xref: /openbmc/linux/mm/nommu.c (revision 1c2dd16a)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *vmalloc_user(unsigned long size)
241 {
242 	void *ret;
243 
244 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
245 			PAGE_KERNEL);
246 	if (ret) {
247 		struct vm_area_struct *vma;
248 
249 		down_write(&current->mm->mmap_sem);
250 		vma = find_vma(current->mm, (unsigned long)ret);
251 		if (vma)
252 			vma->vm_flags |= VM_USERMAP;
253 		up_write(&current->mm->mmap_sem);
254 	}
255 
256 	return ret;
257 }
258 EXPORT_SYMBOL(vmalloc_user);
259 
260 struct page *vmalloc_to_page(const void *addr)
261 {
262 	return virt_to_page(addr);
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265 
266 unsigned long vmalloc_to_pfn(const void *addr)
267 {
268 	return page_to_pfn(virt_to_page(addr));
269 }
270 EXPORT_SYMBOL(vmalloc_to_pfn);
271 
272 long vread(char *buf, char *addr, unsigned long count)
273 {
274 	/* Don't allow overflow */
275 	if ((unsigned long) buf + count < count)
276 		count = -(unsigned long) buf;
277 
278 	memcpy(buf, addr, count);
279 	return count;
280 }
281 
282 long vwrite(char *buf, char *addr, unsigned long count)
283 {
284 	/* Don't allow overflow */
285 	if ((unsigned long) addr + count < count)
286 		count = -(unsigned long) addr;
287 
288 	memcpy(addr, buf, count);
289 	return count;
290 }
291 
292 /*
293  *	vmalloc  -  allocate virtually contiguous memory
294  *
295  *	@size:		allocation size
296  *
297  *	Allocate enough pages to cover @size from the page level
298  *	allocator and map them into contiguous kernel virtual space.
299  *
300  *	For tight control over page level allocator and protection flags
301  *	use __vmalloc() instead.
302  */
303 void *vmalloc(unsigned long size)
304 {
305        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
306 }
307 EXPORT_SYMBOL(vmalloc);
308 
309 /*
310  *	vzalloc - allocate virtually contiguous memory with zero fill
311  *
312  *	@size:		allocation size
313  *
314  *	Allocate enough pages to cover @size from the page level
315  *	allocator and map them into contiguous kernel virtual space.
316  *	The memory allocated is set to zero.
317  *
318  *	For tight control over page level allocator and protection flags
319  *	use __vmalloc() instead.
320  */
321 void *vzalloc(unsigned long size)
322 {
323 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
324 			PAGE_KERNEL);
325 }
326 EXPORT_SYMBOL(vzalloc);
327 
328 /**
329  * vmalloc_node - allocate memory on a specific node
330  * @size:	allocation size
331  * @node:	numa node
332  *
333  * Allocate enough pages to cover @size from the page level
334  * allocator and map them into contiguous kernel virtual space.
335  *
336  * For tight control over page level allocator and protection flags
337  * use __vmalloc() instead.
338  */
339 void *vmalloc_node(unsigned long size, int node)
340 {
341 	return vmalloc(size);
342 }
343 EXPORT_SYMBOL(vmalloc_node);
344 
345 /**
346  * vzalloc_node - allocate memory on a specific node with zero fill
347  * @size:	allocation size
348  * @node:	numa node
349  *
350  * Allocate enough pages to cover @size from the page level
351  * allocator and map them into contiguous kernel virtual space.
352  * The memory allocated is set to zero.
353  *
354  * For tight control over page level allocator and protection flags
355  * use __vmalloc() instead.
356  */
357 void *vzalloc_node(unsigned long size, int node)
358 {
359 	return vzalloc(size);
360 }
361 EXPORT_SYMBOL(vzalloc_node);
362 
363 #ifndef PAGE_KERNEL_EXEC
364 # define PAGE_KERNEL_EXEC PAGE_KERNEL
365 #endif
366 
367 /**
368  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
369  *	@size:		allocation size
370  *
371  *	Kernel-internal function to allocate enough pages to cover @size
372  *	the page level allocator and map them into contiguous and
373  *	executable kernel virtual space.
374  *
375  *	For tight control over page level allocator and protection flags
376  *	use __vmalloc() instead.
377  */
378 
379 void *vmalloc_exec(unsigned long size)
380 {
381 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383 
384 /**
385  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386  *	@size:		allocation size
387  *
388  *	Allocate enough 32bit PA addressable pages to cover @size from the
389  *	page level allocator and map them into contiguous kernel virtual space.
390  */
391 void *vmalloc_32(unsigned long size)
392 {
393 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396 
397 /**
398  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399  *	@size:		allocation size
400  *
401  * The resulting memory area is 32bit addressable and zeroed so it can be
402  * mapped to userspace without leaking data.
403  *
404  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405  * remap_vmalloc_range() are permissible.
406  */
407 void *vmalloc_32_user(unsigned long size)
408 {
409 	/*
410 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411 	 * but for now this can simply use vmalloc_user() directly.
412 	 */
413 	return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416 
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419 	BUG();
420 	return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423 
424 void vunmap(const void *addr)
425 {
426 	BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429 
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432 	BUG();
433 	return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436 
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439 	BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442 
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447 
448 /*
449  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450  * have one.
451  */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455 
456 /**
457  *	alloc_vm_area - allocate a range of kernel address space
458  *	@size:		size of the area
459  *
460  *	Returns:	NULL on failure, vm_struct on success
461  *
462  *	This function reserves a range of kernel address space, and
463  *	allocates pagetables to map that range.  No actual mappings
464  *	are created.  If the kernel address space is not shared
465  *	between processes, it syncs the pagetable across all
466  *	processes.
467  */
468 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
469 {
470 	BUG();
471 	return NULL;
472 }
473 EXPORT_SYMBOL_GPL(alloc_vm_area);
474 
475 void free_vm_area(struct vm_struct *area)
476 {
477 	BUG();
478 }
479 EXPORT_SYMBOL_GPL(free_vm_area);
480 
481 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
482 		   struct page *page)
483 {
484 	return -EINVAL;
485 }
486 EXPORT_SYMBOL(vm_insert_page);
487 
488 /*
489  *  sys_brk() for the most part doesn't need the global kernel
490  *  lock, except when an application is doing something nasty
491  *  like trying to un-brk an area that has already been mapped
492  *  to a regular file.  in this case, the unmapping will need
493  *  to invoke file system routines that need the global lock.
