1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_range(unsigned long size, unsigned long align, 154 unsigned long start, unsigned long end, gfp_t gfp_mask, 155 pgprot_t prot, unsigned long vm_flags, int node, 156 const void *caller) 157 { 158 return __vmalloc(size, gfp_mask); 159 } 160 161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 162 int node, const void *caller) 163 { 164 return __vmalloc(size, gfp_mask); 165 } 166 167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = __vmalloc(size, flags); 172 if (ret) { 173 struct vm_area_struct *vma; 174 175 mmap_write_lock(current->mm); 176 vma = find_vma(current->mm, (unsigned long)ret); 177 if (vma) 178 vma->vm_flags |= VM_USERMAP; 179 mmap_write_unlock(current->mm); 180 } 181 182 return ret; 183 } 184 185 void *vmalloc_user(unsigned long size) 186 { 187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 188 } 189 EXPORT_SYMBOL(vmalloc_user); 190 191 struct page *vmalloc_to_page(const void *addr) 192 { 193 return virt_to_page(addr); 194 } 195 EXPORT_SYMBOL(vmalloc_to_page); 196 197 unsigned long vmalloc_to_pfn(const void *addr) 198 { 199 return page_to_pfn(virt_to_page(addr)); 200 } 201 EXPORT_SYMBOL(vmalloc_to_pfn); 202 203 long vread(char *buf, char *addr, unsigned long count) 204 { 205 /* Don't allow overflow */ 206 if ((unsigned long) buf + count < count) 207 count = -(unsigned long) buf; 208 209 memcpy(buf, addr, count); 210 return count; 211 } 212 213 long vwrite(char *buf, char *addr, unsigned long count) 214 { 215 /* Don't allow overflow */ 216 if ((unsigned long) addr + count < count) 217 count = -(unsigned long) addr; 218 219 memcpy(addr, buf, count); 220 return count; 221 } 222 223 /* 224 * vmalloc - allocate virtually contiguous memory 225 * 226 * @size: allocation size 227 * 228 * Allocate enough pages to cover @size from the page level 229 * allocator and map them into contiguous kernel virtual space. 230 * 231 * For tight control over page level allocator and protection flags 232 * use __vmalloc() instead. 233 */ 234 void *vmalloc(unsigned long size) 235 { 236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(vmalloc); 239 240 /* 241 * vzalloc - allocate virtually contiguous memory with zero fill 242 * 243 * @size: allocation size 244 * 245 * Allocate enough pages to cover @size from the page level 246 * allocator and map them into contiguous kernel virtual space. 247 * The memory allocated is set to zero. 248 * 249 * For tight control over page level allocator and protection flags 250 * use __vmalloc() instead. 251 */ 252 void *vzalloc(unsigned long size) 253 { 254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 255 } 256 EXPORT_SYMBOL(vzalloc); 257 258 /** 259 * vmalloc_node - allocate memory on a specific node 260 * @size: allocation size 261 * @node: numa node 262 * 263 * Allocate enough pages to cover @size from the page level 264 * allocator and map them into contiguous kernel virtual space. 265 * 266 * For tight control over page level allocator and protection flags 267 * use __vmalloc() instead. 268 */ 269 void *vmalloc_node(unsigned long size, int node) 270 { 271 return vmalloc(size); 272 } 273 EXPORT_SYMBOL(vmalloc_node); 274 275 /** 276 * vzalloc_node - allocate memory on a specific node with zero fill 277 * @size: allocation size 278 * @node: numa node 279 * 280 * Allocate enough pages to cover @size from the page level 281 * allocator and map them into contiguous kernel virtual space. 282 * The memory allocated is set to zero. 283 * 284 * For tight control over page level allocator and protection flags 285 * use __vmalloc() instead. 286 */ 287 void *vzalloc_node(unsigned long size, int node) 288 { 289 return vzalloc(size); 290 } 291 EXPORT_SYMBOL(vzalloc_node); 292 293 /** 294 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 295 * @size: allocation size 296 * 297 * Allocate enough 32bit PA addressable pages to cover @size from the 298 * page level allocator and map them into contiguous kernel virtual space. 299 */ 300 void *vmalloc_32(unsigned long size) 301 { 302 return __vmalloc(size, GFP_KERNEL); 303 } 304 EXPORT_SYMBOL(vmalloc_32); 305 306 /** 307 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 308 * @size: allocation size 309 * 310 * The resulting memory area is 32bit addressable and zeroed so it can be 311 * mapped to userspace without leaking data. 312 * 313 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 314 * remap_vmalloc_range() are permissible. 315 */ 316 void *vmalloc_32_user(unsigned long size) 317 { 318 /* 319 * We'll have to sort out the ZONE_DMA bits for 64-bit, 320 * but for now this can simply use vmalloc_user() directly. 321 */ 322 return vmalloc_user(size); 323 } 324 EXPORT_SYMBOL(vmalloc_32_user); 325 326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 327 { 328 BUG(); 329 return NULL; 330 } 331 EXPORT_SYMBOL(vmap); 332 333 void vunmap(const void *addr) 334 { 335 BUG(); 336 } 337 EXPORT_SYMBOL(vunmap); 338 339 void *vm_map_ram(struct page **pages, unsigned int count, int node) 340 { 341 BUG(); 342 return NULL; 343 } 344 EXPORT_SYMBOL(vm_map_ram); 345 346 void vm_unmap_ram(const void *mem, unsigned int count) 347 { 348 BUG(); 349 } 350 EXPORT_SYMBOL(vm_unmap_ram); 351 352 void vm_unmap_aliases(void) 353 { 354 } 355 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 356 357 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 358 { 359 BUG(); 360 return NULL; 361 } 362 EXPORT_SYMBOL_GPL(alloc_vm_area); 363 364 void free_vm_area(struct vm_struct *area) 365 { 366 BUG(); 367 } 368 EXPORT_SYMBOL_GPL(free_vm_area); 369 370 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 371 struct page *page) 372 { 373 return -EINVAL; 374 } 375 EXPORT_SYMBOL(vm_insert_page); 376 377 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 378 unsigned long num) 