1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return PAGE_SIZE << compound_order(page); 112 } 113 114 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 115 unsigned long start, unsigned long nr_pages, 116 unsigned int foll_flags, struct page **pages, 117 struct vm_area_struct **vmas, int *nonblocking) 118 { 119 struct vm_area_struct *vma; 120 unsigned long vm_flags; 121 int i; 122 123 /* calculate required read or write permissions. 124 * If FOLL_FORCE is set, we only require the "MAY" flags. 125 */ 126 vm_flags = (foll_flags & FOLL_WRITE) ? 127 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 128 vm_flags &= (foll_flags & FOLL_FORCE) ? 129 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 130 131 for (i = 0; i < nr_pages; i++) { 132 vma = find_vma(mm, start); 133 if (!vma) 134 goto finish_or_fault; 135 136 /* protect what we can, including chardevs */ 137 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 138 !(vm_flags & vma->vm_flags)) 139 goto finish_or_fault; 140 141 if (pages) { 142 pages[i] = virt_to_page(start); 143 if (pages[i]) 144 get_page(pages[i]); 145 } 146 if (vmas) 147 vmas[i] = vma; 148 start = (start + PAGE_SIZE) & PAGE_MASK; 149 } 150 151 return i; 152 153 finish_or_fault: 154 return i ? : -EFAULT; 155 } 156 157 /* 158 * get a list of pages in an address range belonging to the specified process 159 * and indicate the VMA that covers each page 160 * - this is potentially dodgy as we may end incrementing the page count of a 161 * slab page or a secondary page from a compound page 162 * - don't permit access to VMAs that don't support it, such as I/O mappings 163 */ 164 long get_user_pages(unsigned long start, unsigned long nr_pages, 165 unsigned int gup_flags, struct page **pages, 166 struct vm_area_struct **vmas) 167 { 168 return __get_user_pages(current, current->mm, start, nr_pages, 169 gup_flags, pages, vmas, NULL); 170 } 171 EXPORT_SYMBOL(get_user_pages); 172 173 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 174 unsigned int gup_flags, struct page **pages, 175 int *locked) 176 { 177 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 178 } 179 EXPORT_SYMBOL(get_user_pages_locked); 180 181 static long __get_user_pages_unlocked(struct task_struct *tsk, 182 struct mm_struct *mm, unsigned long start, 183 unsigned long nr_pages, struct page **pages, 184 unsigned int gup_flags) 185 { 186 long ret; 187 down_read(&mm->mmap_sem); 188 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 189 NULL, NULL); 190 up_read(&mm->mmap_sem); 191 return ret; 192 } 193 194 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 195 struct page **pages, unsigned int gup_flags) 196 { 197 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 198 pages, gup_flags); 199 } 200 EXPORT_SYMBOL(get_user_pages_unlocked); 201 202 /** 203 * follow_pfn - look up PFN at a user virtual address 204 * @vma: memory mapping 205 * @address: user virtual address 206 * @pfn: location to store found PFN 207 * 208 * Only IO mappings and raw PFN mappings are allowed. 209 * 210 * Returns zero and the pfn at @pfn on success, -ve otherwise. 211 */ 212 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 213 unsigned long *pfn) 214 { 215 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 216 return -EINVAL; 217 218 *pfn = address >> PAGE_SHIFT; 219 return 0; 220 } 221 EXPORT_SYMBOL(follow_pfn); 222 223 LIST_HEAD(vmap_area_list); 224 225 void vfree(const void *addr) 226 { 227 kfree(addr); 228 } 229 EXPORT_SYMBOL(vfree); 230 231 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 232 { 233 /* 234 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 235 * returns only a logical address. 236 */ 237 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 238 } 239 EXPORT_SYMBOL(__vmalloc); 240 241 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 242 { 243 return __vmalloc(size, flags, PAGE_KERNEL); 244 } 245 246 void *vmalloc_user(unsigned long size) 247 { 248 void *ret; 249 250 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 251 if (ret) { 252 struct vm_area_struct *vma; 253 254 down_write(¤t->mm->mmap_sem); 255 vma = find_vma(current->mm, (unsigned long)ret); 256 if (vma) 257 vma->vm_flags |= VM_USERMAP; 258 up_write(¤t->mm->mmap_sem); 259 } 260 261 return ret; 262 } 263 EXPORT_SYMBOL(vmalloc_user); 264 265 struct page *vmalloc_to_page(const void *addr) 266 { 267 return virt_to_page(addr); 268 } 269 EXPORT_SYMBOL(vmalloc_to_page); 270 271 unsigned long vmalloc_to_pfn(const void *addr) 272 { 273 return page_to_pfn(virt_to_page(addr)); 274 } 275 EXPORT_SYMBOL(vmalloc_to_pfn); 276 277 long vread(char *buf, char *addr, unsigned long count) 278 { 279 /* Don't allow overflow */ 280 if ((unsigned long) buf + count < count) 281 count = -(unsigned long) buf; 282 283 memcpy(buf, addr, count); 284 return count; 285 } 286 287 long vwrite(char *buf, char *addr, unsigned long count) 288 { 289 /* Don't allow overflow */ 290 if ((unsigned long) addr + count < count) 291 count = -(unsigned long) addr; 292 293 memcpy(addr, buf, count); 294 return count; 295 } 296 297 /* 298 * vmalloc - allocate virtually contiguous memory 299 * 300 * @size: allocation size 301 * 302 * Allocate enough pages to cover @size from the page level 303 * allocator and map them into contiguous kernel virtual space. 