494  */
495 SYSCALL_DEFINE1(brk, unsigned long, brk)
496 {
497 	struct mm_struct *mm = current->mm;
498 
499 	if (brk < mm->start_brk || brk > mm->context.end_brk)
500 		return mm->brk;
501 
502 	if (mm->brk == brk)
503 		return mm->brk;
504 
505 	/*
506 	 * Always allow shrinking brk
507 	 */
508 	if (brk <= mm->brk) {
509 		mm->brk = brk;
510 		return brk;
511 	}
512 
513 	/*
514 	 * Ok, looks good - let it rip.
515 	 */
516 	flush_icache_range(mm->brk, brk);
517 	return mm->brk = brk;
518 }
519 
520 /*
521  * initialise the percpu counter for VM and region record slabs
522  */
523 void __init mmap_init(void)
524 {
525 	int ret;
526 
527 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
528 	VM_BUG_ON(ret);
529 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
530 }
531 
532 /*
533  * validate the region tree
534  * - the caller must hold the region lock
535  */
536 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
537 static noinline void validate_nommu_regions(void)
538 {
539 	struct vm_region *region, *last;
540 	struct rb_node *p, *lastp;
541 
542 	lastp = rb_first(&nommu_region_tree);
543 	if (!lastp)
544 		return;
545 
546 	last = rb_entry(lastp, struct vm_region, vm_rb);
547 	BUG_ON(last->vm_end <= last->vm_start);
548 	BUG_ON(last->vm_top < last->vm_end);
549 
550 	while ((p = rb_next(lastp))) {
551 		region = rb_entry(p, struct vm_region, vm_rb);
552 		last = rb_entry(lastp, struct vm_region, vm_rb);
553 
554 		BUG_ON(region->vm_end <= region->vm_start);
555 		BUG_ON(region->vm_top < region->vm_end);
556 		BUG_ON(region->vm_start < last->vm_top);
557 
558 		lastp = p;
559 	}
560 }
561 #else
562 static void validate_nommu_regions(void)
563 {
564 }
565 #endif
566 
567 /*
568  * add a region into the global tree
569  */
570 static void add_nommu_region(struct vm_region *region)
571 {
572 	struct vm_region *pregion;
573 	struct rb_node **p, *parent;
574 
575 	validate_nommu_regions();
576 
577 	parent = NULL;
578 	p = &nommu_region_tree.rb_node;
579 	while (*p) {
580 		parent = *p;
581 		pregion = rb_entry(parent, struct vm_region, vm_rb);
582 		if (region->vm_start < pregion->vm_start)
583 			p = &(*p)->rb_left;
584 		else if (region->vm_start > pregion->vm_start)
585 			p = &(*p)->rb_right;
586 		else if (pregion == region)
587 			return;
588 		else
589 			BUG();
590 	}
591 
592 	rb_link_node(&region->vm_rb, parent, p);
593 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
594 
595 	validate_nommu_regions();
596 }
597 
598 /*
599  * delete a region from the global tree
600  */
601 static void delete_nommu_region(struct vm_region *region)
602 {
603 	BUG_ON(!nommu_region_tree.rb_node);
604 
605 	validate_nommu_regions();
606 	rb_erase(&region->vm_rb, &nommu_region_tree);
607 	validate_nommu_regions();
608 }
609 
610 /*
611  * free a contiguous series of pages
612  */
613 static void free_page_series(unsigned long from, unsigned long to)
614 {
615 	for (; from < to; from += PAGE_SIZE) {
616 		struct page *page = virt_to_page(from);
617 
618 		atomic_long_dec(&mmap_pages_allocated);
619 		put_page(page);
620 	}
621 }
622 
623 /*
624  * release a reference to a region
625  * - the caller must hold the region semaphore for writing, which this releases
626  * - the region may not have been added to the tree yet, in which case vm_top
627  *   will equal vm_start
628  */
629 static void __put_nommu_region(struct vm_region *region)
630 	__releases(nommu_region_sem)
631 {
632 	BUG_ON(!nommu_region_tree.rb_node);
633 
634 	if (--region->vm_usage == 0) {
635 		if (region->vm_top > region->vm_start)
636 			delete_nommu_region(region);
637 		up_write(&nommu_region_sem);
638 
639 		if (region->vm_file)
640 			fput(region->vm_file);
641 
642 		/* IO memory and memory shared directly out of the pagecache
643 		 * from ramfs/tmpfs mustn't be released here */
644 		if (region->vm_flags & VM_MAPPED_COPY)
645 			free_page_series(region->vm_start, region->vm_top);
646 		kmem_cache_free(vm_region_jar, region);
647 	} else {
648 		up_write(&nommu_region_sem);
649 	}
650 }
651 
652 /*
653  * release a reference to a region
654  */
655 static void put_nommu_region(struct vm_region *region)
656 {
657 	down_write(&nommu_region_sem);
658 	__put_nommu_region(region);
659 }
660 
661 /*
662  * update protection on a vma
663  */
664 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
665 {
666 #ifdef CONFIG_MPU
667 	struct mm_struct *mm = vma->vm_mm;
668 	long start = vma->vm_start & PAGE_MASK;
669 	while (start < vma->vm_end) {
670 		protect_page(mm, start, flags);
671 		start += PAGE_SIZE;
672 	}
673 	update_protections(mm);
674 #endif
675 }
676 
677 /*
678  * add a VMA into a process's mm_struct in the appropriate place in the list
679  * and tree and add to the address space's page tree also if not an anonymous
680  * page
681  * - should be called with mm->mmap_sem held writelocked
682  */
683 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
684 {
685 	struct vm_area_struct *pvma, *prev;
686 	struct address_space *mapping;
687 	struct rb_node **p, *parent, *rb_prev;
688 
689 	BUG_ON(!vma->vm_region);
690 
691 	mm->map_count++;
692 	vma->vm_mm = mm;
693 
694 	protect_vma(vma, vma->vm_flags);
695 
696 	/* add the VMA to the mapping */
697 	if (vma->vm_file) {
698 		mapping = vma->vm_file->f_mapping;
699 
700 		i_mmap_lock_write(mapping);
701 		flush_dcache_mmap_lock(mapping);
702 		vma_interval_tree_insert(vma, &mapping->i_mmap);
703 		flush_dcache_mmap_unlock(mapping);
704 		i_mmap_unlock_write(mapping);
705 	}
706 
707 	/* add the VMA to the tree */
708 	parent = rb_prev = NULL;
709 	p = &mm->mm_rb.rb_node;
710 	while (*p) {
711 		parent = *p;
712 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
713 
714 		/* sort by: start addr, end addr, VMA struct addr in that order
715 		 * (the latter is necessary as we may get identical VMAs) */
716 		if (vma->vm_start < pvma->vm_start)
717 			p = &(*p)->rb_left;
718 		else if (vma->vm_start > pvma->vm_start) {
719 			rb_prev = parent;
720 			p = &(*p)->rb_right;
721 		} else if (vma->vm_end < pvma->vm_end)
722 			p = &(*p)->rb_left;
723 		else if (vma->vm_end > pvma->vm_end) {
724 			rb_prev = parent;