379 { 380 return -EINVAL; 381 } 382 EXPORT_SYMBOL(vm_map_pages); 383 384 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 385 unsigned long num) 386 { 387 return -EINVAL; 388 } 389 EXPORT_SYMBOL(vm_map_pages_zero); 390 391 /* 392 * sys_brk() for the most part doesn't need the global kernel 393 * lock, except when an application is doing something nasty 394 * like trying to un-brk an area that has already been mapped 395 * to a regular file. in this case, the unmapping will need 396 * to invoke file system routines that need the global lock. 397 */ 398 SYSCALL_DEFINE1(brk, unsigned long, brk) 399 { 400 struct mm_struct *mm = current->mm; 401 402 if (brk < mm->start_brk || brk > mm->context.end_brk) 403 return mm->brk; 404 405 if (mm->brk == brk) 406 return mm->brk; 407 408 /* 409 * Always allow shrinking brk 410 */ 411 if (brk <= mm->brk) { 412 mm->brk = brk; 413 return brk; 414 } 415 416 /* 417 * Ok, looks good - let it rip. 418 */ 419 flush_icache_user_range(mm->brk, brk); 420 return mm->brk = brk; 421 } 422 423 /* 424 * initialise the percpu counter for VM and region record slabs 425 */ 426 void __init mmap_init(void) 427 { 428 int ret; 429 430 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 431 VM_BUG_ON(ret); 432 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 433 } 434 435 /* 436 * validate the region tree 437 * - the caller must hold the region lock 438 */ 439 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 440 static noinline void validate_nommu_regions(void) 441 { 442 struct vm_region *region, *last; 443 struct rb_node *p, *lastp; 444 445 lastp = rb_first(&nommu_region_tree); 446 if (!lastp) 447 return; 448 449 last = rb_entry(lastp, struct vm_region, vm_rb); 450 BUG_ON(last->vm_end <= last->vm_start); 451 BUG_ON(last->vm_top < last->vm_end); 452 453 while ((p = rb_next(lastp))) { 454 region = rb_entry(p, struct vm_region, vm_rb); 455 last = rb_entry(lastp, struct vm_region, vm_rb); 456 457 BUG_ON(region->vm_end <= region->vm_start); 458 BUG_ON(region->vm_top < region->vm_end); 459 BUG_ON(region->vm_start < last->vm_top); 460 461 lastp = p; 462 } 463 } 464 #else 465 static void validate_nommu_regions(void) 466 { 467 } 468 #endif 469 470 /* 471 * add a region into the global tree 472 */ 473 static void add_nommu_region(struct vm_region *region) 474 { 475 struct vm_region *pregion; 476 struct rb_node **p, *parent; 477 478 validate_nommu_regions(); 479 480 parent = NULL; 481 p = &nommu_region_tree.rb_node; 482 while (*p) { 483 parent = *p; 484 pregion = rb_entry(parent, struct vm_region, vm_rb); 485 if (region->vm_start < pregion->vm_start) 486 p = &(*p)->rb_left; 487 else if (region->vm_start > pregion->vm_start) 488 p = &(*p)->rb_right; 489 else if (pregion == region) 490 return; 491 else 492 BUG(); 493 } 494 495 rb_link_node(®ion->vm_rb, parent, p); 496 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 497 498 validate_nommu_regions(); 499 } 500 501 /* 502 * delete a region from the global tree 503 */ 504 static void delete_nommu_region(struct vm_region *region) 505 { 506 BUG_ON(!nommu_region_tree.rb_node); 507 508 validate_nommu_regions(); 509 rb_erase(®ion->vm_rb, &nommu_region_tree); 510 validate_nommu_regions(); 511 } 512 513 /* 514 * free a contiguous series of pages 515 */ 516 static void free_page_series(unsigned long from, unsigned long to) 517 { 518 for (; from < to; from += PAGE_SIZE) { 519 struct page *page = virt_to_page(from); 520 521 atomic_long_dec(&mmap_pages_allocated); 522 put_page(page); 523 } 524 } 525 526 /* 527 * release a reference to a region 528 * - the caller must hold the region semaphore for writing, which this releases 529 * - the region may not have been added to the tree yet, in which case vm_top 530 * will equal vm_start 531 */ 532 static void __put_nommu_region(struct vm_region *region) 533 __releases(nommu_region_sem) 534 { 535 BUG_ON(!nommu_region_tree.rb_node); 536 537 if (--region->vm_usage == 0) { 538 if (region->vm_top > region->vm_start) 539 delete_nommu_region(region); 540 up_write(&nommu_region_sem); 541 542 if (region->vm_file) 543 fput(region->vm_file); 544 545 /* IO memory and memory shared directly out of the pagecache 546 * from ramfs/tmpfs mustn't be released here */ 547 if (region->vm_flags & VM_MAPPED_COPY) 548 free_page_series(region->vm_start, region->vm_top); 549 kmem_cache_free(vm_region_jar, region); 550 } else { 551 up_write(&nommu_region_sem); 552 } 553 } 554 555 /* 556 * release a reference to a region 557 */ 558 static void put_nommu_region(struct vm_region *region) 559 { 560 down_write(&nommu_region_sem); 561 __put_nommu_region(region); 562 } 563 564 /* 565 * add a VMA into a process's mm_struct in the appropriate place in the list 566 * and tree and add to the address space's page tree also if not an anonymous 567 * page 568 * - should be called with mm->mmap_lock held writelocked 569 */ 570 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 571 { 572 struct vm_area_struct *pvma, *prev; 573 struct address_space *mapping; 574 struct rb_node **p, *parent, *rb_prev; 575 576 BUG_ON(!vma->vm_region); 577 578 mm->map_count++; 579 vma->vm_mm = mm; 580 581 /* add the VMA to the mapping */ 582 if (vma->vm_file) { 583 mapping = vma->vm_file->f_mapping; 584 585 i_mmap_lock_write(mapping); 586 flush_dcache_mmap_lock(mapping); 587 vma_interval_tree_insert(vma, &mapping->i_mmap); 588 flush_dcache_mmap_unlock(mapping); 589 i_mmap_unlock_write(mapping); 590 } 591 592 /* add the VMA to the tree */ 593 parent = rb_prev = NULL; 594 p = &mm->mm_rb.rb_node; 595 while (*p) { 596 parent = *p; 597 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 598 599 /* sort by: start addr, end addr, VMA struct addr in that order 600 * (the latter is necessary as we may get identical VMAs) */ 601 if (vma->vm_start < pvma->vm_start) 602 p = &(*p)->rb_left; 603 else if (vma->vm_start > pvma->vm_start) { 604 rb_prev = parent; 605 p = &(*p)->rb_right; 606 } else if (vma->vm_end < pvma->vm_end) 607 p = &(*p)->rb_left; 608 else if (vma->vm_end > pvma->vm_end) { 609 rb_prev = parent; 610 p = &(*p)->rb_right; 611 } else if (vma < pvma) 612 p = &(*p)->rb_left; 613 else if (vma > pvma) { 614 rb_prev = parent; 615 p = &(*p)->rb_right; 616 } else 617 BUG(); 618 } 619 620 rb_link_node(&vma->vm_rb, parent, p); 621 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 622 623 /* add VMA to the VMA list also */ 624 prev = NULL; 625 if (rb_prev) 626 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 627 628 __vma_link_list(mm, vma, prev); 629 } 630 631 /* 632 * delete a VMA from its owning mm_struct and address space 633 */ 634 static void delete_vma_from_mm(struct vm_area_struct *vma) 635 { 636 int i; 637 struct address_space *mapping; 638 struct mm_struct *mm = vma->vm_mm; 639 struct task_struct *curr = current; 640 641 mm->map_count--; 642 for (i = 0; i < VMACACHE_SIZE; i++) { 643 /* if the vma is cached, invalidate the entire cache */ 644 if (curr->vmacache.vmas[i] == vma) { 645 vmacache_invalidate(mm); 646 break; 647 } 648 } 649 650 /* remove the VMA from the mapping */ 651 if (vma->vm_file) { 652 mapping = vma->vm_file->f_mapping; 653 654 i_mmap_lock_write(mapping); 655 flush_dcache_mmap_lock(mapping); 656 vma_interval_tree_remove(vma, &mapping->i_mmap); 657 flush_dcache_mmap_unlock(mapping); 658 i_mmap_unlock_write(mapping); 659 } 660 661 /* remove from the MM's tree and list */ 662 rb_erase(&vma->vm_rb, &mm->mm_rb); 663 664 __vma_unlink_list(mm, vma); 665 } 666 667 /* 668 * destroy a VMA record 669 */ 670 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 671 { 672 if (vma->vm_ops && vma->vm_ops->close) 673 vma->vm_ops->close(vma); 674 if (vma->vm_file) 675 fput(vma->vm_file); 676 put_nommu_region(vma->vm_region); 677 vm_area_free(vma); 678 } 679 680 /* 681 * look up the first VMA in which addr resides, NULL if none 682 * - should be called with mm->mmap_lock at least held readlocked 683 */ 684 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 685 { 686 struct vm_area_struct *vma; 687 688 /* check the cache first */ 689 vma = vmacache_find(mm, addr); 690 if (likely(vma)) 691 return vma; 692 693 /* trawl the list (there may be multiple mappings in which addr 694 * resides) */ 695 for (vma = mm->mmap; vma; vma = vma->vm_next) { 696 if (vma->vm_start > addr) 697 return NULL; 698 if (vma->vm_end > addr) { 699 vmacache_update(addr, vma); 700 return vma; 701 } 702 } 703 704 return NULL; 705 } 706 EXPORT_SYMBOL(find_vma); 707 708 /* 709 * find a VMA 710 * - we don't extend stack VMAs under NOMMU conditions 711 */ 712 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 713 { 714 return find_vma(mm, addr); 715 } 716 717 /* 718 * expand a stack to a given address 719 * - not supported under NOMMU conditions 720 */ 721 int expand_stack(struct vm_area_struct *vma, unsigned long address) 722 { 723 return -ENOMEM; 724 } 725 726 /* 727 * look up the first VMA exactly that exactly matches addr 728 * - should be called with mm->mmap_lock at least held readlocked 729 */ 730 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 731 unsigned long addr, 732 unsigned long len) 733 { 734 struct vm_area_struct *vma; 735 unsigned long end = addr + len; 736 737 /* check the cache first */ 738 vma = vmacache_find_exact(mm, addr, end); 739 if (vma) 740 return vma; 741 742 /* trawl the list (there may be multiple mappings in which addr 743 * resides) */ 744 for (vma = mm->mmap; vma; vma = vma->vm_next) { 745 if (vma->vm_start < addr) 746 continue; 747 if (vma->vm_start > addr) 748 return NULL; 749 if (vma->vm_end == end) { 750 vmacache_update(addr, vma); 751 return vma; 752 } 753 } 754 755 return NULL; 756 } 757 758 /* 759 * determine whether a mapping should be permitted and, if so, what sort of 760 * mapping we're capable of supporting 761 */ 762 static int validate_mmap_request(struct file *file, 763 unsigned long addr, 764 unsigned long len, 765 unsigned long prot, 766 unsigned long flags, 767 unsigned long pgoff, 768 unsigned long *_capabilities) 769 { 770 unsigned long capabilities, rlen; 771 int ret; 772 773 /* do the simple checks first */ 774 if (flags & MAP_FIXED) 775 return -EINVAL; 776 777 if ((flags & MAP_TYPE) != MAP_PRIVATE && 778 (flags & MAP_TYPE) != MAP_SHARED) 779 return -EINVAL; 780 781 if (!len) 782 return -EINVAL; 783 784 /* Careful about overflows.. */ 785 rlen = PAGE_ALIGN(len); 786 if (!rlen || rlen > TASK_SIZE) 787 return -ENOMEM; 788 789 /* offset overflow? */ 790 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 791 return -EOVERFLOW; 792 793 if (file) { 794 /* files must support mmap */ 795 if (!file->f_op->mmap) 796 return -ENODEV; 797 798 /* work out if what we've got could possibly be shared 799 * - we support chardevs that provide their own "memory" 800 * - we support files/blockdevs that are memory backed 801 */ 802 if (file->f_op->mmap_capabilities) { 803 capabilities = file->f_op->mmap_capabilities(file); 804 } else { 805 /* no explicit capabilities set, so assume some 806 * defaults */ 807 switch (file_inode(file)->i_mode & S_IFMT) { 808 case S_IFREG: 809 case S_IFBLK: 810 capabilities = NOMMU_MAP_COPY; 811 break; 812 813 case S_IFCHR: 814 capabilities = 815 NOMMU_MAP_DIRECT | 816 NOMMU_MAP_READ | 817 NOMMU_MAP_WRITE; 818 break; 819 820 default: 821 return -EINVAL; 822 } 823 } 824 825 /* eliminate any capabilities that we can't support on this 826 * device */ 827 if (!file->f_op->get_unmapped_area) 828 capabilities &= ~NOMMU_MAP_DIRECT; 829 if (!(file->f_mode & FMODE_CAN_READ)) 830 capabilities &= ~NOMMU_MAP_COPY; 831 832 /* The file shall have been opened with read permission. */ 833 if (!