1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 154 { 155 return __vmalloc(size, flags, PAGE_KERNEL); 156 } 157 158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 159 { 160 void *ret; 161 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 if (ret) { 164 struct vm_area_struct *vma; 165 166 down_write(¤t->mm->mmap_sem); 167 vma = find_vma(current->mm, (unsigned long)ret); 168 if (vma) 169 vma->vm_flags |= VM_USERMAP; 170 up_write(¤t->mm->mmap_sem); 171 } 172 173 return ret; 174 } 175 176 void *vmalloc_user(unsigned long size) 177 { 178 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 179 } 180 EXPORT_SYMBOL(vmalloc_user); 181 182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) 183 { 184 return __vmalloc_user_flags(size, flags | __GFP_ZERO); 185 } 186 EXPORT_SYMBOL(vmalloc_user_node_flags); 187 188 struct page *vmalloc_to_page(const void *addr) 189 { 190 return virt_to_page(addr); 191 } 192 EXPORT_SYMBOL(vmalloc_to_page); 193 194 unsigned long vmalloc_to_pfn(const void *addr) 195 { 196 return page_to_pfn(virt_to_page(addr)); 197 } 198 EXPORT_SYMBOL(vmalloc_to_pfn); 199 200 long vread(char *buf, char *addr, unsigned long count) 201 { 202 /* Don't allow overflow */ 203 if ((unsigned long) buf + count < count) 204 count = -(unsigned long) buf; 205 206 memcpy(buf, addr, count); 207 return count; 208 } 209 210 long vwrite(char *buf, char *addr, unsigned long count) 211 { 212 /* Don't allow overflow */ 213 if ((unsigned long) addr + count < count) 214 count = -(unsigned long) addr; 215 216 memcpy(addr, buf, count); 217 return count; 218 } 219 220 /* 221 * vmalloc - allocate virtually contiguous memory 222 * 223 * @size: allocation size 224 * 225 * Allocate enough pages to cover @size from the page level 226 * allocator and map them into contiguous kernel virtual space. 227 * 228 * For tight control over page level allocator and protection flags 229 * use __vmalloc() instead. 230 */ 231 void *vmalloc(unsigned long size) 232 { 233 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 234 } 235 EXPORT_SYMBOL(vmalloc); 236 237 /* 238 * vzalloc - allocate virtually contiguous memory with zero fill 239 * 240 * @size: allocation size 241 * 242 * Allocate enough pages to cover @size from the page level 243 * allocator and map them into contiguous kernel virtual space. 244 * The memory allocated is set to zero. 245 * 246 * For tight control over page level allocator and protection flags 247 * use __vmalloc() instead. 248 */ 249 void *vzalloc(unsigned long size) 250 { 251 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 252 PAGE_KERNEL); 253 } 254 EXPORT_SYMBOL(vzalloc); 255 256 /** 257 * vmalloc_node - allocate memory on a specific node 258 * @size: allocation size 259 * @node: numa node 260 * 261 * Allocate enough pages to cover @size from the page level 262 * allocator and map them into contiguous kernel virtual space. 263 * 264 * For tight control over page level allocator and protection flags 265 * use __vmalloc() instead. 266 */ 267 void *vmalloc_node(unsigned long size, int node) 268 { 269 return vmalloc(size); 270 } 271 EXPORT_SYMBOL(vmalloc_node); 272 273 /** 274 * vzalloc_node - allocate memory on a specific node with zero fill 275 * @size: allocation size 276 * @node: numa node 277 * 278 * Allocate enough pages to cover @size from the page level 279 * allocator and map them into contiguous kernel virtual space. 280 * The memory allocated is set to zero. 281 * 282 * For tight control over page level allocator and protection flags 283 * use __vmalloc() instead. 284 */ 285 void *vzalloc_node(unsigned long size, int node) 286 { 287 return vzalloc(size); 288 } 289 EXPORT_SYMBOL(vzalloc_node); 290 291 /** 292 * vmalloc_exec - allocate virtually contiguous, executable memory 293 * @size: allocation size 294 * 295 * Kernel-internal function to allocate enough pages to cover @size 296 * the page level allocator and map them into contiguous and 297 * executable kernel virtual space. 298 * 299 * For tight control over page level allocator and protection flags 300 * use __vmalloc() instead. 301 */ 302 303 void *vmalloc_exec(unsigned long size) 304 { 305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 306 } 307 308 /** 309 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 310 * @size: allocation size 311 * 312 * Allocate enough 32bit PA addressable pages to cover @size from the 313 * page level allocator and map them into contiguous kernel virtual space. 314 */ 315 void *vmalloc_32(unsigned long size) 316 { 317 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 318 } 319 EXPORT_SYMBOL(vmalloc_32); 320 321 /** 322 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 323 * @size: allocation size 324 * 325 * The resulting memory area is 32bit addressable and zeroed so it can be 326 * mapped to userspace without leaking data. 327 * 328 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 329 * remap_vmalloc_range() are permissible. 330 */ 331 void *vmalloc_32_user(unsigned long size) 332 { 333 /* 334 * We'll have to sort out the ZONE_DMA bits for 64-bit, 335 * but for now this can simply use vmalloc_user() directly. 