725 			p = &(*p)->rb_right;
726 		} else if (vma < pvma)
727 			p = &(*p)->rb_left;
728 		else if (vma > pvma) {
729 			rb_prev = parent;
730 			p = &(*p)->rb_right;
731 		} else
732 			BUG();
733 	}
734 
735 	rb_link_node(&vma->vm_rb, parent, p);
736 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
737 
738 	/* add VMA to the VMA list also */
739 	prev = NULL;
740 	if (rb_prev)
741 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
742 
743 	__vma_link_list(mm, vma, prev, parent);
744 }
745 
746 /*
747  * delete a VMA from its owning mm_struct and address space
748  */
749 static void delete_vma_from_mm(struct vm_area_struct *vma)
750 {
751 	int i;
752 	struct address_space *mapping;
753 	struct mm_struct *mm = vma->vm_mm;
754 	struct task_struct *curr = current;
755 
756 	protect_vma(vma, 0);
757 
758 	mm->map_count--;
759 	for (i = 0; i < VMACACHE_SIZE; i++) {
760 		/* if the vma is cached, invalidate the entire cache */
761 		if (curr->vmacache.vmas[i] == vma) {
762 			vmacache_invalidate(mm);
763 			break;
764 		}
765 	}
766 
767 	/* remove the VMA from the mapping */
768 	if (vma->vm_file) {
769 		mapping = vma->vm_file->f_mapping;
770 
771 		i_mmap_lock_write(mapping);
772 		flush_dcache_mmap_lock(mapping);
773 		vma_interval_tree_remove(vma, &mapping->i_mmap);
774 		flush_dcache_mmap_unlock(mapping);
775 		i_mmap_unlock_write(mapping);
776 	}
777 
778 	/* remove from the MM's tree and list */
779 	rb_erase(&vma->vm_rb, &mm->mm_rb);
780 
781 	if (vma->vm_prev)
782 		vma->vm_prev->vm_next = vma->vm_next;
783 	else
784 		mm->mmap = vma->vm_next;
785 
786 	if (vma->vm_next)
787 		vma->vm_next->vm_prev = vma->vm_prev;
788 }
789 
790 /*
791  * destroy a VMA record
792  */
793 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
794 {
795 	if (vma->vm_ops && vma->vm_ops->close)
796 		vma->vm_ops->close(vma);
797 	if (vma->vm_file)
798 		fput(vma->vm_file);
799 	put_nommu_region(vma->vm_region);
800 	kmem_cache_free(vm_area_cachep, vma);
801 }
802 
803 /*
804  * look up the first VMA in which addr resides, NULL if none
805  * - should be called with mm->mmap_sem at least held readlocked
806  */
807 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
808 {
809 	struct vm_area_struct *vma;
810 
811 	/* check the cache first */
812 	vma = vmacache_find(mm, addr);
813 	if (likely(vma))
814 		return vma;
815 
816 	/* trawl the list (there may be multiple mappings in which addr
817 	 * resides) */
818 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
819 		if (vma->vm_start > addr)
820 			return NULL;
821 		if (vma->vm_end > addr) {
822 			vmacache_update(addr, vma);
823 			return vma;
824 		}
825 	}
826 
827 	return NULL;
828 }
829 EXPORT_SYMBOL(find_vma);
830 
831 /*
832  * find a VMA
833  * - we don't extend stack VMAs under NOMMU conditions
834  */
835 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
836 {
837 	return find_vma(mm, addr);
838 }
839 
840 /*
841  * expand a stack to a given address
842  * - not supported under NOMMU conditions
843  */
844 int expand_stack(struct vm_area_struct *vma, unsigned long address)
845 {
846 	return -ENOMEM;
847 }
848 
849 /*
850  * look up the first VMA exactly that exactly matches addr
851  * - should be called with mm->mmap_sem at least held readlocked
852  */
853 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
854 					     unsigned long addr,
855 					     unsigned long len)
856 {
857 	struct vm_area_struct *vma;
858 	unsigned long end = addr + len;
859 
860 	/* check the cache first */
861 	vma = vmacache_find_exact(mm, addr, end);
862 	if (vma)
863 		return vma;
864 
865 	/* trawl the list (there may be multiple mappings in which addr
866 	 * resides) */
867 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 		if (vma->vm_start < addr)
869 			continue;
870 		if (vma->vm_start > addr)
871 			return NULL;
872 		if (vma->vm_end == end) {
873 			vmacache_update(addr, vma);
874 			return vma;
875 		}
876 	}
877 
878 	return NULL;
879 }
880 
881 /*
882  * determine whether a mapping should be permitted and, if so, what sort of
883  * mapping we're capable of supporting
884  */
885 static int validate_mmap_request(struct file *file,
886 				 unsigned long addr,
887 				 unsigned long len,
888 				 unsigned long prot,
889 				 unsigned long flags,
890 				 unsigned long pgoff,
891 				 unsigned long *_capabilities)
892 {
893 	unsigned long capabilities, rlen;
894 	int ret;
895 
896 	/* do the simple checks first */
897 	if (flags & MAP_FIXED)
898 		return -EINVAL;
899 
900 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
901 	    (flags & MAP_TYPE) != MAP_SHARED)
902 		return -EINVAL;
903 
904 	if (!len)
905 		return -EINVAL;
906 
907 	/* Careful about overflows.. */
908 	rlen = PAGE_ALIGN(len);
909 	if (!rlen || rlen > TASK_SIZE)
910 		return -ENOMEM;
911 
912 	/* offset overflow? */
913 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
914 		return -EOVERFLOW;
915 
916 	if (file) {
917 		/* files must support mmap */
918 		if (!file->f_op->mmap)
919 			return -ENODEV;
920 
921 		/* work out if what we've got could possibly be shared
922 		 * - we support chardevs that provide their own "memory"
923 		 * - we support files/blockdevs that are memory backed
924 		 */
925 		if (file->f_op->mmap_capabilities) {
926 			capabilities = file->f_op->mmap_capabilities(file);
927 		} else {
928 			/* no explicit capabilities set, so assume some
929 			 * defaults */
930 			switch (file_inode(file)->i_mode & S_IFMT) {
931 			case S_IFREG:
932 			case S_IFBLK:
933 				capabilities = NOMMU_MAP_COPY;
934 				break;
935 
936 			case S_IFCHR:
937 				capabilities =
938 					NOMMU_MAP_DIRECT |
939 					NOMMU_MAP_READ |
940 					NOMMU_MAP_WRITE;
941 				break;
942 
943 			default:
944 				return -EINVAL;
945 			}
946 		}
947 
948 		/* eliminate any capabilities that we can't support on this
949 		 * device */
950 		if (!file->f_op->get_unmapped_area)
951 			capabilities &= ~NOMMU_MAP_DIRECT;
952 		if (!(file->f_mode & FMODE_CAN_READ))
953 			capabilities &= ~NOMMU_MAP_COPY;
954 
955 		/* The file shall have been opened with read permission. */
956 		if (!(file->f_mode & FMODE_READ))