304 * 305 * For tight control over page level allocator and protection flags 306 * use __vmalloc() instead. 307 */ 308 void *vmalloc(unsigned long size) 309 { 310 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 311 } 312 EXPORT_SYMBOL(vmalloc); 313 314 /* 315 * vzalloc - allocate virtually contiguous memory with zero fill 316 * 317 * @size: allocation size 318 * 319 * Allocate enough pages to cover @size from the page level 320 * allocator and map them into contiguous kernel virtual space. 321 * The memory allocated is set to zero. 322 * 323 * For tight control over page level allocator and protection flags 324 * use __vmalloc() instead. 325 */ 326 void *vzalloc(unsigned long size) 327 { 328 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 329 PAGE_KERNEL); 330 } 331 EXPORT_SYMBOL(vzalloc); 332 333 /** 334 * vmalloc_node - allocate memory on a specific node 335 * @size: allocation size 336 * @node: numa node 337 * 338 * Allocate enough pages to cover @size from the page level 339 * allocator and map them into contiguous kernel virtual space. 340 * 341 * For tight control over page level allocator and protection flags 342 * use __vmalloc() instead. 343 */ 344 void *vmalloc_node(unsigned long size, int node) 345 { 346 return vmalloc(size); 347 } 348 EXPORT_SYMBOL(vmalloc_node); 349 350 /** 351 * vzalloc_node - allocate memory on a specific node with zero fill 352 * @size: allocation size 353 * @node: numa node 354 * 355 * Allocate enough pages to cover @size from the page level 356 * allocator and map them into contiguous kernel virtual space. 357 * The memory allocated is set to zero. 358 * 359 * For tight control over page level allocator and protection flags 360 * use __vmalloc() instead. 361 */ 362 void *vzalloc_node(unsigned long size, int node) 363 { 364 return vzalloc(size); 365 } 366 EXPORT_SYMBOL(vzalloc_node); 367 368 /** 369 * vmalloc_exec - allocate virtually contiguous, executable memory 370 * @size: allocation size 371 * 372 * Kernel-internal function to allocate enough pages to cover @size 373 * the page level allocator and map them into contiguous and 374 * executable kernel virtual space. 375 * 376 * For tight control over page level allocator and protection flags 377 * use __vmalloc() instead. 378 */ 379 380 void *vmalloc_exec(unsigned long size) 381 { 382 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 383 } 384 385 /** 386 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 387 * @size: allocation size 388 * 389 * Allocate enough 32bit PA addressable pages to cover @size from the 390 * page level allocator and map them into contiguous kernel virtual space. 391 */ 392 void *vmalloc_32(unsigned long size) 393 { 394 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 395 } 396 EXPORT_SYMBOL(vmalloc_32); 397 398 /** 399 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 400 * @size: allocation size 401 * 402 * The resulting memory area is 32bit addressable and zeroed so it can be 403 * mapped to userspace without leaking data. 404 * 405 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 406 * remap_vmalloc_range() are permissible. 407 */ 408 void *vmalloc_32_user(unsigned long size) 409 { 410 /* 411 * We'll have to sort out the ZONE_DMA bits for 64-bit, 412 * but for now this can simply use vmalloc_user() directly. 413 */ 414 return vmalloc_user(size); 415 } 416 EXPORT_SYMBOL(vmalloc_32_user); 417 418 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 419 { 420 BUG(); 421 return NULL; 422 } 423 EXPORT_SYMBOL(vmap); 424 425 void vunmap(const void *addr) 426 { 427 BUG(); 428 } 429 EXPORT_SYMBOL(vunmap); 430 431 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 432 { 433 BUG(); 434 return NULL; 435 } 436 EXPORT_SYMBOL(vm_map_ram); 437 438 void vm_unmap_ram(const void *mem, unsigned int count) 439 { 440 BUG(); 441 } 442 EXPORT_SYMBOL(vm_unmap_ram); 443 444 void vm_unmap_aliases(void) 445 { 446 } 447 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 448 449 /* 450 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 451 * have one. 452 */ 453 void __weak vmalloc_sync_all(void) 454 { 455 } 456 457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 458 { 459 BUG(); 460 return NULL; 461 } 462 EXPORT_SYMBOL_GPL(alloc_vm_area); 463 464 void free_vm_area(struct vm_struct *area) 465 { 466 BUG(); 467 } 468 EXPORT_SYMBOL_GPL(free_vm_area); 469 470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 471 struct page *page) 472 { 473 return -EINVAL; 474 } 475 EXPORT_SYMBOL(vm_insert_page); 476 477 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 478 unsigned long num) 479 { 480 return -EINVAL; 481 } 482 EXPORT_SYMBOL(vm_map_pages); 483 484 