(file->f_mode & FMODE_READ)) 834 return -EACCES; 835 836 if (flags & MAP_SHARED) { 837 /* do checks for writing, appending and locking */ 838 if ((prot & PROT_WRITE) && 839 !(file->f_mode & FMODE_WRITE)) 840 return -EACCES; 841 842 if (IS_APPEND(file_inode(file)) && 843 (file->f_mode & FMODE_WRITE)) 844 return -EACCES; 845 846 if (locks_verify_locked(file)) 847 return -EAGAIN; 848 849 if (!(capabilities & NOMMU_MAP_DIRECT)) 850 return -ENODEV; 851 852 /* we mustn't privatise shared mappings */ 853 capabilities &= ~NOMMU_MAP_COPY; 854 } else { 855 /* we're going to read the file into private memory we 856 * allocate */ 857 if (!(capabilities & NOMMU_MAP_COPY)) 858 return -ENODEV; 859 860 /* we don't permit a private writable mapping to be 861 * shared with the backing device */ 862 if (prot & PROT_WRITE) 863 capabilities &= ~NOMMU_MAP_DIRECT; 864 } 865 866 if (capabilities & NOMMU_MAP_DIRECT) { 867 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 868 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 869 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 870 ) { 871 capabilities &= ~NOMMU_MAP_DIRECT; 872 if (flags & MAP_SHARED) { 873 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 874 return -EINVAL; 875 } 876 } 877 } 878 879 /* handle executable mappings and implied executable 880 * mappings */ 881 if (path_noexec(&file->f_path)) { 882 if (prot & PROT_EXEC) 883 return -EPERM; 884 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 885 /* handle implication of PROT_EXEC by PROT_READ */ 886 if (current->personality & READ_IMPLIES_EXEC) { 887 if (capabilities & NOMMU_MAP_EXEC) 888 prot |= PROT_EXEC; 889 } 890 } else if ((prot & PROT_READ) && 891 (prot & PROT_EXEC) && 892 !(capabilities & NOMMU_MAP_EXEC) 893 ) { 894 /* backing file is not executable, try to copy */ 895 capabilities &= ~NOMMU_MAP_DIRECT; 896 } 897 } else { 898 /* anonymous mappings are always memory backed and can be 899 * privately mapped 900 */ 901 capabilities = NOMMU_MAP_COPY; 902 903 /* handle PROT_EXEC implication by PROT_READ */ 904 if ((prot & PROT_READ) && 905 (current->personality & READ_IMPLIES_EXEC)) 906 prot |= PROT_EXEC; 907 } 908 909 /* allow the security API to have its say */ 910 ret = security_mmap_addr(addr); 911 if (ret < 0) 912 return ret; 913 914 /* looks okay */ 915 *_capabilities = capabilities; 916 return 0; 917 } 918 919 /* 920 * we've determined that we can make the mapping, now translate what we 921 * now know into VMA flags 922 */ 923 static unsigned long determine_vm_flags(struct file *file, 924 unsigned long prot, 925 unsigned long flags, 926 unsigned long capabilities) 927 { 928 unsigned long vm_flags; 929 930 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 931 /* vm_flags |= mm->def_flags; */ 932 933 if (!(capabilities & NOMMU_MAP_DIRECT)) { 934 /* attempt to share read-only copies of mapped file chunks */ 935 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 936 if (file && !(prot & PROT_WRITE)) 937 vm_flags |= VM_MAYSHARE; 938 } else { 939 /* overlay a shareable mapping on the backing device or inode 940 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 941 * romfs/cramfs */ 942 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 943 if (flags & MAP_SHARED) 944 vm_flags |= VM_SHARED; 945 } 946 947 /* refuse to let anyone share private mappings with this process if 948 * it's being traced - otherwise breakpoints set in it may interfere 949 * with another untraced process 950 */ 951 if ((flags & MAP_PRIVATE) && current->ptrace) 952 vm_flags &= ~VM_MAYSHARE; 953 954 return vm_flags; 955 } 956 957 /* 958 * set up a shared mapping on a file (the driver or filesystem provides and 959 * pins the storage) 960 */ 961 static int do_mmap_shared_file(struct vm_area_struct *vma) 962 { 963 int ret; 964 965 ret = call_mmap(vma->vm_file, vma); 966 if (ret == 0) { 967 vma->vm_region->vm_top = vma->vm_region->vm_end; 968 return 0; 969 } 970 if (ret != -ENOSYS) 971 return ret; 972 973 /* getting -ENOSYS indicates that direct mmap isn't possible (as 974 * opposed to tried but failed) so we can only give a suitable error as 975 * it's not possible to make a private copy if MAP_SHARED was given */ 976 return -ENODEV; 977 } 978 979 /* 980 * set up a private mapping or an anonymous shared mapping 981 */ 982 static int do_mmap_private(struct vm_area_struct *vma, 983 struct vm_region *region, 984 unsigned long len, 985 unsigned long capabilities) 986 { 987 unsigned long total, point; 988 void *base; 989 int ret, order; 990 991 /* invoke the file's mapping function so that it can keep track of 992 * shared mappings on devices or memory 993 * - VM_MAYSHARE will be set if it may attempt to share 994 */ 995 if (capabilities & NOMMU_MAP_DIRECT) { 996 ret = call_mmap(vma->vm_file, vma); 997 if (ret == 0) { 998 /* shouldn't return success if we're not sharing */ 999 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1000 vma->vm_region->vm_top = vma->vm_region->vm_end; 1001 return 0; 1002 } 1003 if (ret != -ENOSYS) 1004 return ret; 1005 1006 /* getting an ENOSYS error indicates that direct mmap isn't 1007 * possible (as opposed to tried but failed) so we'll try to 1008 * make a private copy of the data and map that instead */ 1009 } 1010 1011 1012 /* allocate some memory to hold the mapping 1013 * - note that this may not return a page-aligned address if the object 1014 * we're allocating is smaller than a page 1015 */ 1016 order = get_order(len); 1017 total = 1 << order; 1018 point = len >> PAGE_SHIFT; 1019 1020 /* we don't want to allocate a power-of-2 sized page set */ 1021 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1022 total = point; 1023 1024 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1025 if (!base) 1026 goto enomem; 1027 1028 atomic_long_add(total, &mmap_pages_allocated); 