957 			return -EACCES;
958 
959 		if (flags & MAP_SHARED) {
960 			/* do checks for writing, appending and locking */
961 			if ((prot & PROT_WRITE) &&
962 			    !(file->f_mode & FMODE_WRITE))
963 				return -EACCES;
964 
965 			if (IS_APPEND(file_inode(file)) &&
966 			    (file->f_mode & FMODE_WRITE))
967 				return -EACCES;
968 
969 			if (locks_verify_locked(file))
970 				return -EAGAIN;
971 
972 			if (!(capabilities & NOMMU_MAP_DIRECT))
973 				return -ENODEV;
974 
975 			/* we mustn't privatise shared mappings */
976 			capabilities &= ~NOMMU_MAP_COPY;
977 		} else {
978 			/* we're going to read the file into private memory we
979 			 * allocate */
980 			if (!(capabilities & NOMMU_MAP_COPY))
981 				return -ENODEV;
982 
983 			/* we don't permit a private writable mapping to be
984 			 * shared with the backing device */
985 			if (prot & PROT_WRITE)
986 				capabilities &= ~NOMMU_MAP_DIRECT;
987 		}
988 
989 		if (capabilities & NOMMU_MAP_DIRECT) {
990 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
991 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
992 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
993 			    ) {
994 				capabilities &= ~NOMMU_MAP_DIRECT;
995 				if (flags & MAP_SHARED) {
996 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
997 					return -EINVAL;
998 				}
999 			}
1000 		}
1001 
1002 		/* handle executable mappings and implied executable
1003 		 * mappings */
1004 		if (path_noexec(&file->f_path)) {
1005 			if (prot & PROT_EXEC)
1006 				return -EPERM;
1007 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1008 			/* handle implication of PROT_EXEC by PROT_READ */
1009 			if (current->personality & READ_IMPLIES_EXEC) {
1010 				if (capabilities & NOMMU_MAP_EXEC)
1011 					prot |= PROT_EXEC;
1012 			}
1013 		} else if ((prot & PROT_READ) &&
1014 			 (prot & PROT_EXEC) &&
1015 			 !(capabilities & NOMMU_MAP_EXEC)
1016 			 ) {
1017 			/* backing file is not executable, try to copy */
1018 			capabilities &= ~NOMMU_MAP_DIRECT;
1019 		}
1020 	} else {
1021 		/* anonymous mappings are always memory backed and can be
1022 		 * privately mapped
1023 		 */
1024 		capabilities = NOMMU_MAP_COPY;
1025 
1026 		/* handle PROT_EXEC implication by PROT_READ */
1027 		if ((prot & PROT_READ) &&
1028 		    (current->personality & READ_IMPLIES_EXEC))
1029 			prot |= PROT_EXEC;
1030 	}
1031 
1032 	/* allow the security API to have its say */
1033 	ret = security_mmap_addr(addr);
1034 	if (ret < 0)
1035 		return ret;
1036 
1037 	/* looks okay */
1038 	*_capabilities = capabilities;
1039 	return 0;
1040 }
1041 
1042 /*
1043  * we've determined that we can make the mapping, now translate what we
1044  * now know into VMA flags
1045  */
1046 static unsigned long determine_vm_flags(struct file *file,
1047 					unsigned long prot,
1048 					unsigned long flags,
1049 					unsigned long capabilities)
1050 {
1051 	unsigned long vm_flags;
1052 
1053 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1054 	/* vm_flags |= mm->def_flags; */
1055 
1056 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1057 		/* attempt to share read-only copies of mapped file chunks */
1058 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1059 		if (file && !(prot & PROT_WRITE))
1060 			vm_flags |= VM_MAYSHARE;
1061 	} else {
1062 		/* overlay a shareable mapping on the backing device or inode
1063 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1064 		 * romfs/cramfs */
1065 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1066 		if (flags & MAP_SHARED)
1067 			vm_flags |= VM_SHARED;
1068 	}
1069 
1070 	/* refuse to let anyone share private mappings with this process if
1071 	 * it's being traced - otherwise breakpoints set in it may interfere
1072 	 * with another untraced process
1073 	 */
1074 	if ((flags & MAP_PRIVATE) && current->ptrace)
1075 		vm_flags &= ~VM_MAYSHARE;
1076 
1077 	return vm_flags;
1078 }
1079 
1080 /*
1081  * set up a shared mapping on a file (the driver or filesystem provides and
1082  * pins the storage)
1083  */
1084 static int do_mmap_shared_file(struct vm_area_struct *vma)
1085 {
1086 	int ret;
1087 
1088 	ret = call_mmap(vma->vm_file, vma);
1089 	if (ret == 0) {
1090 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1091 		return 0;
1092 	}
1093 	if (ret != -ENOSYS)
1094 		return ret;
1095 
1096 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1097 	 * opposed to tried but failed) so we can only give a suitable error as
1098 	 * it's not possible to make a private copy if MAP_SHARED was given */
1099 	return -ENODEV;
1100 }
1101 
1102 /*
1103  * set up a private mapping or an anonymous shared mapping
1104  */
1105 static int do_mmap_private(struct vm_area_struct *vma,
1106 			   struct vm_region *region,
1107 			   unsigned long len,
1108 			   unsigned long capabilities)
1109 {
1110 	unsigned long total, point;
1111 	void *base;
1112 	int ret, order;
1113 
1114 	/* invoke the file's mapping function so that it can keep track of
1115 	 * shared mappings on devices or memory
1116 	 * - VM_MAYSHARE will be set if it may attempt to share
1117 	 */
1118 	if (capabilities & NOMMU_MAP_DIRECT) {
1119 		ret = call_mmap(vma->vm_file, vma);
1120 		if (ret == 0) {
1121 			/* shouldn't return success if we're not sharing */
1122 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1123 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1124 			return 0;
1125 		}
1126 		if (ret != -ENOSYS)
1127 			return ret;
1128 
1129 		/* getting an ENOSYS error indicates that direct mmap isn't
1130 		 * possible (as opposed to tried but failed) so we'll try to
1131 		 * make a private copy of the data and map that instead */
1132 	}
1133 
1134 
1135 	/* allocate some memory to hold the mapping
1136 	 * - note that this may not return a page-aligned address if the object
1137 	 *   we're allocating is smaller than a page
1138 	 */
1139 	order = get_order(len);
1140 	total = 1 << order;
1141 	point = len >> PAGE_SHIFT;
1142 
1143 	/* we don't want to allocate a power-of-2 sized page set */
1144 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1145 		total = point;
1146 