336 */ 337 return vmalloc_user(size); 338 } 339 EXPORT_SYMBOL(vmalloc_32_user); 340 341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 342 { 343 BUG(); 344 return NULL; 345 } 346 EXPORT_SYMBOL(vmap); 347 348 void vunmap(const void *addr) 349 { 350 BUG(); 351 } 352 EXPORT_SYMBOL(vunmap); 353 354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 355 { 356 BUG(); 357 return NULL; 358 } 359 EXPORT_SYMBOL(vm_map_ram); 360 361 void vm_unmap_ram(const void *mem, unsigned int count) 362 { 363 BUG(); 364 } 365 EXPORT_SYMBOL(vm_unmap_ram); 366 367 void vm_unmap_aliases(void) 368 { 369 } 370 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 371 372 /* 373 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 374 * have one. 375 */ 376 void __weak vmalloc_sync_all(void) 377 { 378 } 379 380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 381 { 382 BUG(); 383 return NULL; 384 } 385 EXPORT_SYMBOL_GPL(alloc_vm_area); 386 387 void free_vm_area(struct vm_struct *area) 388 { 389 BUG(); 390 } 391 EXPORT_SYMBOL_GPL(free_vm_area); 392 393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 394 struct page *page) 395 { 396 return -EINVAL; 397 } 398 EXPORT_SYMBOL(vm_insert_page); 399 400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 401 unsigned long num) 402 { 403 return -EINVAL; 404 } 405 EXPORT_SYMBOL(vm_map_pages); 406 407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 408 unsigned long num) 409 { 410 return -EINVAL; 411 } 412 EXPORT_SYMBOL(vm_map_pages_zero); 413 414 /* 415 * sys_brk() for the most part doesn't need the global kernel 416 * lock, except when an application is doing something nasty 417 * like trying to un-brk an area that has already been mapped 418 * to a regular file. in this case, the unmapping will need 419 * to invoke file system routines that need the global lock. 420 */ 421 SYSCALL_DEFINE1(brk, unsigned long, brk) 422 { 423 struct mm_struct *mm = current->mm; 424 425 if (brk < mm->start_brk || brk > mm->context.end_brk) 426 return mm->brk; 427 428 if (mm->brk == brk) 429 return mm->brk; 430 431 /* 432 * Always allow shrinking brk 433 */ 434 if (brk <= mm->brk) { 435 mm->brk = brk; 436 return brk; 437 } 438 439 /* 440 * Ok, looks good - let it rip. 441 */ 442 flush_icache_range(mm->brk, brk); 443 return mm->brk = brk; 444 } 445 446 /* 447 * initialise the percpu counter for VM and region record slabs 448 */ 449 void __init mmap_init(void) 450 { 451 int ret; 452 453 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 454 VM_BUG_ON(ret); 455 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 456 } 457 458 /* 459 * validate the region tree 460 * - the caller must hold the region lock 461 */ 462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 463 static noinline void validate_nommu_regions(void) 464 { 465 struct vm_region *region, *last; 466 struct rb_node *p, *lastp; 467 468 lastp = rb_first(&nommu_region_tree); 469 if (!lastp) 470 return; 471 472 last = rb_entry(lastp, struct vm_region, vm_rb); 473 BUG_ON(last->vm_end <= last->vm_start); 474 BUG_ON(last->vm_top < last->vm_end); 475 476 while ((p = rb_next(lastp))) { 477 region = rb_entry(p, struct vm_region, vm_rb); 478 last = rb_entry(lastp, struct vm_region, vm_rb); 479 480 BUG_ON(region->vm_end <= region->vm_start); 481 BUG_ON(region->vm_top < region->vm_end); 482 BUG_ON(region->vm_start < last->vm_top); 483 484 lastp = p; 485 } 486 } 487 #else 488 static void validate_nommu_regions(void) 489 { 490 } 491 #endif 492 493 /* 494 * add a region into the global tree 495 */ 496 static void add_nommu_region(struct vm_region *region) 497 { 498 struct vm_region *pregion; 499 struct rb_node **p, *parent; 500 501 validate_nommu_regions(); 502 503 parent = NULL; 504 p = &nommu_region_tree.rb_node; 505 while (*p) { 506 parent = *p; 507 pregion = rb_entry(parent, struct vm_region, vm_rb); 508 if (region->vm_start < pregion->vm_start) 509 p = &(*p)->rb_left; 510 else if (region->vm_start > pregion->vm_start) 511 p = &(*p)->rb_right; 512 else if (pregion == region) 513 return; 514 else 515 BUG(); 516 } 517 518 rb_link_node(®ion->vm_rb, parent, p); 519 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 520 521 validate_nommu_regions(); 522 } 523 524 /* 525 * delete a region from the global tree 526 */ 527 static void delete_nommu_region(struct vm_region *region) 528 { 529 BUG_ON(!nommu_region_tree.rb_node); 530 531 validate_nommu_regions(); 532 rb_erase(®ion->vm_rb, &nommu_region_tree); 533 validate_nommu_regions(); 534 } 535 536 /* 537 * free a contiguous series of pages 538 */ 539 static void free_page_series(unsigned long from, unsigned long to) 540 { 541 for (; from < to; from += PAGE_SIZE) { 542 struct page *page = virt_to_page(from); 543 544 atomic_long_dec(&mmap_pages_allocated); 545 put_page(page); 546 } 547 } 548 549 /* 550 * release a reference to a region 551 * - the caller must hold the region semaphore for writing, which this releases 552 * - the region may not have been added to the tree yet, in which case vm_top 553 * will equal vm_start 554 */ 555 static void __put_nommu_region(struct vm_region *region) 556 __releases(nommu_region_sem) 557 { 558 BUG_ON(!nommu_region_tree.rb_node); 559 560 if (--region->vm_usage == 0) { 561 if (region->vm_top > region->vm_start) 562 delete_nommu_region(region); 563 up_write(&nommu_region_sem); 564 565 if (region->vm_file) 566 fput(region->vm_file); 567 568 /* IO memory and memory shared directly out of the pagecache 569 * from ramfs/tmpfs mustn't be released here */ 570 if (region->vm_flags & VM_MAPPED_COPY) 571 free_page_series(region->vm_start, region->vm_top); 572 kmem_cache_free(vm_region_jar, region); 573 } else { 574 up_write(&nommu_region_sem); 575 } 576 } 577 578 /* 579 * release a reference to a region 580 */ 581 static void put_nommu_region(struct vm_region *region) 582 { 583 down_write(&nommu_region_sem); 584 __put_nommu_region(region); 585 } 586 587 /* 588 * add a VMA into a process's mm_struct in the appropriate place in the list 589 * and tree and add to the address space's page tree also if not an anonymous 590 * page 591 * - should be called with mm->mmap_sem held writelocked 592 */ 593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 594 { 595 struct vm_area_struct *pvma, *prev; 596 struct address_space *mapping; 597 struct rb_node **p, *parent, *rb_prev; 598 599 BUG_ON(!vma->vm_region); 600 601 mm->map_count++; 602 vma->vm_mm = mm; 603 604 /* add the VMA to the mapping */ 605 if (vma->vm_file) { 606 mapping = vma->vm_file->f_mapping; 607 608 i_mmap_lock_write(mapping); 609 flush_dcache_mmap_lock(mapping); 610 vma_interval_tree_insert(vma, &mapping->i_mmap); 