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 485 unsigned long num) 486 { 487 return -EINVAL; 488 } 489 EXPORT_SYMBOL(vm_map_pages_zero); 490 491 /* 492 * sys_brk() for the most part doesn't need the global kernel 493 * lock, except when an application is doing something nasty 494 * like trying to un-brk an area that has already been mapped 495 * to a regular file. in this case, the unmapping will need 496 * to invoke file system routines that need the global lock. 497 */ 498 SYSCALL_DEFINE1(brk, unsigned long, brk) 499 { 500 struct mm_struct *mm = current->mm; 501 502 if (brk < mm->start_brk || brk > mm->context.end_brk) 503 return mm->brk; 504 505 if (mm->brk == brk) 506 return mm->brk; 507 508 /* 509 * Always allow shrinking brk 510 */ 511 if (brk <= mm->brk) { 512 mm->brk = brk; 513 return brk; 514 } 515 516 /* 517 * Ok, looks good - let it rip. 518 */ 519 flush_icache_range(mm->brk, brk); 520 return mm->brk = brk; 521 } 522 523 /* 524 * initialise the percpu counter for VM and region record slabs 525 */ 526 void __init mmap_init(void) 527 { 528 int ret; 529 530 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 531 VM_BUG_ON(ret); 532 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 533 } 534 535 /* 536 * validate the region tree 537 * - the caller must hold the region lock 538 */ 539 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 540 static noinline void validate_nommu_regions(void) 541 { 542 struct vm_region *region, *last; 543 struct rb_node *p, *lastp; 544 545 lastp = rb_first(&nommu_region_tree); 546 if (!lastp) 547 return; 548 549 last = rb_entry(lastp, struct vm_region, vm_rb); 550 BUG_ON(last->vm_end <= last->vm_start); 551 BUG_ON(last->vm_top < last->vm_end); 552 553 while ((p = rb_next(lastp))) { 554 region = rb_entry(p, struct vm_region, vm_rb); 555 last = rb_entry(lastp, struct vm_region, vm_rb); 556 557 BUG_ON(region->vm_end <= region->vm_start); 558 BUG_ON(region->vm_top < region->vm_end); 559 BUG_ON(region->vm_start < last->vm_top); 560 561 lastp = p; 562 } 563 } 564 #else 565 static void validate_nommu_regions(void) 566 { 567 } 568 #endif 569 570 /* 571 * add a region into the global tree 572 */ 573 static void add_nommu_region(struct vm_region *region) 574 { 575 struct vm_region *pregion; 576 struct rb_node **p, *parent; 577 578 validate_nommu_regions(); 579 580 parent = NULL; 581 p = &nommu_region_tree.rb_node; 582 while (*p) { 583 parent = *p; 584 pregion = rb_entry(parent, struct vm_region, vm_rb); 585 if (region->vm_start < pregion->vm_start) 586 p = &(*p)->rb_left; 587 else if (region->vm_start > pregion->vm_start) 588 p = &(*p)->rb_right; 589 else if (pregion == region) 590 return; 591 else 592 BUG(); 593 } 594 595 rb_link_node(®ion->vm_rb, parent, p); 596 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 597 598 validate_nommu_regions(); 599 } 600 601 /* 602 * delete a region from the global tree 603 */ 604 static void delete_nommu_region(struct vm_region *region) 605 { 606 BUG_ON(!nommu_region_tree.rb_node); 607 608 validate_nommu_regions(); 609 rb_erase(®ion->vm_rb, &nommu_region_tree); 610 validate_nommu_regions(); 611 } 612 613 /* 614 * free a contiguous series of pages 615 */ 616 static void free_page_series(unsigned long from, unsigned long to) 617 { 618 for (; from < to; from += PAGE_SIZE) { 619 struct page *page = virt_to_page(from); 620 621 atomic_long_dec(&mmap_pages_allocated); 622 put_page(page); 623 } 624 } 625 626 /* 627 * release a reference to a region 628 * - the caller must hold the region semaphore for writing, which this releases 629 * - the region may not have been added to the tree yet, in which case vm_top 630 * will equal vm_start 631 */ 632 static void __put_nommu_region(struct vm_region *region) 633 __releases(nommu_region_sem) 634 { 635 BUG_ON(!nommu_region_tree.rb_node); 636 637 if (--region->vm_usage == 0) { 638 if (region->vm_top > region->vm_start) 639 delete_nommu_region(region); 640 up_write(&nommu_region_sem); 641 642 if (region->vm_file) 643 fput(region->vm_file); 644 645 /* IO memory and memory shared directly out of the pagecache 646 * from ramfs/tmpfs mustn't be released here */ 647 if (region->vm_flags & VM_MAPPED_COPY) 648 free_page_series(region->vm_start, region->vm_top); 649 kmem_cache_free(vm_region_jar, region); 650 } else { 651 up_write(&nommu_region_sem); 652 } 653 } 654 655 /* 656 * release a reference to a region 657 */ 658 static void put_nommu_region(struct vm_region *region) 659 { 660 down_write(&nommu_region_sem); 661 __put_nommu_region(region); 662 } 663 664 /* 665 * add a VMA into a process's mm_struct in the appropriate place in the list 666 * and tree and add to the address space's page tree also if not an anonymous 667 * page 668 * - should be called with mm->mmap_sem held writelocked 669 */ 670 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 671 { 672 struct vm_area_struct *pvma, *prev; 673 struct address_space *mapping; 674 struct rb_node **p, *parent, *rb_prev; 675 676 BUG_ON(!vma->vm_region); 