1147 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1148 	if (!base)
1149 		goto enomem;
1150 
1151 	atomic_long_add(total, &mmap_pages_allocated);
1152 
1153 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1154 	region->vm_start = (unsigned long) base;
1155 	region->vm_end   = region->vm_start + len;
1156 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1157 
1158 	vma->vm_start = region->vm_start;
1159 	vma->vm_end   = region->vm_start + len;
1160 
1161 	if (vma->vm_file) {
1162 		/* read the contents of a file into the copy */
1163 		mm_segment_t old_fs;
1164 		loff_t fpos;
1165 
1166 		fpos = vma->vm_pgoff;
1167 		fpos <<= PAGE_SHIFT;
1168 
1169 		old_fs = get_fs();
1170 		set_fs(KERNEL_DS);
1171 		ret = __vfs_read(vma->vm_file, base, len, &fpos);
1172 		set_fs(old_fs);
1173 
1174 		if (ret < 0)
1175 			goto error_free;
1176 
1177 		/* clear the last little bit */
1178 		if (ret < len)
1179 			memset(base + ret, 0, len - ret);
1180 
1181 	}
1182 
1183 	return 0;
1184 
1185 error_free:
1186 	free_page_series(region->vm_start, region->vm_top);
1187 	region->vm_start = vma->vm_start = 0;
1188 	region->vm_end   = vma->vm_end = 0;
1189 	region->vm_top   = 0;
1190 	return ret;
1191 
1192 enomem:
1193 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1194 	       len, current->pid, current->comm);
1195 	show_free_areas(0, NULL);
1196 	return -ENOMEM;
1197 }
1198 
1199 /*
1200  * handle mapping creation for uClinux
1201  */
1202 unsigned long do_mmap(struct file *file,
1203 			unsigned long addr,
1204 			unsigned long len,
1205 			unsigned long prot,
1206 			unsigned long flags,
1207 			vm_flags_t vm_flags,
1208 			unsigned long pgoff,
1209 			unsigned long *populate,
1210 			struct list_head *uf)
1211 {
1212 	struct vm_area_struct *vma;
1213 	struct vm_region *region;
1214 	struct rb_node *rb;
1215 	unsigned long capabilities, result;
1216 	int ret;
1217 
1218 	*populate = 0;
1219 
1220 	/* decide whether we should attempt the mapping, and if so what sort of
1221 	 * mapping */
1222 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1223 				    &capabilities);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	/* we ignore the address hint */
1228 	addr = 0;
1229 	len = PAGE_ALIGN(len);
1230 
1231 	/* we've determined that we can make the mapping, now translate what we
1232 	 * now know into VMA flags */
1233 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1234 
1235 	/* we're going to need to record the mapping */
1236 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1237 	if (!region)
1238 		goto error_getting_region;
1239 
1240 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1241 	if (!vma)
1242 		goto error_getting_vma;
1243 
1244 	region->vm_usage = 1;
1245 	region->vm_flags = vm_flags;
1246 	region->vm_pgoff = pgoff;
1247 
1248 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1249 	vma->vm_flags = vm_flags;
1250 	vma->vm_pgoff = pgoff;
1251 
1252 	if (file) {
1253 		region->vm_file = get_file(file);
1254 		vma->vm_file = get_file(file);
1255 	}
1256 
1257 	down_write(&nommu_region_sem);
1258 
1259 	/* if we want to share, we need to check for regions created by other
1260 	 * mmap() calls that overlap with our proposed mapping
1261 	 * - we can only share with a superset match on most regular files
1262 	 * - shared mappings on character devices and memory backed files are
1263 	 *   permitted to overlap inexactly as far as we are concerned for in
1264 	 *   these cases, sharing is handled in the driver or filesystem rather
1265 	 *   than here
1266 	 */
1267 	if (vm_flags & VM_MAYSHARE) {
1268 		struct vm_region *pregion;
1269 		unsigned long pglen, rpglen, pgend, rpgend, start;
1270 
1271 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 		pgend = pgoff + pglen;
1273 
1274 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1275 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1276 
1277 			if (!(pregion->vm_flags & VM_MAYSHARE))
1278 				continue;
1279 
1280 			/* search for overlapping mappings on the same file */
1281 			if (file_inode(pregion->vm_file) !=
1282 			    file_inode(file))
1283 				continue;
1284 
1285 			if (pregion->vm_pgoff >= pgend)
1286 				continue;
1287 
1288 			rpglen = pregion->vm_end - pregion->vm_start;
1289 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 			rpgend = pregion->vm_pgoff + rpglen;
1291 			if (pgoff >= rpgend)
1292 				continue;
1293 
1294 			/* handle inexactly overlapping matches between
1295 			 * mappings */
1296 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1297 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1298 				/* new mapping is not a subset of the region */
1299 				if (!(capabilities & NOMMU_MAP_DIRECT))
1300 					goto sharing_violation;
1301 				continue;
1302 			}
1303 
1304 			/* we've found a region we can share */
1305 			pregion->vm_usage++;
1306 			vma->vm_region = pregion;
1307 			start = pregion->vm_start;
1308 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1309 			vma->vm_start = start;
1310 			vma->vm_end = start + len;
1311 
1312 			if (pregion->vm_flags & VM_MAPPED_COPY)
1313 				vma->vm_flags |= VM_MAPPED_COPY;
1314 			else {
1315 				ret = do_mmap_shared_file(vma);
1316 				if (ret < 0) {
1317 					vma->vm_region = NULL;
1318 					vma->vm_start = 0;
1319 					vma->vm_end = 0;
1320 					pregion->vm_usage--;
1321 					pregion = NULL;
1322 					goto error_just_free;
1323 				}
1324 			}
1325 			fput(region->vm_file);
1326 			kmem_cache_free(vm_region_jar, region);
1327 			region = pregion;
1328 			result = start;
1329 			goto share;
1330 		}
1331 
1332 		/* obtain the address at which to make a shared mapping
1333 		 * - this is the hook for quasi-memory character devices to
1334 		 *   tell us the location of a shared mapping
1335 		 */
1336 		if (capabilities & NOMMU_MAP_DIRECT) {
1337 			addr = file->f_op->get_unmapped_area(file, addr, len,
1338 							     pgoff, flags);
1339 			if (IS_ERR_VALUE(addr)) {
1340 				ret = addr;
1341 				if (ret != -ENOSYS)
1342 					goto error_just_free;
1343 
1344 				/* the driver refused to tell us where to site
1345 				 * the mapping so we'll have to attempt to copy
1346 				 * it */