611 flush_dcache_mmap_unlock(mapping); 612 i_mmap_unlock_write(mapping); 613 } 614 615 /* add the VMA to the tree */ 616 parent = rb_prev = NULL; 617 p = &mm->mm_rb.rb_node; 618 while (*p) { 619 parent = *p; 620 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 621 622 /* sort by: start addr, end addr, VMA struct addr in that order 623 * (the latter is necessary as we may get identical VMAs) */ 624 if (vma->vm_start < pvma->vm_start) 625 p = &(*p)->rb_left; 626 else if (vma->vm_start > pvma->vm_start) { 627 rb_prev = parent; 628 p = &(*p)->rb_right; 629 } else if (vma->vm_end < pvma->vm_end) 630 p = &(*p)->rb_left; 631 else if (vma->vm_end > pvma->vm_end) { 632 rb_prev = parent; 633 p = &(*p)->rb_right; 634 } else if (vma < pvma) 635 p = &(*p)->rb_left; 636 else if (vma > pvma) { 637 rb_prev = parent; 638 p = &(*p)->rb_right; 639 } else 640 BUG(); 641 } 642 643 rb_link_node(&vma->vm_rb, parent, p); 644 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 645 646 /* add VMA to the VMA list also */ 647 prev = NULL; 648 if (rb_prev) 649 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 650 651 __vma_link_list(mm, vma, prev); 652 } 653 654 /* 655 * delete a VMA from its owning mm_struct and address space 656 */ 657 static void delete_vma_from_mm(struct vm_area_struct *vma) 658 { 659 int i; 660 struct address_space *mapping; 661 struct mm_struct *mm = vma->vm_mm; 662 struct task_struct *curr = current; 663 664 mm->map_count--; 665 for (i = 0; i < VMACACHE_SIZE; i++) { 666 /* if the vma is cached, invalidate the entire cache */ 667 if (curr->vmacache.vmas[i] == vma) { 668 vmacache_invalidate(mm); 669 break; 670 } 671 } 672 673 /* remove the VMA from the mapping */ 674 if (vma->vm_file) { 675 mapping = vma->vm_file->f_mapping; 676 677 i_mmap_lock_write(mapping); 678 flush_dcache_mmap_lock(mapping); 679 vma_interval_tree_remove(vma, &mapping->i_mmap); 680 flush_dcache_mmap_unlock(mapping); 681 i_mmap_unlock_write(mapping); 682 } 683 684 /* remove from the MM's tree and list */ 685 rb_erase(&vma->vm_rb, &mm->mm_rb); 686 687 __vma_unlink_list(mm, vma); 688 } 689 690 /* 691 * destroy a VMA record 692 */ 693 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 694 { 695 if (vma->vm_ops && vma->vm_ops->close) 696 vma->vm_ops->close(vma); 697 if (vma->vm_file) 698 fput(vma->vm_file); 699 put_nommu_region(vma->vm_region); 700 vm_area_free(vma); 701 } 702 703 /* 704 * look up the first VMA in which addr resides, NULL if none 705 * - should be called with mm->mmap_sem at least held readlocked 706 */ 707 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 708 { 709 struct vm_area_struct *vma; 710 711 /* check the cache first */ 712 vma = vmacache_find(mm, addr); 713 if (likely(vma)) 714 return vma; 715 716 /* trawl the list (there may be multiple mappings in which addr 717 * resides) */ 718 for (vma = mm->mmap; vma; vma = vma->vm_next) { 719 if (vma->vm_start > addr) 720 return NULL; 721 if (vma->vm_end > addr) { 722 vmacache_update(addr, vma); 723 return vma; 724 } 725 } 726 727 return NULL; 728 } 729 EXPORT_SYMBOL(find_vma); 730 731 /* 732 * find a VMA 733 * - we don't extend stack VMAs under NOMMU conditions 734 */ 735 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 736 { 737 return find_vma(mm, addr); 738 } 739 740 /* 741 * expand a stack to a given address 742 * - not supported under NOMMU conditions 743 */ 744 int expand_stack(struct vm_area_struct *vma, unsigned long address) 745 { 746 return -ENOMEM; 747 } 748 749 /* 750 * look up the first VMA exactly that exactly matches addr 751 * - should be called with mm->mmap_sem at least held readlocked 752 */ 753 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 754 unsigned long addr, 755 unsigned long len) 756 { 757 struct vm_area_struct *vma; 758 unsigned long end = addr + len; 759 760 /* check the cache first */ 761 vma = vmacache_find_exact(mm, addr, end); 762 if (vma) 763 return vma; 764 765 /* trawl the list (there may be multiple mappings in which addr 766 * resides) */ 767 for (vma = mm->mmap; vma; vma = vma->vm_next) { 768 if (vma->vm_start < addr) 769 continue; 770 if (vma->vm_start > addr) 771 return NULL; 772 if (vma->vm_end == end) { 773 vmacache_update(addr, vma); 774 return vma; 775 } 776 } 777 778 return NULL; 779 } 780 781 /* 782 * determine whether a mapping should be permitted and, if so, what sort of 783 * mapping we're capable of supporting 784 */ 785 static int validate_mmap_request(struct file *file, 786 unsigned long addr, 787 unsigned long len, 788 unsigned long prot, 789 unsigned long flags, 790 unsigned long pgoff, 791 unsigned long *_capabilities) 792 { 793 unsigned long capabilities, rlen; 794 int ret; 795 796 /* do the simple checks first */ 797 if (flags & MAP_FIXED) 798 return -EINVAL; 799 800 if ((flags & MAP_TYPE) != MAP_PRIVATE && 801 (flags & MAP_TYPE) != MAP_SHARED) 802 return -EINVAL; 803 804 if (!len) 805 return -EINVAL; 806 807 /* Careful about overflows.. */ 808 rlen = PAGE_ALIGN(len); 809 if (!rlen || rlen > TASK_SIZE) 810 return -ENOMEM; 811 812 /* offset overflow? */ 813 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 814 return -EOVERFLOW; 815 816 if (file) { 817 /* files must support mmap */ 818 if (!file->f_op->mmap) 819 return -ENODEV; 820 821 /* work out if what we've got could possibly be shared 822 * - we support chardevs that provide their own "memory" 823 * - we support files/blockdevs that are memory backed 824 */ 825 if (file->f_op->mmap_capabilities) { 826 capabilities = file->f_op->mmap_capabilities(file); 827 } else { 828 /* no explicit capabilities set, so assume some 829 * defaults */ 830 switch (file_inode(file)->i_mode & S_IFMT) { 831 case S_IFREG: 832 case S_IFBLK: 833 capabilities = NOMMU_MAP_COPY; 834 break; 835 836 case S_IFCHR: 837 capabilities = 838 NOMMU_MAP_DIRECT | 839 NOMMU_MAP_READ | 840 NOMMU_MAP_WRITE; 841 break; 842 843 default: 844 return -EINVAL; 845 } 846 } 847 848 /* eliminate any capabilities that we can't support on this 849 * device */ 850 if (!file->f_op->get_unmapped_area) 851 capabilities &= ~NOMMU_MAP_DIRECT; 852 if (!