1029 1030 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1031 region->vm_start = (unsigned long) base; 1032 region->vm_end = region->vm_start + len; 1033 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1034 1035 vma->vm_start = region->vm_start; 1036 vma->vm_end = region->vm_start + len; 1037 1038 if (vma->vm_file) { 1039 /* read the contents of a file into the copy */ 1040 loff_t fpos; 1041 1042 fpos = vma->vm_pgoff; 1043 fpos <<= PAGE_SHIFT; 1044 1045 ret = kernel_read(vma->vm_file, base, len, &fpos); 1046 if (ret < 0) 1047 goto error_free; 1048 1049 /* clear the last little bit */ 1050 if (ret < len) 1051 memset(base + ret, 0, len - ret); 1052 1053 } else { 1054 vma_set_anonymous(vma); 1055 } 1056 1057 return 0; 1058 1059 error_free: 1060 free_page_series(region->vm_start, region->vm_top); 1061 region->vm_start = vma->vm_start = 0; 1062 region->vm_end = vma->vm_end = 0; 1063 region->vm_top = 0; 1064 return ret; 1065 1066 enomem: 1067 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1068 len, current->pid, current->comm); 1069 show_free_areas(0, NULL); 1070 return -ENOMEM; 1071 } 1072 1073 /* 1074 * handle mapping creation for uClinux 1075 */ 1076 unsigned long do_mmap(struct file *file, 1077 unsigned long addr, 1078 unsigned long len, 1079 unsigned long prot, 1080 unsigned long flags, 1081 unsigned long pgoff, 1082 unsigned long *populate, 1083 struct list_head *uf) 1084 { 1085 struct vm_area_struct *vma; 1086 struct vm_region *region; 1087 struct rb_node *rb; 1088 vm_flags_t vm_flags; 1089 unsigned long capabilities, result; 1090 int ret; 1091 1092 *populate = 0; 1093 1094 /* decide whether we should attempt the mapping, and if so what sort of 1095 * mapping */ 1096 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1097 &capabilities); 1098 if (ret < 0) 1099 return ret; 1100 1101 /* we ignore the address hint */ 1102 addr = 0; 1103 len = PAGE_ALIGN(len); 1104 1105 /* we've determined that we can make the mapping, now translate what we 1106 * now know into VMA flags */ 1107 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1108 1109 /* we're going to need to record the mapping */ 1110 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1111 if (!region) 1112 goto error_getting_region; 1113 1114 vma = vm_area_alloc(current->mm); 1115 if (!vma) 1116 goto error_getting_vma; 1117 1118 region->vm_usage = 1; 1119 region->vm_flags = vm_flags; 1120 region->vm_pgoff = pgoff; 1121 1122 vma->vm_flags = vm_flags; 1123 vma->vm_pgoff = pgoff; 1124 1125 if (file) { 1126 region->vm_file = get_file(file); 1127 vma->vm_file = get_file(file); 1128 } 1129 1130 down_write(&nommu_region_sem); 1131 1132 /* if we want to share, we need to check for regions created by other 1133 * mmap() calls that overlap with our proposed mapping 1134 * - we can only share with a superset match on most regular files 1135 * - shared mappings on character devices and memory backed files are 1136 * permitted to overlap inexactly as far as we are concerned for in 1137 * these cases, sharing is handled in the driver or filesystem rather 1138 * than here 1139 */ 1140 if (vm_flags & VM_MAYSHARE) { 1141 struct vm_region *pregion; 1142 unsigned long pglen, rpglen, pgend, rpgend, start; 1143 1144 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1145 pgend = pgoff + pglen; 1146 1147 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1148 pregion = rb_entry(rb, struct vm_region, vm_rb); 1149 1150 if (!(pregion->vm_flags & VM_MAYSHARE)) 1151 continue; 1152 1153 /* search for overlapping mappings on the same file */ 1154 if (file_inode(pregion->vm_file) != 1155 file_inode(file)) 1156 continue; 1157 1158 if (pregion->vm_pgoff >= pgend) 1159 continue; 1160 1161 rpglen = pregion->vm_end - pregion->vm_start; 1162 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1163 rpgend = pregion->vm_pgoff + rpglen; 1164 if (pgoff >= rpgend) 1165 continue; 1166 1167 /* handle inexactly overlapping matches between 1168 * mappings */ 1169 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1170 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1171 /* new mapping is not a subset of the region */ 1172 if (!(capabilities & NOMMU_MAP_DIRECT)) 1173 goto sharing_violation; 1174 continue; 1175 } 1176 1177 /* we've found a region we can share */ 1178 pregion->vm_usage++; 1179 vma->vm_region = pregion; 1180 start = pregion->vm_start; 1181 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1182 vma->vm_start = start; 1183 vma->vm_end = start + len; 1184 1185 if (pregion->vm_flags & VM_MAPPED_COPY) 1186 vma->vm_flags |= VM_MAPPED_COPY; 1187 else { 1188 ret = do_mmap_shared_file(vma); 1189 if (ret < 0) { 1190 vma->vm_region = NULL; 1191 vma->vm_start = 0; 1192 vma->vm_end = 0; 1193 pregion->vm_usage--; 1194 pregion = NULL; 1195 goto error_just_free; 1196 } 1197 } 1198 fput(region->vm_file); 1199 kmem_cache_free(vm_region_jar, region); 1200 region = pregion; 1201 result = start; 1202 goto share; 1203 } 1204 1205 /* obtain the address at which to make a shared mapping 1206 * - this is the hook for quasi-memory character devices to 1207 * tell us the location of a shared mapping 1208 */ 1209 if (capabilities & NOMMU_MAP_DIRECT) { 1210 addr = file->f_op->get_unmapped_area(file, addr, len, 1211 pgoff, flags); 1212 if (IS_ERR_VALUE(addr)) { 1213 ret = addr; 1214 if (ret != -ENOSYS) 1215 goto error_just_free; 1216 1217 /* the driver refused to tell us where to site 1218 * the mapping so we'll have to attempt to copy 1219 * it */ 1220 ret = -ENODEV; 1221 if (!