1347 				ret = -ENODEV;
1348 				if (!(capabilities & NOMMU_MAP_COPY))
1349 					goto error_just_free;
1350 
1351 				capabilities &= ~NOMMU_MAP_DIRECT;
1352 			} else {
1353 				vma->vm_start = region->vm_start = addr;
1354 				vma->vm_end = region->vm_end = addr + len;
1355 			}
1356 		}
1357 	}
1358 
1359 	vma->vm_region = region;
1360 
1361 	/* set up the mapping
1362 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1363 	 */
1364 	if (file && vma->vm_flags & VM_SHARED)
1365 		ret = do_mmap_shared_file(vma);
1366 	else
1367 		ret = do_mmap_private(vma, region, len, capabilities);
1368 	if (ret < 0)
1369 		goto error_just_free;
1370 	add_nommu_region(region);
1371 
1372 	/* clear anonymous mappings that don't ask for uninitialized data */
1373 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1374 		memset((void *)region->vm_start, 0,
1375 		       region->vm_end - region->vm_start);
1376 
1377 	/* okay... we have a mapping; now we have to register it */
1378 	result = vma->vm_start;
1379 
1380 	current->mm->total_vm += len >> PAGE_SHIFT;
1381 
1382 share:
1383 	add_vma_to_mm(current->mm, vma);
1384 
1385 	/* we flush the region from the icache only when the first executable
1386 	 * mapping of it is made  */
1387 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1388 		flush_icache_range(region->vm_start, region->vm_end);
1389 		region->vm_icache_flushed = true;
1390 	}
1391 
1392 	up_write(&nommu_region_sem);
1393 
1394 	return result;
1395 
1396 error_just_free:
1397 	up_write(&nommu_region_sem);
1398 error:
1399 	if (region->vm_file)
1400 		fput(region->vm_file);
1401 	kmem_cache_free(vm_region_jar, region);
1402 	if (vma->vm_file)
1403 		fput(vma->vm_file);
1404 	kmem_cache_free(vm_area_cachep, vma);
1405 	return ret;
1406 
1407 sharing_violation:
1408 	up_write(&nommu_region_sem);
1409 	pr_warn("Attempt to share mismatched mappings\n");
1410 	ret = -EINVAL;
1411 	goto error;
1412 
1413 error_getting_vma:
1414 	kmem_cache_free(vm_region_jar, region);
1415 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1416 			len, current->pid);
1417 	show_free_areas(0, NULL);
1418 	return -ENOMEM;
1419 
1420 error_getting_region:
1421 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1422 			len, current->pid);
1423 	show_free_areas(0, NULL);
1424 	return -ENOMEM;
1425 }
1426 
1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1428 		unsigned long, prot, unsigned long, flags,
1429 		unsigned long, fd, unsigned long, pgoff)
1430 {
1431 	struct file *file = NULL;
1432 	unsigned long retval = -EBADF;
1433 
1434 	audit_mmap_fd(fd, flags);
1435 	if (!(flags & MAP_ANONYMOUS)) {
1436 		file = fget(fd);
1437 		if (!file)
1438 			goto out;
1439 	}
1440 
1441 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1442 
1443 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444 
1445 	if (file)
1446 		fput(file);
1447 out:
1448 	return retval;
1449 }
1450 
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct {
1453 	unsigned long addr;
1454 	unsigned long len;
1455 	unsigned long prot;
1456 	unsigned long flags;
1457 	unsigned long fd;
1458 	unsigned long offset;
1459 };
1460 
1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1462 {
1463 	struct mmap_arg_struct a;
1464 
1465 	if (copy_from_user(&a, arg, sizeof(a)))
1466 		return -EFAULT;
1467 	if (offset_in_page(a.offset))
1468 		return -EINVAL;
1469 
1470 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1471 			      a.offset >> PAGE_SHIFT);
1472 }
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1474 
1475 /*
1476  * split a vma into two pieces at address 'addr', a new vma is allocated either
1477  * for the first part or the tail.
1478  */
1479 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1480 	      unsigned long addr, int new_below)
1481 {
1482 	struct vm_area_struct *new;
1483 	struct vm_region *region;
1484 	unsigned long npages;
1485 
1486 	/* we're only permitted to split anonymous regions (these should have
1487 	 * only a single usage on the region) */
1488 	if (vma->vm_file)
1489 		return -ENOMEM;
1490 
1491 	if (mm->map_count >= sysctl_max_map_count)
1492 		return -ENOMEM;
1493 
1494 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1495 	if (!region)
1496 		return -ENOMEM;
1497 
1498 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1499 	if (!new) {
1500 		kmem_cache_free(vm_region_jar, region);
1501 		return -ENOMEM;
1502 	}
1503 
1504 	/* most fields are the same, copy all, and then fixup */
1505 	*new = *vma;
1506 	*region = *vma->vm_region;
1507 	new->vm_region = region;
1508 
1509 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1510 
1511 	if (new_below) {
1512 		region->vm_top = region->vm_end = new->vm_end = addr;
1513 	} else {
1514 		region->vm_start = new->vm_start = addr;
1515 		region->vm_pgoff = new->vm_pgoff += npages;
1516 	}
1517 
1518 	if (new->vm_ops && new->vm_ops->open)
1519 		new->vm_ops->open(new);
1520 
1521 	delete_vma_from_mm(vma);
1522 	down_write(&nommu_region_sem);
1523 	delete_nommu_region(vma->vm_region);
1524 	if (new_below) {
1525 		vma->vm_region->vm_start = vma->vm_start = addr;
1526 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1527 	} else {
1528 		vma->vm_region->vm_end = vma->vm_end = addr;
1529 		vma->vm_region->vm_top = addr;
1530 	}
1531 	add_nommu_region(vma->vm_region);
1532 	add_nommu_region(new->vm_region);
1533 	up_write(&nommu_region_sem);
1534 	add_vma_to_mm(mm, vma);
1535 	add_vma_to_mm(mm, new);
1536 	return 0;
1537 }
1538 
1539 /*
1540  * shrink a VMA by removing the specified chunk from either the beginning or
1541  * the end
1542  */
1543 static int shrink_vma(struct mm_struct *mm,
1544 		      struct vm_area_struct *vma,
1545 		      unsigned long from, unsigned long to)
1546 {
1547 	struct vm_region *region;
1548 
1549 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1550 	 * and list */
1551 	delete_vma_from_mm(vma);
1552 	if (from > vma->vm_start)
1553 		vma->vm_end = from;
1554 	else
1555 		vma->vm_start = to;
1556 	add_vma_to_mm(mm, vma);
1557 
1558 	/* cut the backing region down to size */
1559 	region = vma->vm_region;
1560 	BUG_ON(region->vm_usage != 1);
1561 
