xref: /openbmc/linux/mm/nommu.c (revision 36bccb11)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/compiler.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/audit.h>
34 #include <linux/sched/sysctl.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/tlb.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mmu_context.h>
40 #include "internal.h"
41 
42 #if 0
43 #define kenter(FMT, ...) \
44 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
45 #define kleave(FMT, ...) \
46 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
47 #define kdebug(FMT, ...) \
48 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49 #else
50 #define kenter(FMT, ...) \
51 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
52 #define kleave(FMT, ...) \
53 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
54 #define kdebug(FMT, ...) \
55 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
56 #endif
57 
58 void *high_memory;
59 struct page *mem_map;
60 unsigned long max_mapnr;
61 unsigned long highest_memmap_pfn;
62 struct percpu_counter vm_committed_as;
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50; /* default is 50% */
65 unsigned long sysctl_overcommit_kbytes __read_mostly;
66 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
69 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 /*
75  * The global memory commitment made in the system can be a metric
76  * that can be used to drive ballooning decisions when Linux is hosted
77  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
78  * balancing memory across competing virtual machines that are hosted.
79  * Several metrics drive this policy engine including the guest reported
80  * memory commitment.
81  */
82 unsigned long vm_memory_committed(void)
83 {
84 	return percpu_counter_read_positive(&vm_committed_as);
85 }
86 
87 EXPORT_SYMBOL_GPL(vm_memory_committed);
88 
89 EXPORT_SYMBOL(mem_map);
90 
91 /* list of mapped, potentially shareable regions */
92 static struct kmem_cache *vm_region_jar;
93 struct rb_root nommu_region_tree = RB_ROOT;
94 DECLARE_RWSEM(nommu_region_sem);
95 
96 const struct vm_operations_struct generic_file_vm_ops = {
97 };
98 
99 /*
100  * Return the total memory allocated for this pointer, not
101  * just what the caller asked for.
102  *
103  * Doesn't have to be accurate, i.e. may have races.
104  */
105 unsigned int kobjsize(const void *objp)
106 {
107 	struct page *page;
108 
109 	/*
110 	 * If the object we have should not have ksize performed on it,
111 	 * return size of 0
112 	 */
113 	if (!objp || !virt_addr_valid(objp))
114 		return 0;
115 
116 	page = virt_to_head_page(objp);
117 
118 	/*
119 	 * If the allocator sets PageSlab, we know the pointer came from
120 	 * kmalloc().
121 	 */
122 	if (PageSlab(page))
123 		return ksize(objp);
124 
125 	/*
126 	 * If it's not a compound page, see if we have a matching VMA
127 	 * region. This test is intentionally done in reverse order,
128 	 * so if there's no VMA, we still fall through and hand back
129 	 * PAGE_SIZE for 0-order pages.
130 	 */
131 	if (!PageCompound(page)) {
132 		struct vm_area_struct *vma;
133 
134 		vma = find_vma(current->mm, (unsigned long)objp);
135 		if (vma)
136 			return vma->vm_end - vma->vm_start;
137 	}
138 
139 	/*
140 	 * The ksize() function is only guaranteed to work for pointers
141 	 * returned by kmalloc(). So handle arbitrary pointers here.
142 	 */
143 	return PAGE_SIZE << compound_order(page);
144 }
145 
146 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147 		      unsigned long start, unsigned long nr_pages,
148 		      unsigned int foll_flags, struct page **pages,
149 		      struct vm_area_struct **vmas, int *nonblocking)
150 {
151 	struct vm_area_struct *vma;
152 	unsigned long vm_flags;
153 	int i;
154 
155 	/* calculate required read or write permissions.
156 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
157 	 */
158 	vm_flags  = (foll_flags & FOLL_WRITE) ?
159 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160 	vm_flags &= (foll_flags & FOLL_FORCE) ?
161 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162 
163 	for (i = 0; i < nr_pages; i++) {
164 		vma = find_vma(mm, start);
165 		if (!vma)
166 			goto finish_or_fault;
167 
168 		/* protect what we can, including chardevs */
169 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170 		    !(vm_flags & vma->vm_flags))
171 			goto finish_or_fault;
172 
173 		if (pages) {
174 			pages[i] = virt_to_page(start);
175 			if (pages[i])
176 				page_cache_get(pages[i]);
177 		}
178 		if (vmas)
179 			vmas[i] = vma;
180 		start = (start + PAGE_SIZE) & PAGE_MASK;
181 	}
182 
183 	return i;
184 
185 finish_or_fault:
186 	return i ? : -EFAULT;
187 }
188 
189 /*
190  * get a list of pages in an address range belonging to the specified process
191  * and indicate the VMA that covers each page
192  * - this is potentially dodgy as we may end incrementing the page count of a
193  *   slab page or a secondary page from a compound page
194  * - don't permit access to VMAs that don't support it, such as I/O mappings
195  */
196 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197 		    unsigned long start, unsigned long nr_pages,
198 		    int write, int force, struct page **pages,
199 		    struct vm_area_struct **vmas)
200 {
201 	int flags = 0;
202 
203 	if (write)
204 		flags |= FOLL_WRITE;
205 	if (force)
206 		flags |= FOLL_FORCE;
207 
208 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209 				NULL);
210 }
211 EXPORT_SYMBOL(get_user_pages);
212 
213 /**
214  * follow_pfn - look up PFN at a user virtual address
215  * @vma: memory mapping
216  * @address: user virtual address
217  * @pfn: location to store found PFN
218  *
219  * Only IO mappings and raw PFN mappings are allowed.
220  *
221  * Returns zero and the pfn at @pfn on success, -ve otherwise.
222  */
223 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224 	unsigned long *pfn)
225 {
226 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227 		return -EINVAL;
228 
229 	*pfn = address >> PAGE_SHIFT;
230 	return 0;
231 }
232 EXPORT_SYMBOL(follow_pfn);
233 
234 LIST_HEAD(vmap_area_list);
235 
236 void vfree(const void *addr)
237 {
238 	kfree(addr);
239 }
240 EXPORT_SYMBOL(vfree);
241 
242 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243 {
244 	/*
245 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246 	 * returns only a logical address.
247 	 */
248 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 }
250 EXPORT_SYMBOL(__vmalloc);
251 
252 void *vmalloc_user(unsigned long size)
253 {
254 	void *ret;
255 
256 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257 			PAGE_KERNEL);
258 	if (ret) {
259 		struct vm_area_struct *vma;
260 
261 		down_write(&current->mm->mmap_sem);
262 		vma = find_vma(current->mm, (unsigned long)ret);
263 		if (vma)
264 			vma->vm_flags |= VM_USERMAP;
265 		up_write(&current->mm->mmap_sem);
266 	}
267 
268 	return ret;
269 }
270 EXPORT_SYMBOL(vmalloc_user);
271 
272 struct page *vmalloc_to_page(const void *addr)
273 {
274 	return virt_to_page(addr);
275 }
276 EXPORT_SYMBOL(vmalloc_to_page);
277 
278 unsigned long vmalloc_to_pfn(const void *addr)
279 {
280 	return page_to_pfn(virt_to_page(addr));
281 }
282 EXPORT_SYMBOL(vmalloc_to_pfn);
283 
284 long vread(char *buf, char *addr, unsigned long count)
285 {
286 	/* Don't allow overflow */
287 	if ((unsigned long) buf + count < count)
288 		count = -(unsigned long) buf;
289 
290 	memcpy(buf, addr, count);
291 	return count;
292 }
293 
294 long vwrite(char *buf, char *addr, unsigned long count)
295 {
296 	/* Don't allow overflow */
297 	if ((unsigned long) addr + count < count)
298 		count = -(unsigned long) addr;
299 
300 	memcpy(addr, buf, count);
301 	return count;
302 }
303 
304 /*
305  *	vmalloc  -  allocate virtually continguos memory
306  *
307  *	@size:		allocation size
308  *
309  *	Allocate enough pages to cover @size from the page level
310  *	allocator and map them into continguos kernel virtual space.