(file->f_mode & FMODE_CAN_READ)) 853 capabilities &= ~NOMMU_MAP_COPY; 854 855 /* The file shall have been opened with read permission. */ 856 if (!(file->f_mode & FMODE_READ)) 857 return -EACCES; 858 859 if (flags & MAP_SHARED) { 860 /* do checks for writing, appending and locking */ 861 if ((prot & PROT_WRITE) && 862 !(file->f_mode & FMODE_WRITE)) 863 return -EACCES; 864 865 if (IS_APPEND(file_inode(file)) && 866 (file->f_mode & FMODE_WRITE)) 867 return -EACCES; 868 869 if (locks_verify_locked(file)) 870 return -EAGAIN; 871 872 if (!(capabilities & NOMMU_MAP_DIRECT)) 873 return -ENODEV; 874 875 /* we mustn't privatise shared mappings */ 876 capabilities &= ~NOMMU_MAP_COPY; 877 } else { 878 /* we're going to read the file into private memory we 879 * allocate */ 880 if (!(capabilities & NOMMU_MAP_COPY)) 881 return -ENODEV; 882 883 /* we don't permit a private writable mapping to be 884 * shared with the backing device */ 885 if (prot & PROT_WRITE) 886 capabilities &= ~NOMMU_MAP_DIRECT; 887 } 888 889 if (capabilities & NOMMU_MAP_DIRECT) { 890 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 891 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 892 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 893 ) { 894 capabilities &= ~NOMMU_MAP_DIRECT; 895 if (flags & MAP_SHARED) { 896 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 897 return -EINVAL; 898 } 899 } 900 } 901 902 /* handle executable mappings and implied executable 903 * mappings */ 904 if (path_noexec(&file->f_path)) { 905 if (prot & PROT_EXEC) 906 return -EPERM; 907 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 908 /* handle implication of PROT_EXEC by PROT_READ */ 909 if (current->personality & READ_IMPLIES_EXEC) { 910 if (capabilities & NOMMU_MAP_EXEC) 911 prot |= PROT_EXEC; 912 } 913 } else if ((prot & PROT_READ) && 914 (prot & PROT_EXEC) && 915 !(capabilities & NOMMU_MAP_EXEC) 916 ) { 917 /* backing file is not executable, try to copy */ 918 capabilities &= ~NOMMU_MAP_DIRECT; 919 } 920 } else { 921 /* anonymous mappings are always memory backed and can be 922 * privately mapped 923 */ 924 capabilities = NOMMU_MAP_COPY; 925 926 /* handle PROT_EXEC implication by PROT_READ */ 927 if ((prot & PROT_READ) && 928 (current->personality & READ_IMPLIES_EXEC)) 929 prot |= PROT_EXEC; 930 } 931 932 /* allow the security API to have its say */ 933 ret = security_mmap_addr(addr); 934 if (ret < 0) 935 return ret; 936 937 /* looks okay */ 938 *_capabilities = capabilities; 939 return 0; 940 } 941 942 /* 943 * we've determined that we can make the mapping, now translate what we 944 * now know into VMA flags 945 */ 946 static unsigned long determine_vm_flags(struct file *file, 947 unsigned long prot, 948 unsigned long flags, 949 unsigned long capabilities) 950 { 951 unsigned long vm_flags; 952 953 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 954 /* vm_flags |= mm->def_flags; */ 955 956 if (!(capabilities & NOMMU_MAP_DIRECT)) { 957 /* attempt to share read-only copies of mapped file chunks */ 958 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 959 if (file && !(prot & PROT_WRITE)) 960 vm_flags |= VM_MAYSHARE; 961 } else { 962 /* overlay a shareable mapping on the backing device or inode 963 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 964 * romfs/cramfs */ 965 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 966 if (flags & MAP_SHARED) 967 vm_flags |= VM_SHARED; 968 } 969 970 /* refuse to let anyone share private mappings with this process if 971 * it's being traced - otherwise breakpoints set in it may interfere 972 * with another untraced process 973 */ 974 if ((flags & MAP_PRIVATE) && current->ptrace) 975 vm_flags &= ~VM_MAYSHARE; 976 977 return vm_flags; 978 } 979 980 /* 981 * set up a shared mapping on a file (the driver or filesystem provides and 982 * pins the storage) 983 */ 984 static int do_mmap_shared_file(struct vm_area_struct *vma) 985 { 986 int ret; 987 988 ret = call_mmap(vma->vm_file, vma); 989 if (ret == 0) { 990 vma->vm_region->vm_top = vma->vm_region->vm_end; 991 return 0; 992 } 993 if (ret != -ENOSYS) 994 return ret; 995 996 /* getting -ENOSYS indicates that direct mmap isn't possible (as 997 * opposed to tried but failed) so we can only give a suitable error as 998 * it's not possible to make a private copy if MAP_SHARED was given */ 999 return -ENODEV; 1000 } 1001 1002 /* 1003 * set up a private mapping or an anonymous shared mapping 1004 */ 1005 static int do_mmap_private(struct vm_area_struct *vma, 1006 struct vm_region *region, 1007 unsigned long len, 1008 unsigned long capabilities) 1009 { 1010 unsigned long total, point; 1011 void *base; 1012 int ret, order; 1013 1014 /* invoke the file's mapping function so that it can keep track of 1015 * shared mappings on devices or memory 1016 * - VM_MAYSHARE will be set if it may attempt to share 1017 */ 1018 if (capabilities & NOMMU_MAP_DIRECT) { 1019 ret = call_mmap(vma->vm_file, vma); 1020 if (ret == 0) { 1021 /* shouldn't return success if we're not sharing */ 1022 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1023 vma->vm_region->vm_top = vma->vm_region->vm_end; 1024 return 0; 1025 } 1026 if (ret != -ENOSYS) 1027 return ret; 1028 1029 /* getting an ENOSYS error indicates that direct mmap isn't 1030 * possible (as opposed to tried but failed) so we'll try to 1031 * make a private copy of the data and map that instead */ 1032 } 1033 1034 1035 /* allocate some memory to hold the mapping 1036 * - note that this may not return a page-aligned address if the object 1037 * we're allocating is smaller than a page 1038 */ 1039 order = get_order(len); 1040 total = 1 << order; 1041 point = len >> PAGE_SHIFT; 1042 1043 /* we don't want to allocate a power-of-2 sized page set */ 1044 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1045 total = point; 1046 1047 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1048 if (!base) 1049 goto enomem; 1050 1051 atomic_long_add(total, &mmap_pages_allocated); 1052 1053 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1054 region->vm_start = (unsigned long) base; 1055 region->vm_end = region->vm_start + len; 1056 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1057 1058 vma->vm_start = region->vm_start; 1059 vma->vm_end = region->vm_start + len; 1060 1061 if (vma->vm_file) { 1062 /* read the contents of a file into the copy */ 1063 loff_t fpos; 1064 1065 fpos = vma->vm_pgoff; 1066 fpos <<= PAGE_SHIFT; 1067 1068 ret = kernel_read(vma->vm_file, base, len, &fpos); 1069 if (ret < 0) 1070 goto error_free; 1071 1072 /* clear the last little bit */ 1073 if (ret < len) 1074 memset(base + ret, 0, len - ret); 1075 1076 } else { 1077 vma_set_anonymous(vma); 1078 } 1079 1080 return 0; 1081 1082 error_free: 1083 free_page_series(region->vm_start, region->vm_top); 1084 region->vm_start = vma->vm_start = 0; 1085 region->vm_end = vma->vm_end = 0; 1086 region->vm_top = 0; 1087 return ret; 1088 1089 enomem: 1090 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1091 len, current->pid, current->comm); 1092 show_free_areas(0, NULL); 1093 return -ENOMEM; 1094 } 1095 1096 /* 1097 * handle mapping creation for uClinux 1098 */ 1099 unsigned long do_mmap(struct file *file, 1100 unsigned long addr, 1101 unsigned long len, 1102 unsigned long prot, 1103 unsigned long flags, 1104 vm_flags_t vm_flags, 1105 unsigned long pgoff, 1106 unsigned long *populate, 1107 struct list_head *uf) 1108 { 1109 struct vm_area_struct *vma; 1110 struct vm_region *region; 1111 struct rb_node *rb; 1112 unsigned long capabilities, result; 1113 int ret; 1114 1115 *populate = 0; 1116 1117 /* decide whether we should attempt the mapping, and if so what sort of 1118 * mapping */ 1119 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1120 &capabilities); 1121 if (ret < 0) 1122 return ret; 1123 1124 /* we ignore the address hint */ 1125 addr = 0; 1126 len = PAGE_ALIGN(len); 1127 1128 /* we've determined that we can make the mapping, now translate what we 1129 * now know into VMA flags */ 1130 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1131 1132 /* we're going to need to record the mapping */ 1133 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1134 if (!region) 1135 goto error_getting_region; 1136 1137 vma = vm_area_alloc(current->mm); 1138 if (!vma) 1139 goto error_getting_vma; 1140 1141 region->vm_usage = 1; 1142 region->vm_flags = vm_flags; 1143 region->vm_pgoff = pgoff; 1144 1145 vma->vm_flags = vm_flags; 1146 vma->vm_pgoff = pgoff; 1147 1148 if (file) { 1149 region->vm_file = get_file(file); 1150 vma->vm_file = get_file(file); 1151 } 1152 1153 down_write(&nommu_region_sem); 1154 1155 /* if we want to share, we need to check for regions created by other 1156 * mmap() calls that overlap with our proposed mapping 1157 * - we can only share with a superset match on most regular files 1158 * - shared mappings on character devices and memory backed files are 1159 * permitted to overlap inexactly as far as we are concerned for in 1160 * these cases, sharing is handled in the driver or filesystem rather 1161 * than here 1162 */ 1163 if (vm_flags & VM_MAYSHARE) { 1164 struct vm_region *pregion; 1165 unsigned long pglen, rpglen, pgend, rpgend, start; 1166 1167 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1168 pgend = pgoff + pglen; 1169 1170 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1171 pregion = rb_entry(rb, struct vm_region, vm_rb); 1172 1173 if (!(pregion->vm_flags & VM_MAYSHARE)) 1174 continue; 1175 1176 /* search for overlapping mappings on the same file */ 1177 if (file_inode(pregion->vm_file) != 1178 file_inode(file)) 1179 continue; 1180 1181 if (pregion->vm_pgoff >= pgend) 1182 continue; 1183 1184 rpglen = pregion->vm_end - pregion->vm_start; 1185 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1186 rpgend = pregion->vm_pgoff + rpglen; 1187 if (pgoff >= rpgend) 1188 continue; 1189 1190 /* handle inexactly overlapping matches between 1191 * mappings */ 1192 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1193 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1194 /* new mapping is not a subset of the region */ 1195 if (!(capabilities & NOMMU_MAP_DIRECT)) 1196 goto sharing_violation; 1197 continue; 1198 } 1199 1200 /* we've found a region we can share */ 1201 pregion->vm_usage++; 1202 vma->vm_region = pregion; 1203 start = pregion->vm_start; 1204 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1205 vma->vm_start = start; 1206 vma->vm_end = start + len; 1207 1208 if (pregion->vm_flags & VM_MAPPED_COPY) 1209 vma->vm_flags |= VM_MAPPED_COPY; 1210 else { 1211 ret = do_mmap_shared_file(vma); 1212 if (ret < 0) { 1213 vma->vm_region = NULL; 1214 vma->vm_start = 0; 1215 vma->vm_end = 0; 1216 pregion->vm_usage--; 1217 pregion = NULL; 1218 goto error_just_free; 1219 } 1220 } 1221 fput(region->vm_file); 1222 kmem_cache_free(vm_region_jar, region); 1223 region = pregion; 1224 result = start; 1225 goto share; 1226 } 1227 1228 /* obtain the address at which to make a shared mapping 1229 * - this is the hook for quasi-memory character devices to 1230 * tell us the location of a shared mapping 1231 */ 1232 if (capabilities & NOMMU_MAP_DIRECT) { 1233 addr = file->f_op->get_unmapped_area(file, addr, len, 1234 pgoff, flags); 1235 if (IS_ERR_VALUE(addr)) { 1236 ret = addr; 1237 if (ret != -ENOSYS) 1238 goto error_just_free; 1239 1240 /* the driver refused to tell us where to site 1241 * the mapping so we'll have to attempt to copy 1242 * it */ 1243 ret = -ENODEV; 1244 if (!