any 1794 */ 1795 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1796 if (!(vma->vm_flags & VM_SHARED)) 1797 continue; 1798 1799 region = vma->vm_region; 1800 r_size = region->vm_top - region->vm_start; 1801 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1802 1803 if (r_top > newsize) { 1804 region->vm_top -= r_top - newsize; 1805 if (region->vm_end > region->vm_top) 1806 region->vm_end = region->vm_top; 1807 } 1808 } 1809 1810 i_mmap_unlock_read(inode->i_mapping); 1811 up_write(&nommu_region_sem); 1812 return 0; 1813 } 1814 1815 /* 1816 * Initialise sysctl_user_reserve_kbytes. 1817 * 1818 * This is intended to prevent a user from starting a single memory hogging 1819 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1820 * mode. 1821 * 1822 * The default value is min(3% of free memory, 128MB) 1823 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1824 */ 1825 static int __meminit init_user_reserve(void) 1826 { 1827 unsigned long free_kbytes; 1828 1829 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1830 1831 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1832 return 0; 1833 } 1834 subsys_initcall(init_user_reserve); 1835 1836 /* 1837 * Initialise sysctl_admin_reserve_kbytes. 1838 * 1839 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1840 * to log in and kill a memory hogging process. 1841 * 1842 * Systems with more than 256MB will reserve 8MB, enough to recover 1843 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1844 * only reserve 3% of free pages by default. 1845 */ 1846 static int __meminit init_admin_reserve(void) 1847 { 1848 unsigned long free_kbytes; 1849 1850 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1851 1852 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1853 return 0; 1854 } 1855 subsys_initcall(init_admin_reserve); 1856