311  *
312  *	For tight control over page level allocator and protection flags
313  *	use __vmalloc() instead.
314  */
315 void *vmalloc(unsigned long size)
316 {
317        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc);
320 
321 /*
322  *	vzalloc - allocate virtually continguos memory with zero fill
323  *
324  *	@size:		allocation size
325  *
326  *	Allocate enough pages to cover @size from the page level
327  *	allocator and map them into continguos kernel virtual space.
328  *	The memory allocated is set to zero.
329  *
330  *	For tight control over page level allocator and protection flags
331  *	use __vmalloc() instead.
332  */
333 void *vzalloc(unsigned long size)
334 {
335 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
336 			PAGE_KERNEL);
337 }
338 EXPORT_SYMBOL(vzalloc);
339 
340 /**
341  * vmalloc_node - allocate memory on a specific node
342  * @size:	allocation size
343  * @node:	numa node
344  *
345  * Allocate enough pages to cover @size from the page level
346  * allocator and map them into contiguous kernel virtual space.
347  *
348  * For tight control over page level allocator and protection flags
349  * use __vmalloc() instead.
350  */
351 void *vmalloc_node(unsigned long size, int node)
352 {
353 	return vmalloc(size);
354 }
355 EXPORT_SYMBOL(vmalloc_node);
356 
357 /**
358  * vzalloc_node - allocate memory on a specific node with zero fill
359  * @size:	allocation size
360  * @node:	numa node
361  *
362  * Allocate enough pages to cover @size from the page level
363  * allocator and map them into contiguous kernel virtual space.
364  * The memory allocated is set to zero.
365  *
366  * For tight control over page level allocator and protection flags
367  * use __vmalloc() instead.
368  */
369 void *vzalloc_node(unsigned long size, int node)
370 {
371 	return vzalloc(size);
372 }
373 EXPORT_SYMBOL(vzalloc_node);
374 
375 #ifndef PAGE_KERNEL_EXEC
376 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 #endif
378 
379 /**
380  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
381  *	@size:		allocation size
382  *
383  *	Kernel-internal function to allocate enough pages to cover @size
384  *	the page level allocator and map them into contiguous and
385  *	executable kernel virtual space.
386  *
387  *	For tight control over page level allocator and protection flags
388  *	use __vmalloc() instead.
389  */
390 
391 void *vmalloc_exec(unsigned long size)
392 {
393 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
394 }
395 
396 /**
397  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
398  *	@size:		allocation size
399  *
400  *	Allocate enough 32bit PA addressable pages to cover @size from the
401  *	page level allocator and map them into continguos kernel virtual space.
402  */
403 void *vmalloc_32(unsigned long size)
404 {
405 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406 }
407 EXPORT_SYMBOL(vmalloc_32);
408 
409 /**
410  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
411  *	@size:		allocation size
412  *
413  * The resulting memory area is 32bit addressable and zeroed so it can be
414  * mapped to userspace without leaking data.
415  *
416  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
417  * remap_vmalloc_range() are permissible.
418  */
419 void *vmalloc_32_user(unsigned long size)
420 {
421 	/*
422 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
423 	 * but for now this can simply use vmalloc_user() directly.
424 	 */
425 	return vmalloc_user(size);
426 }
427 EXPORT_SYMBOL(vmalloc_32_user);
428 
429 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430 {
431 	BUG();
432 	return NULL;
433 }
434 EXPORT_SYMBOL(vmap);
435 
436 void vunmap(const void *addr)
437 {
438 	BUG();
439 }
440 EXPORT_SYMBOL(vunmap);
441 
442 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443 {
444 	BUG();
445 	return NULL;
446 }
447 EXPORT_SYMBOL(vm_map_ram);
448 
449 void vm_unmap_ram(const void *mem, unsigned int count)
450 {
451 	BUG();
452 }
453 EXPORT_SYMBOL(vm_unmap_ram);
454 
455 void vm_unmap_aliases(void)
456 {
457 }
458 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459 
460 /*
461  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462  * have one.
463  */
464 void __weak vmalloc_sync_all(void)
465 {
466 }
467 
468 /**
469  *	alloc_vm_area - allocate a range of kernel address space
470  *	@size:		size of the area
471  *
472  *	Returns:	NULL on failure, vm_struct on success
473  *
474  *	This function reserves a range of kernel address space, and
475  *	allocates pagetables to map that range.  No actual mappings
476  *	are created.  If the kernel address space is not shared
477  *	between processes, it syncs the pagetable across all
478  *	processes.
479  */
480 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
481 {
482 	BUG();
483 	return NULL;
484 }
485 EXPORT_SYMBOL_GPL(alloc_vm_area);
486 
487 void free_vm_area(struct vm_struct *area)
488 {
489 	BUG();
490 }
491 EXPORT_SYMBOL_GPL(free_vm_area);
492 
493 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
494 		   struct page *page)
495 {
496 	return -EINVAL;
497 }
498 EXPORT_SYMBOL(vm_insert_page);
499 
500 /*
501  *  sys_brk() for the most part doesn't need the global kernel
502  *  lock, except when an application is doing something nasty
503  *  like trying to un-brk an area that has already been mapped
504  *  to a regular file.  in this case, the unmapping will need
505  *  to invoke file system routines that need the global lock.
506  */
507 SYSCALL_DEFINE1(brk, unsigned long, brk)
508 {
509 	struct mm_struct *mm = current->mm;
510 
511 	if (brk < mm->start_brk || brk > mm->context.end_brk)
512 		return mm->brk;
513 
514 	if (mm->brk == brk)
515 		return mm->brk;
516 
517 	/*
518 	 * Always allow shrinking brk
519 	 */
520 	if (brk <= mm->brk) {
521 		mm->brk = brk;
522 		return brk;
523 	}
524 
525 	/*
526 	 * Ok, looks good - let it rip.