(capabilities & NOMMU_MAP_COPY)) 1222 goto error_just_free; 1223 1224 capabilities &= ~NOMMU_MAP_DIRECT; 1225 } else { 1226 vma->vm_start = region->vm_start = addr; 1227 vma->vm_end = region->vm_end = addr + len; 1228 } 1229 } 1230 } 1231 1232 vma->vm_region = region; 1233 1234 /* set up the mapping 1235 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1236 */ 1237 if (file && vma->vm_flags & VM_SHARED) 1238 ret = do_mmap_shared_file(vma); 1239 else 1240 ret = do_mmap_private(vma, region, len, capabilities); 1241 if (ret < 0) 1242 goto error_just_free; 1243 add_nommu_region(region); 1244 1245 /* clear anonymous mappings that don't ask for uninitialized data */ 1246 if (!vma->vm_file && 1247 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1248 !(flags & MAP_UNINITIALIZED))) 1249 memset((void *)region->vm_start, 0, 1250 region->vm_end - region->vm_start); 1251 1252 /* okay... we have a mapping; now we have to register it */ 1253 result = vma->vm_start; 1254 1255 current->mm->total_vm += len >> PAGE_SHIFT; 1256 1257 share: 1258 add_vma_to_mm(current->mm, vma); 1259 1260 /* we flush the region from the icache only when the first executable 1261 * mapping of it is made */ 1262 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1263 flush_icache_user_range(region->vm_start, region->vm_end); 1264 region->vm_icache_flushed = true; 1265 } 1266 1267 up_write(&nommu_region_sem); 1268 1269 return result; 1270 1271 error_just_free: 1272 up_write(&nommu_region_sem); 1273 error: 1274 if (region->vm_file) 1275 fput(region->vm_file); 1276 kmem_cache_free(vm_region_jar, region); 1277 if (vma->vm_file) 1278 fput(vma->vm_file); 1279 vm_area_free(vma); 1280 return ret; 1281 1282 sharing_violation: 1283 up_write(&nommu_region_sem); 1284 pr_warn("Attempt to share mismatched mappings\n"); 1285 ret = -EINVAL; 1286 goto error; 1287 1288 error_getting_vma: 1289 kmem_cache_free(vm_region_jar, region); 1290 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1291 len, current->pid); 1292 show_free_areas(0, NULL); 1293 return -ENOMEM; 1294 1295 error_getting_region: 1296 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1297 len, current->pid); 1298 show_free_areas(0, NULL); 1299 return -ENOMEM; 1300 } 1301 1302 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1303 unsigned long prot, unsigned long flags, 1304 unsigned long fd, unsigned long pgoff) 1305 { 1306 struct file *file = NULL; 1307 unsigned long retval = -EBADF; 1308 1309 audit_mmap_fd(fd, flags); 1310 if (!(flags & MAP_ANONYMOUS)) { 1311 file = fget(fd); 1312 if (!file) 1313 goto out; 1314 } 1315 1316 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1317 1318 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1319 1320 if (file) 1321 fput(file); 1322 out: 1323 return retval; 1324 } 1325 1326 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1327 unsigned long, prot, unsigned long, flags, 1328 unsigned long, fd, unsigned long, pgoff) 1329 { 1330 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1331 } 1332 1333 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1334 struct mmap_arg_struct { 1335 unsigned long addr; 1336 unsigned long len; 1337 unsigned long prot; 1338 unsigned long flags; 1339 unsigned long fd; 1340 unsigned long offset; 1341 }; 1342 1343 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1344 { 1345 struct mmap_arg_struct a; 1346 1347 if (copy_from_user(&a, arg, sizeof(a))) 1348 return -EFAULT; 1349 if (offset_in_page(a.offset)) 1350 return -EINVAL; 1351 1352 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1353 a.offset >> PAGE_SHIFT); 1354 } 1355 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1356 1357 /* 1358 * split a vma into two pieces at address 'addr', a new vma is allocated either 1359 * for the first part or the tail. 1360 */ 1361 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1362 unsigned long addr, int new_below) 1363 { 1364 struct vm_area_struct *new; 1365 struct vm_region *region; 1366 unsigned long npages; 1367 1368 /* we're only permitted to split anonymous regions (these should have 1369 * only a single usage on the region) */ 1370 if (vma->vm_file) 1371 return -ENOMEM; 1372 1373 if (mm->map_count >= sysctl_max_map_count) 1374 return -ENOMEM; 1375 1376 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1377 if (!region) 1378 return -ENOMEM; 1379 1380 new = vm_area_dup(vma); 1381 if (!new) { 1382 kmem_cache_free(vm_region_jar, region); 1383 return -ENOMEM; 1384 } 1385 1386 /* most fields are the same, copy all, and then fixup */ 1387 *region = *vma->vm_region; 1388 new->vm_region = region; 1389 1390 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1391 1392 if (new_below) { 1393 region->vm_top = region->vm_end = new->vm_end = addr; 1394 } else { 1395 region->vm_start = new->vm_start = addr; 1396 region->vm_pgoff = new->vm_pgoff += npages; 1397 } 1398 1399 if (new->vm_ops && new->vm_ops->open) 1400 new->vm_ops->open(new); 1401 1402 delete_vma_from_mm(vma); 1403 down_write(&nommu_region_sem); 1404 delete_nommu_region(vma->vm_region); 1405 if (new_below) { 1406 vma->vm_region->vm_start = vma->vm_start = addr; 1407 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1408 } else { 1409 vma->vm_region->vm_end = vma->vm_end = addr; 1410 vma->vm_region->vm_top = addr; 1411 } 1412 add_nommu_region(vma->vm_region); 1413 add_nommu_region(new->vm_region); 1414 up_write(&nommu_region_sem); 1415 add_vma_to_mm(mm, vma); 1416 add_vma_to_mm(mm, new); 1417 return 0; 1418 } 1419 1420 /* 1421 * shrink a VMA by removing the specified chunk from either the beginning or 1422 * the end 1423 */ 1424 static int shrink_vma(struct mm_struct *mm, 1425 struct vm_area_struct *vma, 1426 unsigned long from, unsigned long to) 1427 { 1428 struct vm_region *region; 1429 1430 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1431 * and list */ 1432 delete_vma_from_mm(vma); 1433 if (from > vma->vm_start) 1434 vma->vm_end = from; 1435 else 1436 vma->vm_start = to; 1437 add_vma_to_mm(mm, vma); 1438 1439 /* cut the backing region down to size */ 1440 region = vma->vm_region; 1441 BUG_ON(region->vm_usage != 1); 1442 1443 down_write(&nommu_region_sem); 1444 delete_nommu_region(region); 1445 if (from > region->vm_start) { 1446 to = region->vm_top; 1447 region->vm_top = region->vm_end = from; 1448 } else { 1449 region->vm_start = to; 1450 } 1451 add_nommu_region(region); 1452 up_write(&nommu_region_sem); 1453 1454 free_page_series(from, to); 1455 return 0; 1456 } 1457 1458 /* 1459 * release a mapping 1460 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1461 * VMA, though it need not cover the whole VMA 1462 */ 1463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1464 { 1465 struct vm_area_struct *vma; 1466 unsigned long end; 1467 int ret; 1468 1469 len = PAGE_ALIGN(len); 1470 if (len == 0) 1471 return -EINVAL; 1472 1473 end = start + len; 1474 1475 /* find the first potentially overlapping VMA */ 1476 vma = find_vma(mm, start); 1477 if (!vma) { 1478 static int limit; 1479 if (limit < 5) { 1480 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1481 current->pid, current->comm, 1482 start, start + len - 1); 1483 limit++; 1484 } 1485 return -EINVAL; 1486 } 1487 1488 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1489 if (vma->vm_file) { 1490 do { 1491 if (start > vma->vm_start) 1492 return -EINVAL; 1493 if (end == vma->vm_end) 1494 goto erase_whole_vma; 1495 vma = vma->vm_next; 1496 } while (vma); 1497 return -EINVAL; 1498 } else { 1499 /* the chunk must be a subset of the VMA found */ 1500 if (start == vma->vm_start && end == vma->vm_end) 1501 goto erase_whole_vma; 1502 if (start < vma->vm_start || end > vma->vm_end) 1503 return -EINVAL; 1504 if (offset_in_page(start)) 1505 return -EINVAL; 1506 if (end != vma->vm_end && offset_in_page(end)) 1507 return -EINVAL; 1508 if (start != vma->vm_start && end != vma->vm_end) { 1509 ret = split_vma(mm, vma, start, 1); 1510 if (ret < 0) 1511 return ret; 1512 } 1513 return shrink_vma(mm, vma, start, end); 1514 } 1515 1516 erase_whole_vma: 1517 delete_vma_from_mm(vma); 1518 delete_vma(mm, vma); 1519 return 0; 1520 } 1521 EXPORT_SYMBOL(do_munmap); 1522 1523 int vm_munmap(unsigned long addr, size_t len) 1524 { 1525 struct mm_struct *mm = current->mm; 1526 int ret; 1527 1528 mmap_write_lock(mm); 1529 ret = do_munmap(mm, addr, len, NULL); 1530 mmap_write_unlock(mm); 1531 return ret; 1532 } 1533 EXPORT_SYMBOL(vm_munmap); 1534 1535 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1536 { 1537 return vm_munmap(addr, len); 1538 } 1539 1540 /* 1541 * release all the mappings made in a process's VM space 1542 */ 1543 void exit_mmap(struct mm_struct *mm) 1544 { 1545 struct vm_area_struct *vma; 1546 1547 if (!mm) 1548 return; 1549 1550 mm->total_vm = 0; 1551 1552 while ((vma = mm->mmap)) { 1553 mm->mmap = vma->vm_next; 1554 delete_vma_from_mm(vma); 1555 delete_vma(mm, vma); 1556 cond_resched(); 1557 } 1558 } 1559 1560 int vm_brk(unsigned long addr, unsigned long len) 1561 { 1562 return -ENOMEM; 1563 } 1564 1565 /* 1566 * expand (or shrink) an existing mapping, potentially moving it at the same 1567 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1568 * 1569 * under NOMMU conditions, we only permit changing a mapping's size, and only 1570 * as long as it stays within the region allocated by do_mmap_private() and the 1571 * block is not shareable 1572 * 1573 * MREMAP_FIXED is not supported under NOMMU conditions 1574 */ 1575 static unsigned long do_mremap(unsigned long addr, 1576 unsigned long old_len, unsigned long new_len, 1577 unsigned long flags, unsigned long new_addr) 1578 { 1579 struct vm_area_struct *vma; 1580 1581 /* insanity checks first */ 1582 old_len = PAGE_ALIGN(old_len); 1583 new_len = PAGE_ALIGN(new_len); 1584 if (old_len == 0 || new_len == 0) 1585 return (unsigned long) -EINVAL; 1586 1587 if (offset_in_page(addr)) 1588 return -EINVAL; 1589 1590 if (flags & MREMAP_FIXED && new_addr != addr) 1591 return (unsigned long) -EINVAL; 1592 1593 vma = find_vma_exact(current->mm, addr, old_len); 1594 if (!vma) 1595 return (unsigned long) -EINVAL; 1596 1597 if (vma->vm_end != vma->vm_start + old_len) 1598 return (unsigned long) -EFAULT; 1599 1600 if (vma->vm_flags & VM_MAYSHARE) 1601 return (unsigned long) -EPERM; 1602 1603 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1604 return (unsigned long) -ENOMEM; 1605 1606 /* all checks complete - do it */ 1607 vma->vm_end = vma->vm_start + new_len; 1608 return vma->vm_start; 1609 } 1610 1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1612 unsigned long, new_len, unsigned long, flags, 1613 unsigned long, new_addr) 1614 { 1615 unsigned long ret; 1616 1617 mmap_write_lock(current->mm); 1618 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1619 mmap_write_unlock(current->mm); 1620 return ret; 1621 } 1622 1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1624 unsigned int foll_flags) 1625 { 1626 return NULL; 1627 } 1628 1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1630 unsigned long pfn, unsigned long size, pgprot_t prot) 1631 { 1632 if (addr != (pfn << PAGE_SHIFT)) 1633 return -EINVAL; 1634 1635 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1636 return 0; 1637 } 1638 EXPORT_SYMBOL(remap_pfn_range); 1639 1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1641 { 1642 unsigned long pfn = start >> PAGE_SHIFT; 1643 unsigned long vm_len = vma->vm_end - vma->vm_start; 1644 1645 pfn += vma->vm_pgoff; 1646 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1647 } 1648 EXPORT_SYMBOL(vm_iomap_memory); 1649 1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1651 unsigned long pgoff) 1652 { 1653 unsigned int size = vma->vm_end - vma->vm_start; 1654 1655 if (!