677 678 mm->map_count++; 679 vma->vm_mm = mm; 680 681 /* add the VMA to the mapping */ 682 if (vma->vm_file) { 683 mapping = vma->vm_file->f_mapping; 684 685 i_mmap_lock_write(mapping); 686 flush_dcache_mmap_lock(mapping); 687 vma_interval_tree_insert(vma, &mapping->i_mmap); 688 flush_dcache_mmap_unlock(mapping); 689 i_mmap_unlock_write(mapping); 690 } 691 692 /* add the VMA to the tree */ 693 parent = rb_prev = NULL; 694 p = &mm->mm_rb.rb_node; 695 while (*p) { 696 parent = *p; 697 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 698 699 /* sort by: start addr, end addr, VMA struct addr in that order 700 * (the latter is necessary as we may get identical VMAs) */ 701 if (vma->vm_start < pvma->vm_start) 702 p = &(*p)->rb_left; 703 else if (vma->vm_start > pvma->vm_start) { 704 rb_prev = parent; 705 p = &(*p)->rb_right; 706 } else if (vma->vm_end < pvma->vm_end) 707 p = &(*p)->rb_left; 708 else if (vma->vm_end > pvma->vm_end) { 709 rb_prev = parent; 710 p = &(*p)->rb_right; 711 } else if (vma < pvma) 712 p = &(*p)->rb_left; 713 else if (vma > pvma) { 714 rb_prev = parent; 715 p = &(*p)->rb_right; 716 } else 717 BUG(); 718 } 719 720 rb_link_node(&vma->vm_rb, parent, p); 721 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 722 723 /* add VMA to the VMA list also */ 724 prev = NULL; 725 if (rb_prev) 726 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 727 728 __vma_link_list(mm, vma, prev, parent); 729 } 730 731 /* 732 * delete a VMA from its owning mm_struct and address space 733 */ 734 static void delete_vma_from_mm(struct vm_area_struct *vma) 735 { 736 int i; 737 struct address_space *mapping; 738 struct mm_struct *mm = vma->vm_mm; 739 struct task_struct *curr = current; 740 741 mm->map_count--; 742 for (i = 0; i < VMACACHE_SIZE; i++) { 743 /* if the vma is cached, invalidate the entire cache */ 744 if (curr->vmacache.vmas[i] == vma) { 745 vmacache_invalidate(mm); 746 break; 747 } 748 } 749 750 /* remove the VMA from the mapping */ 751 if (vma->vm_file) { 752 mapping = vma->vm_file->f_mapping; 753 754 i_mmap_lock_write(mapping); 755 flush_dcache_mmap_lock(mapping); 756 vma_interval_tree_remove(vma, &mapping->i_mmap); 757 flush_dcache_mmap_unlock(mapping); 758 i_mmap_unlock_write(mapping); 759 } 760 761 /* remove from the MM's tree and list */ 762 rb_erase(&vma->vm_rb, &mm->mm_rb); 763 764 if (vma->vm_prev) 765 vma->vm_prev->vm_next = vma->vm_next; 766 else 767 mm->mmap = vma->vm_next; 768 769 if (vma->vm_next) 770 vma->vm_next->vm_prev = vma->vm_prev; 771 } 772 773 /* 774 * destroy a VMA record 775 */ 776 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 777 { 778 if (vma->vm_ops && vma->vm_ops->close) 779 vma->vm_ops->close(vma); 780 if (vma->vm_file) 781 fput(vma->vm_file); 782 put_nommu_region(vma->vm_region); 783 vm_area_free(vma); 784 } 785 786 /* 787 * look up the first VMA in which addr resides, NULL if none 788 * - should be called with mm->mmap_sem at least held readlocked 789 */ 790 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 791 { 792 struct vm_area_struct *vma; 793 794 /* check the cache first */ 795 vma = vmacache_find(mm, addr); 796 if (likely(vma)) 797 return vma; 798 799 /* trawl the list (there may be multiple mappings in which addr 800 * resides) */ 801 for (vma = mm->mmap; vma; vma = vma->vm_next) { 802 if (vma->vm_start > addr) 803 return NULL; 804 if (vma->vm_end > addr) { 805 vmacache_update(addr, vma); 806 return vma; 807 } 808 } 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(find_vma); 813 814 /* 815 * find a VMA 816 * - we don't extend stack VMAs under NOMMU conditions 817 */ 818 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 819 { 820 return find_vma(mm, addr); 821 } 822 823 /* 824 * expand a stack to a given address 825 * - not supported under NOMMU conditions 826 */ 827 int expand_stack(struct vm_area_struct *vma, unsigned long address) 828 { 829 return -ENOMEM; 830 } 831 832 /* 833 * look up the first VMA exactly that exactly matches addr 834 * - should be called with mm->mmap_sem at least held readlocked 835 */ 836 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 837 unsigned long addr, 838 unsigned long len) 839 { 840 struct vm_area_struct *vma; 841 unsigned long end = addr + len; 842 843 /* check the cache first */ 844 vma = vmacache_find_exact(mm, addr, end); 845 if (vma) 846 return vma; 847 848 /* trawl the list (there may be multiple mappings in which addr 849 * resides) */ 850 for (vma = mm->mmap; vma; vma = vma->vm_next) { 851 if (vma->vm_start < addr) 852 continue; 853 if (vma->vm_start > addr) 854 return NULL; 855 if (vma->vm_end == end) { 856 vmacache_update(addr, vma); 857 return vma; 858 } 859 } 860 861 return NULL; 862 } 863 864 /* 865 * determine whether a mapping should be permitted and, if so, what sort of 866 * mapping we're capable of supporting 867 */ 868 static int validate_mmap_request(struct file *file, 869 unsigned long addr, 870 unsigned long len, 871 unsigned long prot, 872 unsigned long flags, 