527 	 */
528 	flush_icache_range(mm->brk, brk);
529 	return mm->brk = brk;
530 }
531 
532 /*
533  * initialise the VMA and region record slabs
534  */
535 void __init mmap_init(void)
536 {
537 	int ret;
538 
539 	ret = percpu_counter_init(&vm_committed_as, 0);
540 	VM_BUG_ON(ret);
541 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
542 }
543 
544 /*
545  * validate the region tree
546  * - the caller must hold the region lock
547  */
548 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
549 static noinline void validate_nommu_regions(void)
550 {
551 	struct vm_region *region, *last;
552 	struct rb_node *p, *lastp;
553 
554 	lastp = rb_first(&nommu_region_tree);
555 	if (!lastp)
556 		return;
557 
558 	last = rb_entry(lastp, struct vm_region, vm_rb);
559 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
560 	BUG_ON(unlikely(last->vm_top < last->vm_end));
561 
562 	while ((p = rb_next(lastp))) {
563 		region = rb_entry(p, struct vm_region, vm_rb);
564 		last = rb_entry(lastp, struct vm_region, vm_rb);
565 
566 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
567 		BUG_ON(unlikely(region->vm_top < region->vm_end));
568 		BUG_ON(unlikely(region->vm_start < last->vm_top));
569 
570 		lastp = p;
571 	}
572 }
573 #else
574 static void validate_nommu_regions(void)
575 {
576 }
577 #endif
578 
579 /*
580  * add a region into the global tree
581  */
582 static void add_nommu_region(struct vm_region *region)
583 {
584 	struct vm_region *pregion;
585 	struct rb_node **p, *parent;
586 
587 	validate_nommu_regions();
588 
589 	parent = NULL;
590 	p = &nommu_region_tree.rb_node;
591 	while (*p) {
592 		parent = *p;
593 		pregion = rb_entry(parent, struct vm_region, vm_rb);
594 		if (region->vm_start < pregion->vm_start)
595 			p = &(*p)->rb_left;
596 		else if (region->vm_start > pregion->vm_start)
597 			p = &(*p)->rb_right;
598 		else if (pregion == region)
599 			return;
600 		else
601 			BUG();
602 	}
603 
604 	rb_link_node(&region->vm_rb, parent, p);
605 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
606 
607 	validate_nommu_regions();
608 }
609 
610 /*
611  * delete a region from the global tree
612  */
613 static void delete_nommu_region(struct vm_region *region)
614 {
615 	BUG_ON(!nommu_region_tree.rb_node);
616 
617 	validate_nommu_regions();
618 	rb_erase(&region->vm_rb, &nommu_region_tree);
619 	validate_nommu_regions();
620 }
621 
622 /*
623  * free a contiguous series of pages
624  */
625 static void free_page_series(unsigned long from, unsigned long to)
626 {
627 	for (; from < to; from += PAGE_SIZE) {
628 		struct page *page = virt_to_page(from);
629 
630 		kdebug("- free %lx", from);
631 		atomic_long_dec(&mmap_pages_allocated);
632 		if (page_count(page) != 1)
633 			kdebug("free page %p: refcount not one: %d",
634 			       page, page_count(page));
635 		put_page(page);
636 	}
637 }
638 
639 /*
640  * release a reference to a region
641  * - the caller must hold the region semaphore for writing, which this releases
642  * - the region may not have been added to the tree yet, in which case vm_top
643  *   will equal vm_start
644  */
645 static void __put_nommu_region(struct vm_region *region)
646 	__releases(nommu_region_sem)
647 {
648 	kenter("%p{%d}", region, region->vm_usage);
649 
650 	BUG_ON(!nommu_region_tree.rb_node);
651 
652 	if (--region->vm_usage == 0) {
653 		if (region->vm_top > region->vm_start)
654 			delete_nommu_region(region);
655 		up_write(&nommu_region_sem);
656 
657 		if (region->vm_file)
658 			fput(region->vm_file);
659 
660 		/* IO memory and memory shared directly out of the pagecache
661 		 * from ramfs/tmpfs mustn't be released here */
662 		if (region->vm_flags & VM_MAPPED_COPY) {
663 			kdebug("free series");
664 			free_page_series(region->vm_start, region->vm_top);
665 		}
666 		kmem_cache_free(vm_region_jar, region);
667 	} else {
668 		up_write(&nommu_region_sem);
669 	}
670 }
671 
672 /*
673  * release a reference to a region
674  */
675 static void put_nommu_region(struct vm_region *region)
676 {
677 	down_write(&nommu_region_sem);
678 	__put_nommu_region(region);
679 }
680 
681 /*
682  * update protection on a vma
683  */
684 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685 {
686 #ifdef CONFIG_MPU
687 	struct mm_struct *mm = vma->vm_mm;
688 	long start = vma->vm_start & PAGE_MASK;
689 	while (start < vma->vm_end) {
690 		protect_page(mm, start, flags);
691 		start += PAGE_SIZE;
692 	}
693 	update_protections(mm);
694 #endif
695 }
696 
697 /*
698  * add a VMA into a process's mm_struct in the appropriate place in the list
699  * and tree and add to the address space's page tree also if not an anonymous
700  * page
701  * - should be called with mm->mmap_sem held writelocked
702  */
703 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
704 {
705 	struct vm_area_struct *pvma, *prev;
706 	struct address_space *mapping;
707 	struct rb_node **p, *parent, *rb_prev;
708 
709 	kenter(",%p", vma);
710 
711 	BUG_ON(!vma->vm_region);
712 
713 	mm->map_count++;
714 	vma->vm_mm = mm;
715 
716 	protect_vma(vma, vma->vm_flags);
717 
718 	/* add the VMA to the mapping */
719 	if (vma->vm_file) {
720 		mapping = vma->vm_file->f_mapping;
721 
722 		mutex_lock(&mapping->i_mmap_mutex);
723 		flush_dcache_mmap_lock(mapping);
724 		vma_interval_tree_insert(vma, &mapping->i_mmap);
725 		flush_dcache_mmap_unlock(mapping);
726 		mutex_unlock(&mapping->i_mmap_mutex);
727 	}
728 
729 	/* add the VMA to the tree */
730 	parent = rb_prev = NULL;
731 	p = &mm->mm_rb.rb_node;
732 	while (*p) {
733 		parent = *p;
734 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735 
736 		/* sort by: start addr, end addr, VMA struct addr in that order
737 		 * (the latter is necessary as we may get identical VMAs) */
738 		if (vma->vm_start < pvma->vm_start)
739 			p = &(*p)->rb_left;
740 		else if (vma->vm_start > pvma->vm_start) {
741 			rb_prev = parent;
742 			p = &(*p)->rb_right;
743 		} else if (vma->vm_end < pvma->vm_end)
744 			p = &(*p)->rb_left;
745 		else if (vma->vm_end > pvma->vm_end) {
746 			rb_prev = parent;
747 			p = &(*p)->rb_right;
748 		} else if (vma < pvma)
749 			p = &(*p)->rb_left;
750 		else if (vma > pvma) {
751 			rb_prev = parent;
752 			p = &(*p)->rb_right;
753 		} else
754 			BUG();
755 	}
756 
757 	rb_link_node(&vma->vm_rb, parent, p);
758 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759 
760 	/* add VMA to the VMA list also */
761 	prev = NULL;
762 	if (rb_prev)
763 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
764 
765 	__vma_link_list(mm, vma, prev, parent);
766 }
767 
768 /*
769  * delete a VMA from its owning mm_struct and address space
770  */
771 static void delete_vma_from_mm(struct vm_area_struct *vma)
772 {
773 	int i;
774 	struct address_space *mapping;
775 	struct mm_struct *mm = vma->vm_mm;
776 	struct task_struct *curr = current;
777 
778 	kenter("%p", vma);
779 
780 	protect_vma(vma, 0);
781 
782 	mm->map_count--;
783 	for (i = 0; i < VMACACHE_SIZE; i++) {
784 		/* if the vma is cached, invalidate the entire cache */
785 		if (curr->vmacache[i] == vma) {
786 			vmacache_invalidate(curr->mm);
787 			break;
788 		}
789 	}
790 
791 	/* remove the VMA from the mapping */
792 	if (vma->vm_file) {
793 		mapping = vma->vm_file->f_mapping;
794 
795 		mutex_lock(&mapping->i_mmap_mutex);
796 		flush_dcache_mmap_lock(mapping);
797 		vma_interval_tree_remove(vma, &mapping->i_mmap);
798 		flush_dcache_mmap_unlock(mapping);
799 		mutex_unlock(&mapping->i_mmap_mutex);
800 	}
801 
802 	/* remove from the MM's tree and list */
803 	rb_erase(&vma->vm_rb, &mm->mm_rb);
804 
805 	if (vma->vm_prev)
806 		vma->vm_prev->vm_next = vma->vm_next;
807 	else
808 		mm->mmap = vma->vm_next;
809 
810 	if (vma->vm_next)
811 		vma->vm_next->vm_prev = vma->vm_prev;
812 }
813 
814 /*
815  * destroy a VMA record
816  */
817 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818 {