(capabilities & NOMMU_MAP_COPY)) 1245 goto error_just_free; 1246 1247 capabilities &= ~NOMMU_MAP_DIRECT; 1248 } else { 1249 vma->vm_start = region->vm_start = addr; 1250 vma->vm_end = region->vm_end = addr + len; 1251 } 1252 } 1253 } 1254 1255 vma->vm_region = region; 1256 1257 /* set up the mapping 1258 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1259 */ 1260 if (file && vma->vm_flags & VM_SHARED) 1261 ret = do_mmap_shared_file(vma); 1262 else 1263 ret = do_mmap_private(vma, region, len, capabilities); 1264 if (ret < 0) 1265 goto error_just_free; 1266 add_nommu_region(region); 1267 1268 /* clear anonymous mappings that don't ask for uninitialized data */ 1269 if (!vma->vm_file && 1270 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1271 !(flags & MAP_UNINITIALIZED))) 1272 memset((void *)region->vm_start, 0, 1273 region->vm_end - region->vm_start); 1274 1275 /* okay... we have a mapping; now we have to register it */ 1276 result = vma->vm_start; 1277 1278 current->mm->total_vm += len >> PAGE_SHIFT; 1279 1280 share: 1281 add_vma_to_mm(current->mm, vma); 1282 1283 /* we flush the region from the icache only when the first executable 1284 * mapping of it is made */ 1285 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1286 flush_icache_range(region->vm_start, region->vm_end); 1287 region->vm_icache_flushed = true; 1288 } 1289 1290 up_write(&nommu_region_sem); 1291 1292 return result; 1293 1294 error_just_free: 1295 up_write(&nommu_region_sem); 1296 error: 1297 if (region->vm_file) 1298 fput(region->vm_file); 1299 kmem_cache_free(vm_region_jar, region); 1300 if (vma->vm_file) 1301 fput(vma->vm_file); 1302 vm_area_free(vma); 1303 return ret; 1304 1305 sharing_violation: 1306 up_write(&nommu_region_sem); 1307 pr_warn("Attempt to share mismatched mappings\n"); 1308 ret = -EINVAL; 1309 goto error; 1310 1311 error_getting_vma: 1312 kmem_cache_free(vm_region_jar, region); 1313 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1314 len, current->pid); 1315 show_free_areas(0, NULL); 1316 return -ENOMEM; 1317 1318 error_getting_region: 1319 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1320 len, current->pid); 1321 show_free_areas(0, NULL); 1322 return -ENOMEM; 1323 } 1324 1325 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1326 unsigned long prot, unsigned long flags, 1327 unsigned long fd, unsigned long pgoff) 1328 { 1329 struct file *file = NULL; 1330 unsigned long retval = -EBADF; 1331 1332 audit_mmap_fd(fd, flags); 1333 if (!(flags & MAP_ANONYMOUS)) { 1334 file = fget(fd); 1335 if (!file) 1336 goto out; 1337 } 1338 1339 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1340 1341 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1342 1343 if (file) 1344 fput(file); 1345 out: 1346 return retval; 1347 } 1348 1349 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1350 unsigned long, prot, unsigned long, flags, 1351 unsigned long, fd, unsigned long, pgoff) 1352 { 1353 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1354 } 1355 1356 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1357 struct mmap_arg_struct { 1358 unsigned long addr; 1359 unsigned long len; 1360 unsigned long prot; 1361 unsigned long flags; 1362 unsigned long fd; 1363 unsigned long offset; 1364 }; 1365 1366 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1367 { 1368 struct mmap_arg_struct a; 1369 1370 if (copy_from_user(&a, arg, sizeof(a))) 1371 return -EFAULT; 1372 if (offset_in_page(a.offset)) 1373 return -EINVAL; 1374 1375 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1376 a.offset >> PAGE_SHIFT); 1377 } 1378 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1379 1380 /* 1381 * split a vma into two pieces at address 'addr', a new vma is allocated either 1382 * for the first part or the tail. 1383 */ 1384 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1385 unsigned long addr, int new_below) 1386 { 1387 struct vm_area_struct *new; 1388 struct vm_region *region; 1389 unsigned long npages; 1390 1391 /* we're only permitted to split anonymous regions (these should have 1392 * only a single usage on the region) */ 1393 if (vma->vm_file) 1394 return -ENOMEM; 1395 1396 if (mm->map_count >= sysctl_max_map_count) 1397 return -ENOMEM; 1398 1399 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1400 if (!region) 1401 return -ENOMEM; 1402 1403 new = vm_area_dup(vma); 1404 if (!new) { 1405 kmem_cache_free(vm_region_jar, region); 1406 return -ENOMEM; 1407 } 1408 1409 /* most fields are the same, copy all, and then fixup */ 1410 *region = *vma->vm_region; 1411 new->vm_region = region; 1412 1413 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1414 1415 if (new_below) { 1416 region->vm_top = region->vm_end = new->vm_end = addr; 1417 } else { 1418 region->vm_start = new->vm_start = addr; 1419 region->vm_pgoff = new->vm_pgoff += npages; 1420 } 1421 1422 if (new->vm_ops && new->vm_ops->open) 1423 new->vm_ops->open(new); 1424 1425 delete_vma_from_mm(vma); 1426 down_write(&nommu_region_sem); 1427 delete_nommu_region(vma->vm_region); 1428 if (new_below) { 1429 vma->vm_region->vm_start = vma->vm_start = addr; 1430 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1431 } else { 1432 vma->vm_region->vm_end = vma->vm_end = addr; 1433 vma->vm_region->vm_top = addr; 1434 } 1435 add_nommu_region(vma->vm_region); 1436 add_nommu_region(new->vm_region); 1437 up_write(&nommu_region_sem); 1438 add_vma_to_mm(mm, vma); 1439 add_vma_to_mm(mm, new); 1440 return 0; 1441 } 1442 1443 /* 1444 * shrink a VMA by removing the specified chunk from either the beginning or 1445 * the end 1446 */ 1447 static int shrink_vma(struct mm_struct *mm, 1448 struct vm_area_struct *vma, 1449 unsigned long from, unsigned long to) 1450 { 1451 struct vm_region *region; 1452 1453 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1454 * and list */ 1455 delete_vma_from_mm(vma); 1456 if (from > vma->vm_start) 1457 vma->vm_end = from; 1458 