873 unsigned long pgoff, 874 unsigned long *_capabilities) 875 { 876 unsigned long capabilities, rlen; 877 int ret; 878 879 /* do the simple checks first */ 880 if (flags & MAP_FIXED) 881 return -EINVAL; 882 883 if ((flags & MAP_TYPE) != MAP_PRIVATE && 884 (flags & MAP_TYPE) != MAP_SHARED) 885 return -EINVAL; 886 887 if (!len) 888 return -EINVAL; 889 890 /* Careful about overflows.. */ 891 rlen = PAGE_ALIGN(len); 892 if (!rlen || rlen > TASK_SIZE) 893 return -ENOMEM; 894 895 /* offset overflow? */ 896 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 897 return -EOVERFLOW; 898 899 if (file) { 900 /* files must support mmap */ 901 if (!file->f_op->mmap) 902 return -ENODEV; 903 904 /* work out if what we've got could possibly be shared 905 * - we support chardevs that provide their own "memory" 906 * - we support files/blockdevs that are memory backed 907 */ 908 if (file->f_op->mmap_capabilities) { 909 capabilities = file->f_op->mmap_capabilities(file); 910 } else { 911 /* no explicit capabilities set, so assume some 912 * defaults */ 913 switch (file_inode(file)->i_mode & S_IFMT) { 914 case S_IFREG: 915 case S_IFBLK: 916 capabilities = NOMMU_MAP_COPY; 917 break; 918 919 case S_IFCHR: 920 capabilities = 921 NOMMU_MAP_DIRECT | 922 NOMMU_MAP_READ | 923 NOMMU_MAP_WRITE; 924 break; 925 926 default: 927 return -EINVAL; 928 } 929 } 930 931 /* eliminate any capabilities that we can't support on this 932 * device */ 933 if (!file->f_op->get_unmapped_area) 934 capabilities &= ~NOMMU_MAP_DIRECT; 935 if (!(file->f_mode & FMODE_CAN_READ)) 936 capabilities &= ~NOMMU_MAP_COPY; 937 938 /* The file shall have been opened with read permission. */ 939 if (!(file->f_mode & FMODE_READ)) 940 return -EACCES; 941 942 if (flags & MAP_SHARED) { 943 /* do checks for writing, appending and locking */ 944 if ((prot & PROT_WRITE) && 945 !(file->f_mode & FMODE_WRITE)) 946 return -EACCES; 947 948 if (IS_APPEND(file_inode(file)) && 949 (file->f_mode & FMODE_WRITE)) 950 return -EACCES; 951 952 if (locks_verify_locked(file)) 953 return -EAGAIN; 954 955 if (!(capabilities & NOMMU_MAP_DIRECT)) 956 return -ENODEV; 957 958 /* we mustn't privatise shared mappings */ 959 capabilities &= ~NOMMU_MAP_COPY; 960 } else { 961 /* we're going to read the file into private memory we 962 * allocate */ 963 if (!(capabilities & NOMMU_MAP_COPY)) 964 return -ENODEV; 965 966 /* we don't permit a private writable mapping to be 967 * shared with the backing device */ 968 if (prot & PROT_WRITE) 969 capabilities &= ~NOMMU_MAP_DIRECT; 970 } 971 972 if (capabilities & NOMMU_MAP_DIRECT) { 973 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 974 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 975 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 976 ) { 977 capabilities &= ~NOMMU_MAP_DIRECT; 978 if (flags & MAP_SHARED) { 979 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 980 return -EINVAL; 981 } 982 } 983 } 984 985 /* handle executable mappings and implied executable 986 * mappings */ 987 if (path_noexec(&file->f_path)) { 988 if (prot & PROT_EXEC) 989 return -EPERM; 990 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 991 /* handle implication of PROT_EXEC by PROT_READ */ 992 if (current->personality & READ_IMPLIES_EXEC) { 993 if (capabilities & NOMMU_MAP_EXEC) 994 prot |= PROT_EXEC; 995 } 996 } else if ((prot & PROT_READ) && 997 (prot & PROT_EXEC) && 998 !(capabilities & NOMMU_MAP_EXEC) 999 ) { 1000 /* backing file is not executable, try to copy */ 1001 capabilities &= ~NOMMU_MAP_DIRECT; 1002 } 1003 } else { 1004 /* anonymous mappings are always memory backed and can be 1005 * privately mapped 1006 */ 1007 capabilities = NOMMU_MAP_COPY; 1008 1009 /* handle PROT_EXEC implication by PROT_READ */ 1010 if ((prot & PROT_READ) && 1011 (current->personality & READ_IMPLIES_EXEC)) 1012 prot |= PROT_EXEC; 1013 } 1014 1015 /* allow the security API to have its say */ 1016 ret = security_mmap_addr(addr); 1017 if (ret < 0) 1018 return ret; 1019 1020 /* looks okay */ 1021 *_capabilities = capabilities; 1022 return 0; 1023 } 1024 1025 /* 1026 * we've determined that we can make the mapping, now translate what we 1027 * now know into VMA flags 1028 */ 1029 static unsigned long determine_vm_flags(struct file *file, 1030 unsigned long prot, 1031 unsigned long flags, 1032 unsigned long capabilities) 1033 { 1034 unsigned long vm_flags; 1035 1036 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1037 /* vm_flags |= mm->def_flags; */ 1038 1039 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1040 /* attempt to share read-only copies of mapped file chunks */ 1041 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1042 if (file && !