819 	kenter("%p", vma);
820 	if (vma->vm_ops && vma->vm_ops->close)
821 		vma->vm_ops->close(vma);
822 	if (vma->vm_file)
823 		fput(vma->vm_file);
824 	put_nommu_region(vma->vm_region);
825 	kmem_cache_free(vm_area_cachep, vma);
826 }
827 
828 /*
829  * look up the first VMA in which addr resides, NULL if none
830  * - should be called with mm->mmap_sem at least held readlocked
831  */
832 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833 {
834 	struct vm_area_struct *vma;
835 
836 	/* check the cache first */
837 	vma = vmacache_find(mm, addr);
838 	if (likely(vma))
839 		return vma;
840 
841 	/* trawl the list (there may be multiple mappings in which addr
842 	 * resides) */
843 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
844 		if (vma->vm_start > addr)
845 			return NULL;
846 		if (vma->vm_end > addr) {
847 			vmacache_update(addr, vma);
848 			return vma;
849 		}
850 	}
851 
852 	return NULL;
853 }
854 EXPORT_SYMBOL(find_vma);
855 
856 /*
857  * find a VMA
858  * - we don't extend stack VMAs under NOMMU conditions
859  */
860 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861 {
862 	return find_vma(mm, addr);
863 }
864 
865 /*
866  * expand a stack to a given address
867  * - not supported under NOMMU conditions
868  */
869 int expand_stack(struct vm_area_struct *vma, unsigned long address)
870 {
871 	return -ENOMEM;
872 }
873 
874 /*
875  * look up the first VMA exactly that exactly matches addr
876  * - should be called with mm->mmap_sem at least held readlocked
877  */
878 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
879 					     unsigned long addr,
880 					     unsigned long len)
881 {
882 	struct vm_area_struct *vma;
883 	unsigned long end = addr + len;
884 
885 	/* check the cache first */
886 	vma = vmacache_find_exact(mm, addr, end);
887 	if (vma)
888 		return vma;
889 
890 	/* trawl the list (there may be multiple mappings in which addr
891 	 * resides) */
892 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
893 		if (vma->vm_start < addr)
894 			continue;
895 		if (vma->vm_start > addr)
896 			return NULL;
897 		if (vma->vm_end == end) {
898 			vmacache_update(addr, vma);
899 			return vma;
900 		}
901 	}
902 
903 	return NULL;
904 }
905 
906 /*
907  * determine whether a mapping should be permitted and, if so, what sort of
908  * mapping we're capable of supporting
909  */
910 static int validate_mmap_request(struct file *file,
911 				 unsigned long addr,
912 				 unsigned long len,
913 				 unsigned long prot,
914 				 unsigned long flags,
915 				 unsigned long pgoff,
916 				 unsigned long *_capabilities)
917 {
918 	unsigned long capabilities, rlen;
919 	int ret;
920 
921 	/* do the simple checks first */
922 	if (flags & MAP_FIXED) {
923 		printk(KERN_DEBUG
924 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
925 		       current->pid);
926 		return -EINVAL;
927 	}
928 
929 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
930 	    (flags & MAP_TYPE) != MAP_SHARED)
931 		return -EINVAL;
932 
933 	if (!len)
934 		return -EINVAL;
935 
936 	/* Careful about overflows.. */
937 	rlen = PAGE_ALIGN(len);
938 	if (!rlen || rlen > TASK_SIZE)
939 		return -ENOMEM;
940 
941 	/* offset overflow? */
942 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
943 		return -EOVERFLOW;
944 
945 	if (file) {
946 		/* validate file mapping requests */
947 		struct address_space *mapping;
948 
949 		/* files must support mmap */
950 		if (!file->f_op->mmap)
951 			return -ENODEV;
952 
953 		/* work out if what we've got could possibly be shared
954 		 * - we support chardevs that provide their own "memory"
955 		 * - we support files/blockdevs that are memory backed
956 		 */
957 		mapping = file->f_mapping;
958 		if (!mapping)
959 			mapping = file_inode(file)->i_mapping;
960 
961 		capabilities = 0;
962 		if (mapping && mapping->backing_dev_info)
963 			capabilities = mapping->backing_dev_info->capabilities;
964 
965 		if (!capabilities) {
966 			/* no explicit capabilities set, so assume some
967 			 * defaults */
968 			switch (file_inode(file)->i_mode & S_IFMT) {
969 			case S_IFREG:
970 			case S_IFBLK:
971 				capabilities = BDI_CAP_MAP_COPY;
972 				break;
973 
974 			case S_IFCHR:
975 				capabilities =
976 					BDI_CAP_MAP_DIRECT |
977 					BDI_CAP_READ_MAP |
978 					BDI_CAP_WRITE_MAP;
979 				break;
980 
981 			default:
982 				return -EINVAL;
983 			}
984 		}
985 
986 		/* eliminate any capabilities that we can't support on this
987 		 * device */
988 		if (!file->f_op->get_unmapped_area)
989 			capabilities &= ~BDI_CAP_MAP_DIRECT;
990 		if (!file->f_op->read)
991 			capabilities &= ~BDI_CAP_MAP_COPY;
992 
993 		/* The file shall have been opened with read permission. */
994 		if (!(file->f_mode & FMODE_READ))
995 			return -EACCES;
996 
997 		if (flags & MAP_SHARED) {
998 			/* do checks for writing, appending and locking */
999 			if ((prot & PROT_WRITE) &&
1000 			    !(file->f_mode & FMODE_WRITE))
1001 				return -EACCES;
1002 
1003 			if (IS_APPEND(file_inode(file)) &&
1004 			    (file->f_mode & FMODE_WRITE))
1005 				return -EACCES;
1006 
1007 			if (locks_verify_locked(file))
1008 				return -EAGAIN;
1009 
1010 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011 				return -ENODEV;
1012 
1013 			/* we mustn't privatise shared mappings */
1014 			capabilities &= ~BDI_CAP_MAP_COPY;
1015 		} else {
1016 			/* we're going to read the file into private memory we
1017 			 * allocate */
1018 			if (!(capabilities & BDI_CAP_MAP_COPY))
1019 				return -ENODEV;
1020 
1021 			/* we don't permit a private writable mapping to be
1022 			 * shared with the backing device */
1023 			if (prot & PROT_WRITE)
1024 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1025 		}
1026 
1027 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1028 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1029 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1031 			    ) {
1032 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1033 				if (flags & MAP_SHARED) {
1034 					printk(KERN_WARNING
1035 					       "MAP_SHARED not completely supported on !MMU\n");
1036 					return -EINVAL;
1037 				}
1038 			}
1039 		}
1040 
1041 		/* handle executable mappings and implied executable
1042 		 * mappings */
1043 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044 			if (prot & PROT_EXEC)
1045 				return -EPERM;
1046 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1047 			/* handle implication of PROT_EXEC by PROT_READ */
1048 			if (current->personality & READ_IMPLIES_EXEC) {
1049 				if (capabilities & BDI_CAP_EXEC_MAP)
1050 					prot |= PROT_EXEC;
1051 			}
1052 		} else if ((prot & PROT_READ) &&
1053 			 (prot & PROT_EXEC) &&
1054 			 !(capabilities & BDI_CAP_EXEC_MAP)
1055 			 ) {
1056 			/* backing file is not executable, try to copy */
1057 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1058 		}
1059 	} else {
1060 		/* anonymous mappings are always memory backed and can be
1061 		 * privately mapped
1062 		 */
1063 		capabilities = BDI_CAP_MAP_COPY;
1064 
1065 		/* handle PROT_EXEC implication by PROT_READ */
1066 		if ((prot & PROT_READ) &&
1067 		    (current->personality & READ_IMPLIES_EXEC))
1068 			prot |= PROT_EXEC;
1069 	}
1070 
1071 	/* allow the security API to have its say */
1072 	ret = security_mmap_addr(addr);
1073 	if (ret < 0)
1074 		return ret;
1075 
1076 	/* looks okay */
1077 	*_capabilities = capabilities;
1078 	return 0;
1079 }
1080 
1081 /*
1082  * we've determined that we can make the mapping, now translate what we
1083  * now know into VMA flags
1084  */
1085 static unsigned long determine_vm_flags(struct file *file,
1086 					unsigned long prot,
1087 					unsigned long flags,
1088 					unsigned long capabilities)
1089 {
1090 	unsigned long vm_flags;
1091 
1092 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1093 	/* vm_flags |= mm->def_flags; */