1562 	down_write(&nommu_region_sem);
1563 	delete_nommu_region(region);
1564 	if (from > region->vm_start) {
1565 		to = region->vm_top;
1566 		region->vm_top = region->vm_end = from;
1567 	} else {
1568 		region->vm_start = to;
1569 	}
1570 	add_nommu_region(region);
1571 	up_write(&nommu_region_sem);
1572 
1573 	free_page_series(from, to);
1574 	return 0;
1575 }
1576 
1577 /*
1578  * release a mapping
1579  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1580  *   VMA, though it need not cover the whole VMA
1581  */
1582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1583 {
1584 	struct vm_area_struct *vma;
1585 	unsigned long end;
1586 	int ret;
1587 
1588 	len = PAGE_ALIGN(len);
1589 	if (len == 0)
1590 		return -EINVAL;
1591 
1592 	end = start + len;
1593 
1594 	/* find the first potentially overlapping VMA */
1595 	vma = find_vma(mm, start);
1596 	if (!vma) {
1597 		static int limit;
1598 		if (limit < 5) {
1599 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1600 					current->pid, current->comm,
1601 					start, start + len - 1);
1602 			limit++;
1603 		}
1604 		return -EINVAL;
1605 	}
1606 
1607 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1608 	if (vma->vm_file) {
1609 		do {
1610 			if (start > vma->vm_start)
1611 				return -EINVAL;
1612 			if (end == vma->vm_end)
1613 				goto erase_whole_vma;
1614 			vma = vma->vm_next;
1615 		} while (vma);
1616 		return -EINVAL;
1617 	} else {
1618 		/* the chunk must be a subset of the VMA found */
1619 		if (start == vma->vm_start && end == vma->vm_end)
1620 			goto erase_whole_vma;
1621 		if (start < vma->vm_start || end > vma->vm_end)
1622 			return -EINVAL;
1623 		if (offset_in_page(start))
1624 			return -EINVAL;
1625 		if (end != vma->vm_end && offset_in_page(end))
1626 			return -EINVAL;
1627 		if (start != vma->vm_start && end != vma->vm_end) {
1628 			ret = split_vma(mm, vma, start, 1);
1629 			if (ret < 0)
1630 				return ret;
1631 		}
1632 		return shrink_vma(mm, vma, start, end);
1633 	}
1634 
1635 erase_whole_vma:
1636 	delete_vma_from_mm(vma);
1637 	delete_vma(mm, vma);
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(do_munmap);
1641 
1642 int vm_munmap(unsigned long addr, size_t len)
1643 {
1644 	struct mm_struct *mm = current->mm;
1645 	int ret;
1646 
1647 	down_write(&mm->mmap_sem);
1648 	ret = do_munmap(mm, addr, len, NULL);
1649 	up_write(&mm->mmap_sem);
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL(vm_munmap);
1653 
1654 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1655 {
1656 	return vm_munmap(addr, len);
1657 }
1658 
1659 /*
1660  * release all the mappings made in a process's VM space
1661  */
1662 void exit_mmap(struct mm_struct *mm)
1663 {
1664 	struct vm_area_struct *vma;
1665 
1666 	if (!mm)
1667 		return;
1668 
1669 	mm->total_vm = 0;
1670 
1671 	while ((vma = mm->mmap)) {
1672 		mm->mmap = vma->vm_next;
1673 		delete_vma_from_mm(vma);
1674 		delete_vma(mm, vma);
1675 		cond_resched();
1676 	}
1677 }
1678 
1679 int vm_brk(unsigned long addr, unsigned long len)
1680 {
1681 	return -ENOMEM;
1682 }
1683 
1684 /*
1685  * expand (or shrink) an existing mapping, potentially moving it at the same
1686  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1687  *
1688  * under NOMMU conditions, we only permit changing a mapping's size, and only
1689  * as long as it stays within the region allocated by do_mmap_private() and the
1690  * block is not shareable
1691  *
1692  * MREMAP_FIXED is not supported under NOMMU conditions
1693  */
1694 static unsigned long do_mremap(unsigned long addr,
1695 			unsigned long old_len, unsigned long new_len,
1696 			unsigned long flags, unsigned long new_addr)
1697 {
1698 	struct vm_area_struct *vma;
1699 
1700 	/* insanity checks first */
1701 	old_len = PAGE_ALIGN(old_len);
1702 	new_len = PAGE_ALIGN(new_len);
1703 	if (old_len == 0 || new_len == 0)
1704 		return (unsigned long) -EINVAL;
1705 
1706 	if (offset_in_page(addr))
1707 		return -EINVAL;
1708 
1709 	if (flags & MREMAP_FIXED && new_addr != addr)
1710 		return (unsigned long) -EINVAL;
1711 
1712 	vma = find_vma_exact(current->mm, addr, old_len);
1713 	if (!vma)
1714 		return (unsigned long) -EINVAL;
1715 
1716 	if (vma->vm_end != vma->vm_start + old_len)
1717 		return (unsigned long) -EFAULT;
1718 
1719 	if (vma->vm_flags & VM_MAYSHARE)
1720 		return (unsigned long) -EPERM;
1721 
1722 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1723 		return (unsigned long) -ENOMEM;
1724 
1725 	/* all checks complete - do it */
1726 	vma->vm_end = vma->vm_start + new_len;
1727 	return vma->vm_start;
1728 }
1729 
1730 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1731 		unsigned long, new_len, unsigned long, flags,
1732 		unsigned long, new_addr)
1733 {
1734 	unsigned long ret;
1735 
1736 	down_write(&current->mm->mmap_sem);
1737 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1738 	up_write(&current->mm->mmap_sem);
1739 	return ret;
1740 }
1741 
1742 struct page *follow_page_mask(struct vm_area_struct *vma,
1743 			      unsigned long address, unsigned int flags,
1744 			      unsigned int *page_mask)
1745 {
1746 	*page_mask = 0;
1747 	return NULL;
1748 }
1749 
1750 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1751 		unsigned long pfn, unsigned long size, pgprot_t prot)
1752 {
1753 	if (addr != (pfn << PAGE_SHIFT))
1754 		return -EINVAL;
1755 
1756 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(remap_pfn_range);
1760 
1761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1762 {
1763 	unsigned long pfn = start >> PAGE_SHIFT;
1764 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1765 
1766 	pfn += vma->vm_pgoff;
1767 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1768 }
1769 EXPORT_SYMBOL(vm_iomap_memory);
1770 
1771 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1772 			unsigned long pgoff)
1773 {
1774 	unsigned int size = vma->vm_end - vma->vm_start;
1775 
1776 	if (!(vma->vm_flags & VM_USERMAP))
1777 		return -EINVAL;
1778 
1779 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1780 	vma->vm_end = vma->vm_start + size;
1781 
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(remap_vmalloc_range);