(prot & PROT_WRITE)) 1043 vm_flags |= VM_MAYSHARE; 1044 } else { 1045 /* overlay a shareable mapping on the backing device or inode 1046 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1047 * romfs/cramfs */ 1048 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1049 if (flags & MAP_SHARED) 1050 vm_flags |= VM_SHARED; 1051 } 1052 1053 /* refuse to let anyone share private mappings with this process if 1054 * it's being traced - otherwise breakpoints set in it may interfere 1055 * with another untraced process 1056 */ 1057 if ((flags & MAP_PRIVATE) && current->ptrace) 1058 vm_flags &= ~VM_MAYSHARE; 1059 1060 return vm_flags; 1061 } 1062 1063 /* 1064 * set up a shared mapping on a file (the driver or filesystem provides and 1065 * pins the storage) 1066 */ 1067 static int do_mmap_shared_file(struct vm_area_struct *vma) 1068 { 1069 int ret; 1070 1071 ret = call_mmap(vma->vm_file, vma); 1072 if (ret == 0) { 1073 vma->vm_region->vm_top = vma->vm_region->vm_end; 1074 return 0; 1075 } 1076 if (ret != -ENOSYS) 1077 return ret; 1078 1079 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1080 * opposed to tried but failed) so we can only give a suitable error as 1081 * it's not possible to make a private copy if MAP_SHARED was given */ 1082 return -ENODEV; 1083 } 1084 1085 /* 1086 * set up a private mapping or an anonymous shared mapping 1087 */ 1088 static int do_mmap_private(struct vm_area_struct *vma, 1089 struct vm_region *region, 1090 unsigned long len, 1091 unsigned long capabilities) 1092 { 1093 unsigned long total, point; 1094 void *base; 1095 int ret, order; 1096 1097 /* invoke the file's mapping function so that it can keep track of 1098 * shared mappings on devices or memory 1099 * - VM_MAYSHARE will be set if it may attempt to share 1100 */ 1101 if (capabilities & NOMMU_MAP_DIRECT) { 1102 ret = call_mmap(vma->vm_file, vma); 1103 if (ret == 0) { 1104 /* shouldn't return success if we're not sharing */ 1105 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1106 vma->vm_region->vm_top = vma->vm_region->vm_end; 1107 return 0; 1108 } 1109 if (ret != -ENOSYS) 1110 return ret; 1111 1112 /* getting an ENOSYS error indicates that direct mmap isn't 1113 * possible (as opposed to tried but failed) so we'll try to 1114 * make a private copy of the data and map that instead */ 1115 } 1116 1117 1118 /* allocate some memory to hold the mapping 1119 * - note that this may not return a page-aligned address if the object 1120 * we're allocating is smaller than a page 1121 */ 1122 order = get_order(len); 1123 total = 1 << order; 1124 point = len >> PAGE_SHIFT; 1125 1126 /* we don't want to allocate a power-of-2 sized page set */ 1127 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1128 total = point; 1129 1130 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1131 if (!base) 1132 goto enomem; 1133 1134 atomic_long_add(total, &mmap_pages_allocated); 1135 1136 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1137 region->vm_start = (unsigned long) base; 1138 region->vm_end = region->vm_start + len; 1139 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1140 1141 vma->vm_start = region->vm_start; 1142 vma->vm_end = region->vm_start + len; 1143 1144 if (vma->vm_file) { 1145 /* read the contents of a file into the copy */ 1146 loff_t fpos; 1147 1148 fpos = vma->vm_pgoff; 1149 fpos <<= PAGE_SHIFT; 1150 1151 ret = kernel_read(vma->vm_file, base, len, &fpos); 1152 if (ret < 0) 1153 goto error_free; 1154 1155 /* clear the last little bit */ 1156 if (ret < len) 1157 memset(base + ret, 0, len - ret); 1158 1159 } else { 1160 vma_set_anonymous(vma); 1161 } 1162 1163 return 0; 1164 1165 error_free: 1166 free_page_series(region->vm_start, region->vm_top); 1167 region->vm_start = vma->vm_start = 0; 1168 region->vm_end = vma->vm_end = 0; 1169 region->vm_top = 0; 1170 return ret; 1171 1172 enomem: 1173 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1174 len, current->pid, current->comm); 1175 show_free_areas(0, NULL); 1176 return -ENOMEM; 1177 } 1178 1179 /* 1180 * handle mapping creation for uClinux 1181 */ 1182 unsigned long do_mmap(struct file *file, 1183 unsigned long addr, 1184 unsigned long len, 1185 unsigned long prot, 1186 unsigned long flags, 1187 vm_flags_t vm_flags, 1188 unsigned long pgoff, 1189 unsigned long *populate, 1190 struct list_head *uf) 1191 { 1192 struct vm_area_struct *vma; 1193 struct vm_region *region; 1194 struct rb_node *rb; 1195 unsigned long capabilities, result; 1196 int ret; 1197 1198 *populate = 0; 1199 1200 /* decide whether we should attempt the mapping, and if so what sort of 1201 * mapping */ 1202 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1203 &capabilities); 1204 if (ret < 0) 1205 return ret; 1206 1207 /* we ignore the address hint */ 1208 addr = 0; 1209 len = PAGE_ALIGN(len); 1210 1211 /* we've determined that we can make the mapping, now translate what we 1212 * now know into VMA flags */ 1213 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1214 1215 /* we're going to need to record the mapping */ 1216 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1217 if (!region) 1218 goto error_getting_region; 1219 1220 vma = vm_area_alloc(current->mm); 1221 if (!vma) 1222 goto error_getting_vma; 1223 1224 region->vm_usage = 1; 1225 region->vm_flags = vm_flags; 