1094 
1095 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1096 		/* attempt to share read-only copies of mapped file chunks */
1097 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1098 		if (file && !(prot & PROT_WRITE))
1099 			vm_flags |= VM_MAYSHARE;
1100 	} else {
1101 		/* overlay a shareable mapping on the backing device or inode
1102 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1103 		 * romfs/cramfs */
1104 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1105 		if (flags & MAP_SHARED)
1106 			vm_flags |= VM_SHARED;
1107 	}
1108 
1109 	/* refuse to let anyone share private mappings with this process if
1110 	 * it's being traced - otherwise breakpoints set in it may interfere
1111 	 * with another untraced process
1112 	 */
1113 	if ((flags & MAP_PRIVATE) && current->ptrace)
1114 		vm_flags &= ~VM_MAYSHARE;
1115 
1116 	return vm_flags;
1117 }
1118 
1119 /*
1120  * set up a shared mapping on a file (the driver or filesystem provides and
1121  * pins the storage)
1122  */
1123 static int do_mmap_shared_file(struct vm_area_struct *vma)
1124 {
1125 	int ret;
1126 
1127 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1128 	if (ret == 0) {
1129 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1130 		return 0;
1131 	}
1132 	if (ret != -ENOSYS)
1133 		return ret;
1134 
1135 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1136 	 * opposed to tried but failed) so we can only give a suitable error as
1137 	 * it's not possible to make a private copy if MAP_SHARED was given */
1138 	return -ENODEV;
1139 }
1140 
1141 /*
1142  * set up a private mapping or an anonymous shared mapping
1143  */
1144 static int do_mmap_private(struct vm_area_struct *vma,
1145 			   struct vm_region *region,
1146 			   unsigned long len,
1147 			   unsigned long capabilities)
1148 {
1149 	struct page *pages;
1150 	unsigned long total, point, n;
1151 	void *base;
1152 	int ret, order;
1153 
1154 	/* invoke the file's mapping function so that it can keep track of
1155 	 * shared mappings on devices or memory
1156 	 * - VM_MAYSHARE will be set if it may attempt to share
1157 	 */
1158 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1159 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1160 		if (ret == 0) {
1161 			/* shouldn't return success if we're not sharing */
1162 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1163 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1164 			return 0;
1165 		}
1166 		if (ret != -ENOSYS)
1167 			return ret;
1168 
1169 		/* getting an ENOSYS error indicates that direct mmap isn't
1170 		 * possible (as opposed to tried but failed) so we'll try to
1171 		 * make a private copy of the data and map that instead */
1172 	}
1173 
1174 
1175 	/* allocate some memory to hold the mapping
1176 	 * - note that this may not return a page-aligned address if the object
1177 	 *   we're allocating is smaller than a page
1178 	 */
1179 	order = get_order(len);
1180 	kdebug("alloc order %d for %lx", order, len);
1181 
1182 	pages = alloc_pages(GFP_KERNEL, order);
1183 	if (!pages)
1184 		goto enomem;
1185 
1186 	total = 1 << order;
1187 	atomic_long_add(total, &mmap_pages_allocated);
1188 
1189 	point = len >> PAGE_SHIFT;
1190 
1191 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1192 	 * the excess */
1193 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1194 		while (total > point) {
1195 			order = ilog2(total - point);
1196 			n = 1 << order;
1197 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1198 			atomic_long_sub(n, &mmap_pages_allocated);
1199 			total -= n;
1200 			set_page_refcounted(pages + total);
1201 			__free_pages(pages + total, order);
1202 		}
1203 	}
1204 
1205 	for (point = 1; point < total; point++)
1206 		set_page_refcounted(&pages[point]);
1207 
1208 	base = page_address(pages);
1209 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1210 	region->vm_start = (unsigned long) base;
1211 	region->vm_end   = region->vm_start + len;
1212 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1213 
1214 	vma->vm_start = region->vm_start;
1215 	vma->vm_end   = region->vm_start + len;
1216 
1217 	if (vma->vm_file) {
1218 		/* read the contents of a file into the copy */
1219 		mm_segment_t old_fs;
1220 		loff_t fpos;
1221 
1222 		fpos = vma->vm_pgoff;
1223 		fpos <<= PAGE_SHIFT;
1224 
1225 		old_fs = get_fs();
1226 		set_fs(KERNEL_DS);
1227 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1228 		set_fs(old_fs);
1229 
1230 		if (ret < 0)
1231 			goto error_free;
1232 
1233 		/* clear the last little bit */
1234 		if (ret < len)
1235 			memset(base + ret, 0, len - ret);
1236 
1237 	}
1238 
1239 	return 0;
1240 
1241 error_free:
1242 	free_page_series(region->vm_start, region->vm_top);
1243 	region->vm_start = vma->vm_start = 0;
1244 	region->vm_end   = vma->vm_end = 0;
1245 	region->vm_top   = 0;
1246 	return ret;
1247 
1248 enomem:
1249 	printk("Allocation of length %lu from process %d (%s) failed\n",
1250 	       len, current->pid, current->comm);
1251 	show_free_areas(0);
1252 	return -ENOMEM;
1253 }
1254 
1255 /*
1256  * handle mapping creation for uClinux
1257  */
1258 unsigned long do_mmap_pgoff(struct file *file,
1259 			    unsigned long addr,
1260 			    unsigned long len,
1261 			    unsigned long prot,
1262 			    unsigned long flags,
1263 			    unsigned long pgoff,
1264 			    unsigned long *populate)
1265 {
1266 	struct vm_area_struct *vma;
1267 	struct vm_region *region;
1268 	struct rb_node *rb;
1269 	unsigned long capabilities, vm_flags, result;
1270 	int ret;
1271 
1272 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1273 
1274 	*populate = 0;
1275 
1276 	/* decide whether we should attempt the mapping, and if so what sort of
1277 	 * mapping */
1278 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1279 				    &capabilities);
1280 	if (ret < 0) {
1281 		kleave(" = %d [val]", ret);
1282 		return ret;
1283 	}
1284 
1285 	/* we ignore the address hint */
1286 	addr = 0;
1287 	len = PAGE_ALIGN(len);
1288 
1289 	/* we've determined that we can make the mapping, now translate what we
1290 	 * now know into VMA flags */
1291 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1292 
1293 	/* we're going to need to record the mapping */
1294 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1295 	if (!region)
1296 		goto error_getting_region;
1297 
1298 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299 	if (!vma)
1300 		goto error_getting_vma;
1301 
1302 	region->vm_usage = 1;
1303 	region->vm_flags = vm_flags;
1304 	region->vm_pgoff = pgoff;
1305 
1306 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1307 	vma->vm_flags = vm_flags;
1308 	vma->vm_pgoff = pgoff;
1309 
1310 	if (file) {
1311 		region->vm_file = get_file(file);
1312 		vma->vm_file = get_file(file);
1313 	}
1314 
1315 	down_write(&nommu_region_sem);
1316 
1317 	/* if we want to share, we need to check for regions created by other
1318 	 * mmap() calls that overlap with our proposed mapping
1319 	 * - we can only share with a superset match on most regular files
1320 	 * - shared mappings on character devices and memory backed files are
1321 	 *   permitted to overlap inexactly as far as we are concerned for in
1322 	 *   these cases, sharing is handled in the driver or filesystem rather
1323 	 *   than here
1324 	 */
1325 	if (vm_flags & VM_MAYSHARE) {
1326 		struct vm_region *pregion;
1327 		unsigned long pglen, rpglen, pgend, rpgend, start;
1328 
1329 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 		pgend = pgoff + pglen;
1331 
1332 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1333 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1334 
1335 			if (!(pregion->vm_flags & VM_MAYSHARE))
1336 				continue;
1337 
1338 			/* search for overlapping mappings on the same file */
1339 			if (file_inode(pregion->vm_file) !=
1340 			    file_inode(file))