else 1459 vma->vm_start = to; 1460 add_vma_to_mm(mm, vma); 1461 1462 /* cut the backing region down to size */ 1463 region = vma->vm_region; 1464 BUG_ON(region->vm_usage != 1); 1465 1466 down_write(&nommu_region_sem); 1467 delete_nommu_region(region); 1468 if (from > region->vm_start) { 1469 to = region->vm_top; 1470 region->vm_top = region->vm_end = from; 1471 } else { 1472 region->vm_start = to; 1473 } 1474 add_nommu_region(region); 1475 up_write(&nommu_region_sem); 1476 1477 free_page_series(from, to); 1478 return 0; 1479 } 1480 1481 /* 1482 * release a mapping 1483 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1484 * VMA, though it need not cover the whole VMA 1485 */ 1486 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1487 { 1488 struct vm_area_struct *vma; 1489 unsigned long end; 1490 int ret; 1491 1492 len = PAGE_ALIGN(len); 1493 if (len == 0) 1494 return -EINVAL; 1495 1496 end = start + len; 1497 1498 /* find the first potentially overlapping VMA */ 1499 vma = find_vma(mm, start); 1500 if (!vma) { 1501 static int limit; 1502 if (limit < 5) { 1503 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1504 current->pid, current->comm, 1505 start, start + len - 1); 1506 limit++; 1507 } 1508 return -EINVAL; 1509 } 1510 1511 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1512 if (vma->vm_file) { 1513 do { 1514 if (start > vma->vm_start) 1515 return -EINVAL; 1516 if (end == vma->vm_end) 1517 goto erase_whole_vma; 1518 vma = vma->vm_next; 1519 } while (vma); 1520 return -EINVAL; 1521 } else { 1522 /* the chunk must be a subset of the VMA found */ 1523 if (start == vma->vm_start && end == vma->vm_end) 1524 goto erase_whole_vma; 1525 if (start < vma->vm_start || end > vma->vm_end) 1526 return -EINVAL; 1527 if (offset_in_page(start)) 1528 return -EINVAL; 1529 if (end != vma->vm_end && offset_in_page(end)) 1530 return -EINVAL; 1531 if (start != vma->vm_start && end != vma->vm_end) { 1532 ret = split_vma(mm, vma, start, 1); 1533 if (ret < 0) 1534 return ret; 1535 } 1536 return shrink_vma(mm, vma, start, end); 1537 } 1538 1539 erase_whole_vma: 1540 delete_vma_from_mm(vma); 1541 delete_vma(mm, vma); 1542 return 0; 1543 } 1544 EXPORT_SYMBOL(do_munmap); 1545 1546 int vm_munmap(unsigned long addr, size_t len) 1547 { 1548 struct mm_struct *mm = current->mm; 1549 int ret; 1550 1551 down_write(&mm->mmap_sem); 1552 ret = do_munmap(mm, addr, len, NULL); 1553 up_write(&mm->mmap_sem); 1554 return ret; 1555 } 1556 EXPORT_SYMBOL(vm_munmap); 1557 1558 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1559 { 1560 return vm_munmap(addr, len); 1561 } 1562 1563 /* 1564 * release all the mappings made in a process's VM space 1565 */ 1566 void exit_mmap(struct mm_struct *mm) 1567 { 1568 struct vm_area_struct *vma; 1569 1570 if (!mm) 1571 return; 1572 1573 mm->total_vm = 0; 1574 1575 while ((vma = mm->mmap)) { 1576 mm->mmap = vma->vm_next; 1577 delete_vma_from_mm(vma); 1578 delete_vma(mm, vma); 1579 cond_resched(); 1580 } 1581 } 1582 1583 int vm_brk(unsigned long addr, unsigned long len) 1584 { 1585 return -ENOMEM; 1586 } 1587 1588 /* 1589 * expand (or shrink) an existing mapping, potentially moving it at the same 1590 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1591 * 1592 * under NOMMU conditions, we only permit changing a mapping's size, and only 1593 * as long as it stays within the region allocated by do_mmap_private() and the 1594 * block is not shareable 1595 * 1596 * MREMAP_FIXED is not supported under NOMMU conditions 1597 */ 1598 static unsigned long do_mremap(unsigned long addr, 1599 unsigned long old_len, unsigned long new_len, 1600 unsigned long flags, unsigned long new_addr) 1601 { 1602 struct vm_area_struct *vma; 1603 1604 /* insanity checks first */ 1605 old_len = PAGE_ALIGN(old_len); 1606 new_len = PAGE_ALIGN(new_len); 1607 if (old_len == 0 || new_len == 0) 1608 return (unsigned long) -EINVAL; 1609 1610 if (offset_in_page(addr)) 1611 return -EINVAL; 1612 1613 if (flags & MREMAP_FIXED && new_addr != addr) 1614 return (unsigned long) -EINVAL; 1615 1616 vma = find_vma_exact(current->mm, addr, old_len); 1617 if (!vma) 1618 return (unsigned long) -EINVAL; 1619 1620 if (vma->vm_end != vma->vm_start + old_len) 1621 return (unsigned long) -EFAULT; 1622 1623 if (vma->vm_flags & VM_MAYSHARE) 1624 return (unsigned long) -EPERM; 1625 1626 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1627 return (unsigned long) -ENOMEM; 1628 1629 /* all checks complete - do it */ 1630 vma->vm_end = vma->vm_start + new_len; 1631 return vma->vm_start; 1632 } 1633 1634 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1635 unsigned long, new_len, unsigned long, flags, 1636 unsigned long, new_addr) 1637 { 1638 unsigned long ret; 1639 1640 down_write(¤t->mm->mmap_sem); 1641 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1642 up_write(¤t->mm->mmap_sem); 1643 return ret; 1644 } 1645 1646 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1647 unsigned int foll_flags) 1648 { 1649 return NULL; 1650 } 1651 1652 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1653 unsigned long pfn, unsigned long size, pgprot_t prot) 1654 { 1655 if (addr != (pfn << PAGE_SHIFT)) 1656 return -EINVAL; 1657 1658 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1659 return 0; 1660 } 1661 EXPORT_SYMBOL(remap_pfn_range); 1662 1663 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1664 { 1665 unsigned long pfn = start >> PAGE_SHIFT; 1666 unsigned long vm_len = vma->vm_end - vma->vm_start; 1667 1668 pfn += vma->vm_pgoff; 1669 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1670 } 1671 EXPORT_SYMBOL(vm_iomap_memory); 1672 1673 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1674 unsigned long pgoff) 1675 { 1676 unsigned int size = vma->vm_end - vma->vm_start; 1677 1678 if (!