1226 region->vm_pgoff = pgoff; 1227 1228 vma->vm_flags = vm_flags; 1229 vma->vm_pgoff = pgoff; 1230 1231 if (file) { 1232 region->vm_file = get_file(file); 1233 vma->vm_file = get_file(file); 1234 } 1235 1236 down_write(&nommu_region_sem); 1237 1238 /* if we want to share, we need to check for regions created by other 1239 * mmap() calls that overlap with our proposed mapping 1240 * - we can only share with a superset match on most regular files 1241 * - shared mappings on character devices and memory backed files are 1242 * permitted to overlap inexactly as far as we are concerned for in 1243 * these cases, sharing is handled in the driver or filesystem rather 1244 * than here 1245 */ 1246 if (vm_flags & VM_MAYSHARE) { 1247 struct vm_region *pregion; 1248 unsigned long pglen, rpglen, pgend, rpgend, start; 1249 1250 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1251 pgend = pgoff + pglen; 1252 1253 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1254 pregion = rb_entry(rb, struct vm_region, vm_rb); 1255 1256 if (!(pregion->vm_flags & VM_MAYSHARE)) 1257 continue; 1258 1259 /* search for overlapping mappings on the same file */ 1260 if (file_inode(pregion->vm_file) != 1261 file_inode(file)) 1262 continue; 1263 1264 if (pregion->vm_pgoff >= pgend) 1265 continue; 1266 1267 rpglen = pregion->vm_end - pregion->vm_start; 1268 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1269 rpgend = pregion->vm_pgoff + rpglen; 1270 if (pgoff >= rpgend) 1271 continue; 1272 1273 /* handle inexactly overlapping matches between 1274 * mappings */ 1275 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1276 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1277 /* new mapping is not a subset of the region */ 1278 if (!(capabilities & NOMMU_MAP_DIRECT)) 1279 goto sharing_violation; 1280 continue; 1281 } 1282 1283 /* we've found a region we can share */ 1284 pregion->vm_usage++; 1285 vma->vm_region = pregion; 1286 start = pregion->vm_start; 1287 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1288 vma->vm_start = start; 1289 vma->vm_end = start + len; 1290 1291 if (pregion->vm_flags & VM_MAPPED_COPY) 1292 vma->vm_flags |= VM_MAPPED_COPY; 1293 else { 1294 ret = do_mmap_shared_file(vma); 1295 if (ret < 0) { 1296 vma->vm_region = NULL; 1297 vma->vm_start = 0; 1298 vma->vm_end = 0; 1299 pregion->vm_usage--; 1300 pregion = NULL; 1301 goto error_just_free; 1302 } 1303 } 1304 fput(region->vm_file); 1305 kmem_cache_free(vm_region_jar, region); 1306 region = pregion; 1307 result = start; 1308 goto share; 1309 } 1310 1311 /* obtain the address at which to make a shared mapping 1312 * - this is the hook for quasi-memory character devices to 1313 * tell us the location of a shared mapping 1314 */ 1315 if (capabilities & NOMMU_MAP_DIRECT) { 1316 addr = file->f_op->get_unmapped_area(file, addr, len, 1317 pgoff, flags); 1318 if (IS_ERR_VALUE(addr)) { 1319 ret = addr; 1320 if (ret != -ENOSYS) 1321 goto error_just_free; 1322 1323 /* the driver refused to tell us where to site 1324 * the mapping so we'll have to attempt to copy 1325 * it */ 1326 ret = -ENODEV; 1327 if (!(capabilities & NOMMU_MAP_COPY)) 1328 goto error_just_free; 1329 1330 capabilities &= ~NOMMU_MAP_DIRECT; 1331 } else { 1332 vma->vm_start = region->vm_start = addr; 1333 vma->vm_end = region->vm_end = addr + len; 1334 } 1335 } 1336 } 1337 1338 vma->vm_region = region; 1339 1340 /* set up the mapping 1341 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1342 */ 1343 if (file && vma->vm_flags & VM_SHARED) 1344 ret = do_mmap_shared_file(vma); 1345 else 1346 ret = do_mmap_private(vma, region, len, capabilities); 1347 if (ret < 0) 1348 goto error_just_free; 1349 add_nommu_region(region); 1350 1351 /* clear anonymous mappings that don't ask for uninitialized data */ 1352 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1353 memset((void *)region->vm_start, 0, 1354 region->vm_end - region->vm_start); 1355 1356 /* okay... we have a mapping; now we have to register it */ 1357 result = vma->vm_start; 1358 1359 current->mm->total_vm += len >> PAGE_SHIFT; 1360 1361 share: 1362 add_vma_to_mm(current->mm, vma); 1363 1364 /* we flush the region from the icache only when the first executable 1365 * mapping of it is made */ 1366 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1367 flush_icache_range(region->vm_start, region->vm_end); 1368 region->vm_icache_flushed = true; 1369 } 1370 1371 up_write(&nommu_region_sem); 1372 1373 return result; 1374 1375 error_just_free: 1376 up_write(&nommu_region_sem); 1377 error: 1378 if (region->vm_file) 1379 fput(region->vm_file); 1380 kmem_cache_free(vm_region_jar, region); 1381 if (vma->vm_file) 1382 fput(vma->vm_file); 1383 vm_area_free(vma); 1384 return ret; 1385 1386 sharing_violation: 1387 up_write(&nommu_region_sem); 1388 pr_warn("Attempt to share mismatched mappings\n"); 1389 ret = -EINVAL; 1390 goto error; 1391 1392 error_getting_vma: 1393 kmem_cache_free(vm_region_jar, region); 1394 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1395 len, current->pid); 1396 show_free_areas(0, NULL); 1397 return -ENOMEM; 1398 1399 error_getting_region: 1400 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1401 len, current->pid); 1402 show_free_areas(0, NULL); 1403 return -ENOMEM; 1404 } 1405 1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1407 unsigned long prot, unsigned long flags, 1408 unsigned long fd, unsigned long pgoff) 1409 { 1410 struct file *file = NULL; 1411 unsigned long retval = -EBADF; 1412 1413 audit_mmap_fd(fd, flags); 1414 if (!