1341 				continue;
1342 
1343 			if (pregion->vm_pgoff >= pgend)
1344 				continue;
1345 
1346 			rpglen = pregion->vm_end - pregion->vm_start;
1347 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1348 			rpgend = pregion->vm_pgoff + rpglen;
1349 			if (pgoff >= rpgend)
1350 				continue;
1351 
1352 			/* handle inexactly overlapping matches between
1353 			 * mappings */
1354 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1355 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1356 				/* new mapping is not a subset of the region */
1357 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1358 					goto sharing_violation;
1359 				continue;
1360 			}
1361 
1362 			/* we've found a region we can share */
1363 			pregion->vm_usage++;
1364 			vma->vm_region = pregion;
1365 			start = pregion->vm_start;
1366 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1367 			vma->vm_start = start;
1368 			vma->vm_end = start + len;
1369 
1370 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1371 				kdebug("share copy");
1372 				vma->vm_flags |= VM_MAPPED_COPY;
1373 			} else {
1374 				kdebug("share mmap");
1375 				ret = do_mmap_shared_file(vma);
1376 				if (ret < 0) {
1377 					vma->vm_region = NULL;
1378 					vma->vm_start = 0;
1379 					vma->vm_end = 0;
1380 					pregion->vm_usage--;
1381 					pregion = NULL;
1382 					goto error_just_free;
1383 				}
1384 			}
1385 			fput(region->vm_file);
1386 			kmem_cache_free(vm_region_jar, region);
1387 			region = pregion;
1388 			result = start;
1389 			goto share;
1390 		}
1391 
1392 		/* obtain the address at which to make a shared mapping
1393 		 * - this is the hook for quasi-memory character devices to
1394 		 *   tell us the location of a shared mapping
1395 		 */
1396 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1397 			addr = file->f_op->get_unmapped_area(file, addr, len,
1398 							     pgoff, flags);
1399 			if (IS_ERR_VALUE(addr)) {
1400 				ret = addr;
1401 				if (ret != -ENOSYS)
1402 					goto error_just_free;
1403 
1404 				/* the driver refused to tell us where to site
1405 				 * the mapping so we'll have to attempt to copy
1406 				 * it */
1407 				ret = -ENODEV;
1408 				if (!(capabilities & BDI_CAP_MAP_COPY))
1409 					goto error_just_free;
1410 
1411 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1412 			} else {
1413 				vma->vm_start = region->vm_start = addr;
1414 				vma->vm_end = region->vm_end = addr + len;
1415 			}
1416 		}
1417 	}
1418 
1419 	vma->vm_region = region;
1420 
1421 	/* set up the mapping
1422 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1423 	 */
1424 	if (file && vma->vm_flags & VM_SHARED)
1425 		ret = do_mmap_shared_file(vma);
1426 	else
1427 		ret = do_mmap_private(vma, region, len, capabilities);
1428 	if (ret < 0)
1429 		goto error_just_free;
1430 	add_nommu_region(region);
1431 
1432 	/* clear anonymous mappings that don't ask for uninitialized data */
1433 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1434 		memset((void *)region->vm_start, 0,
1435 		       region->vm_end - region->vm_start);
1436 
1437 	/* okay... we have a mapping; now we have to register it */
1438 	result = vma->vm_start;
1439 
1440 	current->mm->total_vm += len >> PAGE_SHIFT;
1441 
1442 share:
1443 	add_vma_to_mm(current->mm, vma);
1444 
1445 	/* we flush the region from the icache only when the first executable
1446 	 * mapping of it is made  */
1447 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1448 		flush_icache_range(region->vm_start, region->vm_end);
1449 		region->vm_icache_flushed = true;
1450 	}
1451 
1452 	up_write(&nommu_region_sem);
1453 
1454 	kleave(" = %lx", result);
1455 	return result;
1456 
1457 error_just_free:
1458 	up_write(&nommu_region_sem);
1459 error:
1460 	if (region->vm_file)
1461 		fput(region->vm_file);
1462 	kmem_cache_free(vm_region_jar, region);
1463 	if (vma->vm_file)
1464 		fput(vma->vm_file);
1465 	kmem_cache_free(vm_area_cachep, vma);
1466 	kleave(" = %d", ret);
1467 	return ret;
1468 
1469 sharing_violation:
1470 	up_write(&nommu_region_sem);
1471 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1472 	ret = -EINVAL;
1473 	goto error;
1474 
1475 error_getting_vma:
1476 	kmem_cache_free(vm_region_jar, region);
1477 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1478 	       " from process %d failed\n",
1479 	       len, current->pid);
1480 	show_free_areas(0);
1481 	return -ENOMEM;
1482 
1483 error_getting_region:
1484 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1485 	       " from process %d failed\n",
1486 	       len, current->pid);
1487 	show_free_areas(0);
1488 	return -ENOMEM;
1489 }
1490 
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492 		unsigned long, prot, unsigned long, flags,
1493 		unsigned long, fd, unsigned long, pgoff)
1494 {
1495 	struct file *file = NULL;
1496 	unsigned long retval = -EBADF;
1497 
1498 	audit_mmap_fd(fd, flags);
1499 	if (!(flags & MAP_ANONYMOUS)) {
1500 		file = fget(fd);
1501 		if (!file)
1502 			goto out;
1503 	}
1504 
1505 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1506 
1507 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1508 
1509 	if (file)
1510 		fput(file);
1511 out:
1512 	return retval;
1513 }
1514 
1515 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1516 struct mmap_arg_struct {
1517 	unsigned long addr;
1518 	unsigned long len;
1519 	unsigned long prot;
1520 	unsigned long flags;
1521 	unsigned long fd;
1522 	unsigned long offset;
1523 };
1524 
1525 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1526 {
1527 	struct mmap_arg_struct a;
1528 
1529 	if (copy_from_user(&a, arg, sizeof(a)))
1530 		return -EFAULT;
1531 	if (a.offset & ~PAGE_MASK)
1532 		return -EINVAL;
1533 
1534 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1535 			      a.offset >> PAGE_SHIFT);
1536 }
1537 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1538 
1539 /*
1540  * split a vma into two pieces at address 'addr', a new vma is allocated either
1541  * for the first part or the tail.
1542  */
1543 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1544 	      unsigned long addr, int new_below)
1545 {
1546 	struct vm_area_struct *new;
1547 	struct vm_region *region;
1548 	unsigned long npages;
1549 
1550 	kenter("");
1551 
1552 	/* we're only permitted to split anonymous regions (these should have
1553 	 * only a single usage on the region) */
1554 	if (vma->vm_file)
1555 		return -ENOMEM;
1556 
1557 	if (mm->map_count >= sysctl_max_map_count)
1558 		return -ENOMEM;
1559 
1560 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1561 	if (!region)
1562 		return -ENOMEM;
1563 
1564 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1565 	if (!new) {
1566 		kmem_cache_free(vm_region_jar, region);
1567 		return -ENOMEM;
1568 	}
1569 
1570 	/* most fields are the same, copy all, and then fixup */
1571 	*new = *vma;
1572 	*region = *vma->vm_region;
1573 	new->vm_region = region;
1574 
1575 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1576 
1577 	if (new_below) {
1578 		region->vm_top = region->vm_end = new->vm_end = addr;
1579 	} else {
1580 		region->vm_start = new->vm_start = addr;
1581 		region->vm_pgoff = new->vm_pgoff += npages;
1582 	}
1583 
1584 	if (new->vm_ops && new->vm_ops->open)
1585 		new->vm_ops->open(new);
1586 
1587 	delete_vma_from_mm(vma);
1588 	down_write(&nommu_region_sem);
1589 	delete_nommu_region(vma->vm_region);
1590 	if (new_below) {
1591 		vma->vm_region->vm_start = vma->vm_start = addr;
1592 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1593 	} else {
1594 		vma->vm_region->vm_end = vma->vm_end = addr;
1595 		vma->vm_region->vm_top = addr;
1596 	}
1597 	add_nommu_region(vma->vm_region);
1598 	add_nommu_region(new->vm_region);
1599 	up_write(&nommu_region_sem);
1600 	add_vma_to_mm(mm, vma);
1601 	add_vma_to_mm(mm, new);
1602 	return 0;
1603 }
1604 
1605 /*