1785 
1786 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1787 	unsigned long len, unsigned long pgoff, unsigned long flags)
1788 {
1789 	return -ENOMEM;
1790 }
1791 
1792 void unmap_mapping_range(struct address_space *mapping,
1793 			 loff_t const holebegin, loff_t const holelen,
1794 			 int even_cows)
1795 {
1796 }
1797 EXPORT_SYMBOL(unmap_mapping_range);
1798 
1799 int filemap_fault(struct vm_fault *vmf)
1800 {
1801 	BUG();
1802 	return 0;
1803 }
1804 EXPORT_SYMBOL(filemap_fault);
1805 
1806 void filemap_map_pages(struct vm_fault *vmf,
1807 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1808 {
1809 	BUG();
1810 }
1811 EXPORT_SYMBOL(filemap_map_pages);
1812 
1813 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1814 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1815 {
1816 	struct vm_area_struct *vma;
1817 	int write = gup_flags & FOLL_WRITE;
1818 
1819 	down_read(&mm->mmap_sem);
1820 
1821 	/* the access must start within one of the target process's mappings */
1822 	vma = find_vma(mm, addr);
1823 	if (vma) {
1824 		/* don't overrun this mapping */
1825 		if (addr + len >= vma->vm_end)
1826 			len = vma->vm_end - addr;
1827 
1828 		/* only read or write mappings where it is permitted */
1829 		if (write && vma->vm_flags & VM_MAYWRITE)
1830 			copy_to_user_page(vma, NULL, addr,
1831 					 (void *) addr, buf, len);
1832 		else if (!write && vma->vm_flags & VM_MAYREAD)
1833 			copy_from_user_page(vma, NULL, addr,
1834 					    buf, (void *) addr, len);
1835 		else
1836 			len = 0;
1837 	} else {
1838 		len = 0;
1839 	}
1840 
1841 	up_read(&mm->mmap_sem);
1842 
1843 	return len;
1844 }
1845 
1846 /**
1847  * @access_remote_vm - access another process' address space
1848  * @mm:		the mm_struct of the target address space
1849  * @addr:	start address to access
1850  * @buf:	source or destination buffer
1851  * @len:	number of bytes to transfer
1852  * @gup_flags:	flags modifying lookup behaviour
1853  *
1854  * The caller must hold a reference on @mm.
1855  */
1856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1857 		void *buf, int len, unsigned int gup_flags)
1858 {
1859 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1860 }
1861 
1862 /*
1863  * Access another process' address space.
1864  * - source/target buffer must be kernel space
1865  */
1866 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1867 		unsigned int gup_flags)
1868 {
1869 	struct mm_struct *mm;
1870 
1871 	if (addr + len < addr)
1872 		return 0;
1873 
1874 	mm = get_task_mm(tsk);
1875 	if (!mm)
1876 		return 0;
1877 
1878 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1879 
1880 	mmput(mm);
1881 	return len;
1882 }
1883 EXPORT_SYMBOL_GPL(access_process_vm);
1884 
1885 /**
1886  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1887  * @inode: The inode to check
1888  * @size: The current filesize of the inode
1889  * @newsize: The proposed filesize of the inode
1890  *
1891  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1892  * make sure that that any outstanding VMAs aren't broken and then shrink the
1893  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1894  * automatically grant mappings that are too large.
1895  */
1896 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1897 				size_t newsize)
1898 {
1899 	struct vm_area_struct *vma;
1900 	struct vm_region *region;
1901 	pgoff_t low, high;
1902 	size_t r_size, r_top;
1903 
1904 	low = newsize >> PAGE_SHIFT;
1905 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1906 
1907 	down_write(&nommu_region_sem);
1908 	i_mmap_lock_read(inode->i_mapping);
1909 
1910 	/* search for VMAs that fall within the dead zone */
1911 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1912 		/* found one - only interested if it's shared out of the page
1913 		 * cache */
1914 		if (vma->vm_flags & VM_SHARED) {
1915 			i_mmap_unlock_read(inode->i_mapping);
1916 			up_write(&nommu_region_sem);
1917 			return -ETXTBSY; /* not quite true, but near enough */
1918 		}
1919 	}
1920 
1921 	/* reduce any regions that overlap the dead zone - if in existence,
1922 	 * these will be pointed to by VMAs that don't overlap the dead zone
1923 	 *
1924 	 * we don't check for any regions that start beyond the EOF as there
1925 	 * shouldn't be any
1926 	 */
1927 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1928 		if (!(vma->vm_flags & VM_SHARED))
1929 			continue;
1930 
1931 		region = vma->vm_region;
1932 		r_size = region->vm_top - region->vm_start;
1933 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1934 
1935 		if (r_top > newsize) {
1936 			region->vm_top -= r_top - newsize;
1937 			if (region->vm_end > region->vm_top)
1938 				region->vm_end = region->vm_top;
1939 		}
1940 	}
1941 
1942 	i_mmap_unlock_read(inode->i_mapping);
1943 	up_write(&nommu_region_sem);
1944 	return 0;
1945 }
1946 
1947 /*
1948  * Initialise sysctl_user_reserve_kbytes.
1949  *
1950  * This is intended to prevent a user from starting a single memory hogging
1951  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1952  * mode.
1953  *
1954  * The default value is min(3% of free memory, 128MB)
1955  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1956  */
1957 static int __meminit init_user_reserve(void)
1958 {
1959 	unsigned long free_kbytes;
1960 
1961 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962 
1963 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1964 	return 0;
1965 }
1966 subsys_initcall(init_user_reserve);
1967 
1968 /*
1969  * Initialise sysctl_admin_reserve_kbytes.
1970  *
1971  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1972  * to log in and kill a memory hogging process.
1973  *
1974  * Systems with more than 256MB will reserve 8MB, enough to recover
1975  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1976  * only reserve 3% of free pages by default.
1977  */
1978 static int __meminit init_admin_reserve(void)
1979 {
1980 	unsigned long free_kbytes;
1981 
1982 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1983 
1984 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1985 	return 0;
1986 }
1987 subsys_initcall(init_admin_reserve);
1988