(vma->vm_flags & VM_USERMAP)) 1656 return -EINVAL; 1657 1658 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1659 vma->vm_end = vma->vm_start + size; 1660 1661 return 0; 1662 } 1663 EXPORT_SYMBOL(remap_vmalloc_range); 1664 1665 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1666 unsigned long len, unsigned long pgoff, unsigned long flags) 1667 { 1668 return -ENOMEM; 1669 } 1670 1671 vm_fault_t filemap_fault(struct vm_fault *vmf) 1672 { 1673 BUG(); 1674 return 0; 1675 } 1676 EXPORT_SYMBOL(filemap_fault); 1677 1678 void filemap_map_pages(struct vm_fault *vmf, 1679 pgoff_t start_pgoff, pgoff_t end_pgoff) 1680 { 1681 BUG(); 1682 } 1683 EXPORT_SYMBOL(filemap_map_pages); 1684 1685 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1686 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1687 { 1688 struct vm_area_struct *vma; 1689 int write = gup_flags & FOLL_WRITE; 1690 1691 if (mmap_read_lock_killable(mm)) 1692 return 0; 1693 1694 /* the access must start within one of the target process's mappings */ 1695 vma = find_vma(mm, addr); 1696 if (vma) { 1697 /* don't overrun this mapping */ 1698 if (addr + len >= vma->vm_end) 1699 len = vma->vm_end - addr; 1700 1701 /* only read or write mappings where it is permitted */ 1702 if (write && vma->vm_flags & VM_MAYWRITE) 1703 copy_to_user_page(vma, NULL, addr, 1704 (void *) addr, buf, len); 1705 else if (!write && vma->vm_flags & VM_MAYREAD) 1706 copy_from_user_page(vma, NULL, addr, 1707 buf, (void *) addr, len); 1708 else 1709 len = 0; 1710 } else { 1711 len = 0; 1712 } 1713 1714 mmap_read_unlock(mm); 1715 1716 return len; 1717 } 1718 1719 /** 1720 * access_remote_vm - access another process' address space 1721 * @mm: the mm_struct of the target address space 1722 * @addr: start address to access 1723 * @buf: source or destination buffer 1724 * @len: number of bytes to transfer 1725 * @gup_flags: flags modifying lookup behaviour 1726 * 1727 * The caller must hold a reference on @mm. 1728 */ 1729 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1730 void *buf, int len, unsigned int gup_flags) 1731 { 1732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1733 } 1734 1735 /* 1736 * Access another process' address space. 1737 * - source/target buffer must be kernel space 1738 */ 1739 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1740 unsigned int gup_flags) 1741 { 1742 struct mm_struct *mm; 1743 1744 if (addr + len < addr) 1745 return 0; 1746 1747 mm = get_task_mm(tsk); 1748 if (!mm) 1749 return 0; 1750 1751 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1752 1753 mmput(mm); 1754 return len; 1755 } 1756 EXPORT_SYMBOL_GPL(access_process_vm); 1757 1758 /** 1759 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1760 * @inode: The inode to check 1761 * @size: The current filesize of the inode 1762 * @newsize: The proposed filesize of the inode 1763 * 1764 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1765 * make sure that any outstanding VMAs aren't broken and then shrink the 1766 * vm_regions that extend beyond so that do_mmap() doesn't 1767 * automatically grant mappings that are too large. 1768 */ 1769 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1770 size_t newsize) 1771 { 1772 struct vm_area_struct *vma; 1773 struct vm_region *region; 1774 pgoff_t low, high; 1775 size_t r_size, r_top; 1776 1777 low = newsize >> PAGE_SHIFT; 1778 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1779 1780 down_write(&nommu_region_sem); 1781 i_mmap_lock_read(inode->i_mapping); 1782 1783 /* search for VMAs that fall within the dead zone */ 1784 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1785 /* found one - only interested if it's shared out of the page 1786 * cache */ 1787 if (vma->vm_flags & VM_SHARED) { 1788 i_mmap_unlock_read(inode->i_mapping); 1789 up_write(&nommu_region_sem); 1790 return -ETXTBSY; /* not quite true, but near enough */ 1791 } 1792 } 1793 1794 /* reduce any regions that overlap the dead zone - if in existence, 1795 * these will be pointed to by VMAs that don't overlap the dead zone 1796 * 1797 * we don't check for any regions that start beyond the EOF as there 1798 * shouldn't be any 1799 */ 1800 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1801 if (!(vma->vm_flags & VM_SHARED)) 1802 continue; 1803 1804 region = vma->vm_region; 1805 r_size = region->vm_top - region->vm_start; 1806 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1807 1808 if (r_top > newsize) { 1809 region->vm_top -= r_top - newsize; 1810 if (region->vm_end > region->vm_top) 1811 region->vm_end = region->vm_top; 1812 } 1813 } 1814 1815 i_mmap_unlock_read(inode->i_mapping); 1816 up_write(&nommu_region_sem); 1817 return 0; 1818 } 1819 1820 /* 1821 * Initialise sysctl_user_reserve_kbytes. 1822 * 1823 * This is intended to prevent a user from starting a single memory hogging 1824 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1825 * mode. 1826 * 1827 * The default value is min(3% of free memory, 128MB) 1828 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1829 */ 1830 static int __meminit init_user_reserve(void) 1831 { 1832 unsigned long free_kbytes; 1833 1834 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1835 1836 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1837 return 0; 1838 } 1839 subsys_initcall(init_user_reserve); 1840 1841 /* 1842 * Initialise sysctl_admin_reserve_kbytes. 1843 * 1844 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1845 * to log in and kill a memory hogging process. 1846 * 1847 * Systems with more than 256MB will reserve 8MB, enough to recover 1848 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1849 * only reserve 3% of free pages by default. 1850 */ 1851 static int __meminit init_admin_reserve(void) 1852 { 1853 unsigned long free_kbytes; 1854 1855 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1856 1857 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1858 return 0; 1859 } 1860 subsys_initcall(init_admin_reserve); 1861