1606  * shrink a VMA by removing the specified chunk from either the beginning or
1607  * the end
1608  */
1609 static int shrink_vma(struct mm_struct *mm,
1610 		      struct vm_area_struct *vma,
1611 		      unsigned long from, unsigned long to)
1612 {
1613 	struct vm_region *region;
1614 
1615 	kenter("");
1616 
1617 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1618 	 * and list */
1619 	delete_vma_from_mm(vma);
1620 	if (from > vma->vm_start)
1621 		vma->vm_end = from;
1622 	else
1623 		vma->vm_start = to;
1624 	add_vma_to_mm(mm, vma);
1625 
1626 	/* cut the backing region down to size */
1627 	region = vma->vm_region;
1628 	BUG_ON(region->vm_usage != 1);
1629 
1630 	down_write(&nommu_region_sem);
1631 	delete_nommu_region(region);
1632 	if (from > region->vm_start) {
1633 		to = region->vm_top;
1634 		region->vm_top = region->vm_end = from;
1635 	} else {
1636 		region->vm_start = to;
1637 	}
1638 	add_nommu_region(region);
1639 	up_write(&nommu_region_sem);
1640 
1641 	free_page_series(from, to);
1642 	return 0;
1643 }
1644 
1645 /*
1646  * release a mapping
1647  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1648  *   VMA, though it need not cover the whole VMA
1649  */
1650 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1651 {
1652 	struct vm_area_struct *vma;
1653 	unsigned long end;
1654 	int ret;
1655 
1656 	kenter(",%lx,%zx", start, len);
1657 
1658 	len = PAGE_ALIGN(len);
1659 	if (len == 0)
1660 		return -EINVAL;
1661 
1662 	end = start + len;
1663 
1664 	/* find the first potentially overlapping VMA */
1665 	vma = find_vma(mm, start);
1666 	if (!vma) {
1667 		static int limit;
1668 		if (limit < 5) {
1669 			printk(KERN_WARNING
1670 			       "munmap of memory not mmapped by process %d"
1671 			       " (%s): 0x%lx-0x%lx\n",
1672 			       current->pid, current->comm,
1673 			       start, start + len - 1);
1674 			limit++;
1675 		}
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1680 	if (vma->vm_file) {
1681 		do {
1682 			if (start > vma->vm_start) {
1683 				kleave(" = -EINVAL [miss]");
1684 				return -EINVAL;
1685 			}
1686 			if (end == vma->vm_end)
1687 				goto erase_whole_vma;
1688 			vma = vma->vm_next;
1689 		} while (vma);
1690 		kleave(" = -EINVAL [split file]");
1691 		return -EINVAL;
1692 	} else {
1693 		/* the chunk must be a subset of the VMA found */
1694 		if (start == vma->vm_start && end == vma->vm_end)
1695 			goto erase_whole_vma;
1696 		if (start < vma->vm_start || end > vma->vm_end) {
1697 			kleave(" = -EINVAL [superset]");
1698 			return -EINVAL;
1699 		}
1700 		if (start & ~PAGE_MASK) {
1701 			kleave(" = -EINVAL [unaligned start]");
1702 			return -EINVAL;
1703 		}
1704 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1705 			kleave(" = -EINVAL [unaligned split]");
1706 			return -EINVAL;
1707 		}
1708 		if (start != vma->vm_start && end != vma->vm_end) {
1709 			ret = split_vma(mm, vma, start, 1);
1710 			if (ret < 0) {
1711 				kleave(" = %d [split]", ret);
1712 				return ret;
1713 			}
1714 		}
1715 		return shrink_vma(mm, vma, start, end);
1716 	}
1717 
1718 erase_whole_vma:
1719 	delete_vma_from_mm(vma);
1720 	delete_vma(mm, vma);
1721 	kleave(" = 0");
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(do_munmap);
1725 
1726 int vm_munmap(unsigned long addr, size_t len)
1727 {
1728 	struct mm_struct *mm = current->mm;
1729 	int ret;
1730 
1731 	down_write(&mm->mmap_sem);
1732 	ret = do_munmap(mm, addr, len);
1733 	up_write(&mm->mmap_sem);
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL(vm_munmap);
1737 
1738 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1739 {
1740 	return vm_munmap(addr, len);
1741 }
1742 
1743 /*
1744  * release all the mappings made in a process's VM space
1745  */
1746 void exit_mmap(struct mm_struct *mm)
1747 {
1748 	struct vm_area_struct *vma;
1749 
1750 	if (!mm)
1751 		return;
1752 
1753 	kenter("");
1754 
1755 	mm->total_vm = 0;
1756 
1757 	while ((vma = mm->mmap)) {
1758 		mm->mmap = vma->vm_next;
1759 		delete_vma_from_mm(vma);
1760 		delete_vma(mm, vma);
1761 		cond_resched();
1762 	}
1763 
1764 	kleave("");
1765 }
1766 
1767 unsigned long vm_brk(unsigned long addr, unsigned long len)
1768 {
1769 	return -ENOMEM;
1770 }
1771 
1772 /*
1773  * expand (or shrink) an existing mapping, potentially moving it at the same
1774  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1775  *
1776  * under NOMMU conditions, we only permit changing a mapping's size, and only
1777  * as long as it stays within the region allocated by do_mmap_private() and the
1778  * block is not shareable
1779  *
1780  * MREMAP_FIXED is not supported under NOMMU conditions
1781  */
1782 static unsigned long do_mremap(unsigned long addr,
1783 			unsigned long old_len, unsigned long new_len,
1784 			unsigned long flags, unsigned long new_addr)
1785 {
1786 	struct vm_area_struct *vma;
1787 
1788 	/* insanity checks first */
1789 	old_len = PAGE_ALIGN(old_len);
1790 	new_len = PAGE_ALIGN(new_len);
1791 	if (old_len == 0 || new_len == 0)
1792 		return (unsigned long) -EINVAL;
1793 
1794 	if (addr & ~PAGE_MASK)
1795 		return -EINVAL;
1796 
1797 	if (flags & MREMAP_FIXED && new_addr != addr)
1798 		return (unsigned long) -EINVAL;
1799 
1800 	vma = find_vma_exact(current->mm, addr, old_len);
1801 	if (!vma)
1802 		return (unsigned long) -EINVAL;
1803 
1804 	if (vma->vm_end != vma->vm_start + old_len)
1805 		return (unsigned long) -EFAULT;
1806 
1807 	if (vma->vm_flags & VM_MAYSHARE)
1808 		return (unsigned long) -EPERM;
1809 
1810 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1811 		return (unsigned long) -ENOMEM;
1812 
1813 	/* all checks complete - do it */
1814 	vma->vm_end = vma->vm_start + new_len;
1815 	return vma->vm_start;
1816 }
1817 
1818 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1819 		unsigned long, new_len, unsigned long, flags,
1820 		unsigned long, new_addr)
1821 {
1822 	unsigned long ret;
1823 
1824 	down_write(&current->mm->mmap_sem);
1825 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1826 	up_write(&current->mm->mmap_sem);
1827 	return ret;
1828 }
1829 
1830 struct page *follow_page_mask(struct vm_area_struct *vma,
1831 			      unsigned long address, unsigned int flags,
1832 			      unsigned int *page_mask)
1833 {
1834 	*page_mask = 0;
1835 	return NULL;
1836 }
1837 
1838 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839 		unsigned long pfn, unsigned long size, pgprot_t prot)
1840 {
1841 	if (addr != (pfn << PAGE_SHIFT))
1842 		return -EINVAL;
1843 
1844 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(remap_pfn_range);
1848 
1849 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1850 {
1851 	unsigned long pfn = start >> PAGE_SHIFT;
1852 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1853 
1854 	pfn += vma->vm_pgoff;
1855 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1856 }
1857 EXPORT_SYMBOL(vm_iomap_memory);
1858 
1859 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1860 			unsigned long pgoff)
1861 {
1862 	unsigned int size = vma->vm_end - vma->vm_start;
1863 
1864 	if (!(vma->vm_flags & VM_USERMAP))
1865 		return -EINVAL;
1866 
1867 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1868 	vma->vm_end = vma->vm_start + size;
1869 
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL(remap_vmalloc_range);
1873 
1874 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1875 	unsigned long len, unsigned long pgoff, unsigned long flags)
1876 {
1877 	return -ENOMEM;
1878 }
1879 
1880 void unmap_mapping_range(struct address_space *mapping,
1881 			 loff_t const holebegin, loff_t const holelen,
1882 			 int even_cows)
1883 {
1884 }
1885 EXPORT_SYMBOL(unmap_mapping_range);
1886 
1887 /*
1888  * Check that a process has enough memory to allocate a new virtual
1889  * mapping. 0 means there is enough memory for the allocation to
1890  * succeed and -ENOMEM implies there is not.