(vma->vm_flags & VM_USERMAP)) 1679 return -EINVAL; 1680 1681 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1682 vma->vm_end = vma->vm_start + size; 1683 1684 return 0; 1685 } 1686 EXPORT_SYMBOL(remap_vmalloc_range); 1687 1688 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1689 unsigned long len, unsigned long pgoff, unsigned long flags) 1690 { 1691 return -ENOMEM; 1692 } 1693 1694 vm_fault_t filemap_fault(struct vm_fault *vmf) 1695 { 1696 BUG(); 1697 return 0; 1698 } 1699 EXPORT_SYMBOL(filemap_fault); 1700 1701 void filemap_map_pages(struct vm_fault *vmf, 1702 pgoff_t start_pgoff, pgoff_t end_pgoff) 1703 { 1704 BUG(); 1705 } 1706 EXPORT_SYMBOL(filemap_map_pages); 1707 1708 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1709 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1710 { 1711 struct vm_area_struct *vma; 1712 int write = gup_flags & FOLL_WRITE; 1713 1714 if (down_read_killable(&mm->mmap_sem)) 1715 return 0; 1716 1717 /* the access must start within one of the target process's mappings */ 1718 vma = find_vma(mm, addr); 1719 if (vma) { 1720 /* don't overrun this mapping */ 1721 if (addr + len >= vma->vm_end) 1722 len = vma->vm_end - addr; 1723 1724 /* only read or write mappings where it is permitted */ 1725 if (write && vma->vm_flags & VM_MAYWRITE) 1726 copy_to_user_page(vma, NULL, addr, 1727 (void *) addr, buf, len); 1728 else if (!write && vma->vm_flags & VM_MAYREAD) 1729 copy_from_user_page(vma, NULL, addr, 1730 buf, (void *) addr, len); 1731 else 1732 len = 0; 1733 } else { 1734 len = 0; 1735 } 1736 1737 up_read(&mm->mmap_sem); 1738 1739 return len; 1740 } 1741 1742 /** 1743 * access_remote_vm - access another process' address space 1744 * @mm: the mm_struct of the target address space 1745 * @addr: start address to access 1746 * @buf: source or destination buffer 1747 * @len: number of bytes to transfer 1748 * @gup_flags: flags modifying lookup behaviour 1749 * 1750 * The caller must hold a reference on @mm. 1751 */ 1752 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1753 void *buf, int len, unsigned int gup_flags) 1754 { 1755 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1756 } 1757 1758 /* 1759 * Access another process' address space. 1760 * - source/target buffer must be kernel space 1761 */ 1762 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1763 unsigned int gup_flags) 1764 { 1765 struct mm_struct *mm; 1766 1767 if (addr + len < addr) 1768 return 0; 1769 1770 mm = get_task_mm(tsk); 1771 if (!mm) 1772 return 0; 1773 1774 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1775 1776 mmput(mm); 1777 return len; 1778 } 1779 EXPORT_SYMBOL_GPL(access_process_vm); 1780 1781 /** 1782 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1783 * @inode: The inode to check 1784 * @size: The current filesize of the inode 1785 * @newsize: The proposed filesize of the inode 1786 * 1787 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1788 * make sure that that any outstanding VMAs aren't broken and then shrink the 1789 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1790 * automatically grant mappings that are too large. 1791 */ 1792 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1793 size_t newsize) 1794 { 1795 struct vm_area_struct *vma; 1796 struct vm_region *region; 1797 pgoff_t low, high; 1798 size_t r_size, r_top; 1799 1800 low = newsize >> PAGE_SHIFT; 1801 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1802 1803 down_write(&nommu_region_sem); 1804 i_mmap_lock_read(inode->i_mapping); 1805 1806 /* search for VMAs that fall within the dead zone */ 1807 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1808 /* found one - only interested if it's shared out of the page 1809 * cache */ 1810 if (vma->vm_flags & VM_SHARED) { 1811 i_mmap_unlock_read(inode->i_mapping); 1812 up_write(&nommu_region_sem); 1813 return -ETXTBSY; /* not quite true, but near enough */ 1814 } 1815 } 1816 1817 /* reduce any regions that overlap the dead zone - if in existence, 1818 * these will be pointed to by VMAs that don't overlap the dead zone 1819 * 1820 * we don't check for any regions that start beyond the EOF as there 1821 * shouldn't be any 1822 */ 1823 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1824 if (!(vma->vm_flags & VM_SHARED)) 1825 continue; 1826 1827 region = vma->vm_region; 1828 r_size = region->vm_top - region->vm_start; 1829 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1830 1831 if (r_top > newsize) { 1832 region->vm_top -= r_top - newsize; 1833 if (region->vm_end > region->vm_top) 1834 region->vm_end = region->vm_top; 1835 } 1836 } 1837 1838 i_mmap_unlock_read(inode->i_mapping); 1839 up_write(&nommu_region_sem); 1840 return 0; 1841 } 1842 1843 /* 1844 * Initialise sysctl_user_reserve_kbytes. 1845 * 1846 * This is intended to prevent a user from starting a single memory hogging 1847 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1848 * mode. 1849 * 1850 * The default value is min(3% of free memory, 128MB) 1851 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1852 */ 1853 static int __meminit init_user_reserve(void) 1854 { 1855 unsigned long free_kbytes; 1856 1857 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1858 1859 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1860 return 0; 1861 } 1862 subsys_initcall(init_user_reserve); 1863 1864 /* 1865 * Initialise sysctl_admin_reserve_kbytes. 1866 * 1867 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1868 * to log in and kill a memory hogging process. 1869 * 1870 * Systems with more than 256MB will reserve 8MB, enough to recover 1871 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1872 * only reserve 3% of free pages by default. 1873 */ 1874 static int __meminit init_admin_reserve(void) 1875 { 1876 unsigned long free_kbytes; 1877 1878 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1879 1880 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1881 return 0; 1882 } 1883 subsys_initcall(init_admin_reserve); 1884