1891  *
1892  * We currently support three overcommit policies, which are set via the
1893  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1894  *
1895  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1896  * Additional code 2002 Jul 20 by Robert Love.
1897  *
1898  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1899  *
1900  * Note this is a helper function intended to be used by LSMs which
1901  * wish to use this logic.
1902  */
1903 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1904 {
1905 	unsigned long free, allowed, reserve;
1906 
1907 	vm_acct_memory(pages);
1908 
1909 	/*
1910 	 * Sometimes we want to use more memory than we have
1911 	 */
1912 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1913 		return 0;
1914 
1915 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1916 		free = global_page_state(NR_FREE_PAGES);
1917 		free += global_page_state(NR_FILE_PAGES);
1918 
1919 		/*
1920 		 * shmem pages shouldn't be counted as free in this
1921 		 * case, they can't be purged, only swapped out, and
1922 		 * that won't affect the overall amount of available
1923 		 * memory in the system.
1924 		 */
1925 		free -= global_page_state(NR_SHMEM);
1926 
1927 		free += get_nr_swap_pages();
1928 
1929 		/*
1930 		 * Any slabs which are created with the
1931 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1932 		 * which are reclaimable, under pressure.  The dentry
1933 		 * cache and most inode caches should fall into this
1934 		 */
1935 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1936 
1937 		/*
1938 		 * Leave reserved pages. The pages are not for anonymous pages.
1939 		 */
1940 		if (free <= totalreserve_pages)
1941 			goto error;
1942 		else
1943 			free -= totalreserve_pages;
1944 
1945 		/*
1946 		 * Reserve some for root
1947 		 */
1948 		if (!cap_sys_admin)
1949 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1950 
1951 		if (free > pages)
1952 			return 0;
1953 
1954 		goto error;
1955 	}
1956 
1957 	allowed = vm_commit_limit();
1958 	/*
1959 	 * Reserve some 3% for root
1960 	 */
1961 	if (!cap_sys_admin)
1962 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1963 
1964 	/*
1965 	 * Don't let a single process grow so big a user can't recover
1966 	 */
1967 	if (mm) {
1968 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1969 		allowed -= min(mm->total_vm / 32, reserve);
1970 	}
1971 
1972 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1973 		return 0;
1974 
1975 error:
1976 	vm_unacct_memory(pages);
1977 
1978 	return -ENOMEM;
1979 }
1980 
1981 int in_gate_area_no_mm(unsigned long addr)
1982 {
1983 	return 0;
1984 }
1985 
1986 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1987 {
1988 	BUG();
1989 	return 0;
1990 }
1991 EXPORT_SYMBOL(filemap_fault);
1992 
1993 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1994 {
1995 	BUG();
1996 }
1997 EXPORT_SYMBOL(filemap_map_pages);
1998 
1999 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2000 			     unsigned long size, pgoff_t pgoff)
2001 {
2002 	BUG();
2003 	return 0;
2004 }
2005 EXPORT_SYMBOL(generic_file_remap_pages);
2006 
2007 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2008 		unsigned long addr, void *buf, int len, int write)
2009 {
2010 	struct vm_area_struct *vma;
2011 
2012 	down_read(&mm->mmap_sem);
2013 
2014 	/* the access must start within one of the target process's mappings */
2015 	vma = find_vma(mm, addr);
2016 	if (vma) {
2017 		/* don't overrun this mapping */
2018 		if (addr + len >= vma->vm_end)
2019 			len = vma->vm_end - addr;
2020 
2021 		/* only read or write mappings where it is permitted */
2022 		if (write && vma->vm_flags & VM_MAYWRITE)
2023 			copy_to_user_page(vma, NULL, addr,
2024 					 (void *) addr, buf, len);
2025 		else if (!write && vma->vm_flags & VM_MAYREAD)
2026 			copy_from_user_page(vma, NULL, addr,
2027 					    buf, (void *) addr, len);
2028 		else
2029 			len = 0;
2030 	} else {
2031 		len = 0;
2032 	}
2033 
2034 	up_read(&mm->mmap_sem);
2035 
2036 	return len;
2037 }
2038 
2039 /**
2040  * @access_remote_vm - access another process' address space
2041  * @mm:		the mm_struct of the target address space
2042  * @addr:	start address to access
2043  * @buf:	source or destination buffer
2044  * @len:	number of bytes to transfer
2045  * @write:	whether the access is a write
2046  *
2047  * The caller must hold a reference on @mm.
2048  */
2049 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2050 		void *buf, int len, int write)
2051 {
2052 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2053 }
2054 
2055 /*
2056  * Access another process' address space.
2057  * - source/target buffer must be kernel space
2058  */
2059 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2060 {
2061 	struct mm_struct *mm;
2062 
2063 	if (addr + len < addr)
2064 		return 0;
2065 
2066 	mm = get_task_mm(tsk);
2067 	if (!mm)
2068 		return 0;
2069 
2070 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2071 
2072 	mmput(mm);
2073 	return len;
2074 }
2075 
2076 /**
2077  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2078  * @inode: The inode to check
2079  * @size: The current filesize of the inode
2080  * @newsize: The proposed filesize of the inode
2081  *
2082  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2083  * make sure that that any outstanding VMAs aren't broken and then shrink the
2084  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2085  * automatically grant mappings that are too large.
2086  */
2087 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2088 				size_t newsize)
2089 {
2090 	struct vm_area_struct *vma;
2091 	struct vm_region *region;
2092 	pgoff_t low, high;
2093 	size_t r_size, r_top;
2094 
2095 	low = newsize >> PAGE_SHIFT;
2096 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2097 
2098 	down_write(&nommu_region_sem);
2099 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2100 
2101 	/* search for VMAs that fall within the dead zone */
2102 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2103 		/* found one - only interested if it's shared out of the page
2104 		 * cache */
2105 		if (vma->vm_flags & VM_SHARED) {
2106 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107 			up_write(&nommu_region_sem);
2108 			return -ETXTBSY; /* not quite true, but near enough */
2109 		}
2110 	}
2111 
2112 	/* reduce any regions that overlap the dead zone - if in existence,
2113 	 * these will be pointed to by VMAs that don't overlap the dead zone
2114 	 *
2115 	 * we don't check for any regions that start beyond the EOF as there
2116 	 * shouldn't be any
2117 	 */
2118 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2119 				  0, ULONG_MAX) {
2120 		if (!(vma->vm_flags & VM_SHARED))
2121 			continue;
2122 
2123 		region = vma->vm_region;
2124 		r_size = region->vm_top - region->vm_start;
2125 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2126 
2127 		if (r_top > newsize) {
2128 			region->vm_top -= r_top - newsize;
2129 			if (region->vm_end > region->vm_top)
2130 				region->vm_end = region->vm_top;
2131 		}
2132 	}
2133 
2134 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2135 	up_write(&nommu_region_sem);
2136 	return 0;
2137 }
2138 
2139 /*
2140  * Initialise sysctl_user_reserve_kbytes.
2141  *
2142  * This is intended to prevent a user from starting a single memory hogging
2143  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2144  * mode.
2145  *
2146  * The default value is min(3% of free memory, 128MB)
2147  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2148  */
2149 static int __meminit init_user_reserve(void)
2150 {
2151 	unsigned long free_kbytes;
2152 
2153 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2154 
2155 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2156 	return 0;
2157 }
2158 module_init(init_user_reserve)
2159 
2160 /*
2161  * Initialise sysctl_admin_reserve_kbytes.
2162  *
2163  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2164  * to log in and kill a memory hogging process.
2165  *
2166  * Systems with more than 256MB will reserve 8MB, enough to recover
2167  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2168  * only reserve 3% of free pages by default.
2169  */
2170 static int __meminit init_admin_reserve(void)
2171 {
2172 	unsigned long free_kbytes;
2173 
2174 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2175 
2176 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2177 	return 0;
2178 }
2179 module_init(init_admin_reserve)
2180