(flags & MAP_ANONYMOUS)) { 1415 file = fget(fd); 1416 if (!file) 1417 goto out; 1418 } 1419 1420 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1421 1422 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1423 1424 if (file) 1425 fput(file); 1426 out: 1427 return retval; 1428 } 1429 1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1431 unsigned long, prot, unsigned long, flags, 1432 unsigned long, fd, unsigned long, pgoff) 1433 { 1434 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1435 } 1436 1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1438 struct mmap_arg_struct { 1439 unsigned long addr; 1440 unsigned long len; 1441 unsigned long prot; 1442 unsigned long flags; 1443 unsigned long fd; 1444 unsigned long offset; 1445 }; 1446 1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1448 { 1449 struct mmap_arg_struct a; 1450 1451 if (copy_from_user(&a, arg, sizeof(a))) 1452 return -EFAULT; 1453 if (offset_in_page(a.offset)) 1454 return -EINVAL; 1455 1456 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1457 a.offset >> PAGE_SHIFT); 1458 } 1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1460 1461 /* 1462 * split a vma into two pieces at address 'addr', a new vma is allocated either 1463 * for the first part or the tail. 1464 */ 1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1466 unsigned long addr, int new_below) 1467 { 1468 struct vm_area_struct *new; 1469 struct vm_region *region; 1470 unsigned long npages; 1471 1472 /* we're only permitted to split anonymous regions (these should have 1473 * only a single usage on the region) */ 1474 if (vma->vm_file) 1475 return -ENOMEM; 1476 1477 if (mm->map_count >= sysctl_max_map_count) 1478 return -ENOMEM; 1479 1480 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1481 if (!region) 1482 return -ENOMEM; 1483 1484 new = vm_area_dup(vma); 1485 if (!new) { 1486 kmem_cache_free(vm_region_jar, region); 1487 return -ENOMEM; 1488 } 1489 1490 /* most fields are the same, copy all, and then fixup */ 1491 *region = *vma->vm_region; 1492 new->vm_region = region; 1493 1494 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1495 1496 if (new_below) { 1497 region->vm_top = region->vm_end = new->vm_end = addr; 1498 } else { 1499 region->vm_start = new->vm_start = addr; 1500 region->vm_pgoff = new->vm_pgoff += npages; 1501 } 1502 1503 if (new->vm_ops && new->vm_ops->open) 1504 new->vm_ops->open(new); 1505 1506 delete_vma_from_mm(vma); 1507 down_write(&nommu_region_sem); 1508 delete_nommu_region(vma->vm_region); 1509 if (new_below) { 1510 vma->vm_region->vm_start = vma->vm_start = addr; 1511 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1512 } else { 1513 vma->vm_region->vm_end = vma->vm_end = addr; 1514 vma->vm_region->vm_top = addr; 1515 } 1516 add_nommu_region(vma->vm_region); 1517 add_nommu_region(new->vm_region); 1518 up_write(&nommu_region_sem); 1519 add_vma_to_mm(mm, vma); 1520 add_vma_to_mm(mm, new); 1521 return 0; 1522 } 1523 1524 /* 1525 * shrink a VMA by removing the specified chunk from either the beginning or 1526 * the end 1527 */ 1528 static int shrink_vma(struct mm_struct *mm, 1529 struct vm_area_struct *vma, 1530 unsigned long from, unsigned long to) 1531 { 1532 struct vm_region *region; 1533 1534 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1535 * and list */ 1536 delete_vma_from_mm(vma); 1537 if (from > vma->vm_start) 1538 vma->vm_end = from; 1539 else 1540 vma->vm_start = to; 1541 add_vma_to_mm(mm, vma); 1542 1543 /* cut the backing region down to size */ 1544 region = vma->vm_region; 1545 BUG_ON(region->vm_usage != 1); 1546 1547 down_write(&nommu_region_sem); 1548 delete_nommu_region(region); 1549 if (from > region->vm_start) { 1550 to = region->vm_top; 1551 region->vm_top = region->vm_end = from; 1552 } else { 1553 region->vm_start = to; 1554 } 1555 add_nommu_region(region); 1556 up_write(&nommu_region_sem); 1557 1558 free_page_series(from, to); 1559 return 0; 1560 } 1561 1562 /* 1563 * release a mapping 1564 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1565 * VMA, though it need not cover the whole VMA 1566 */ 1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1568 { 1569 struct vm_area_struct *vma; 1570 unsigned long end; 1571 int ret; 1572 1573 len = PAGE_ALIGN(len); 1574 if (len == 0) 1575 return -EINVAL; 1576 1577 end = start + len; 1578 1579 /* find the first potentially overlapping VMA */ 1580 vma = find_vma(mm, start); 1581 if (!vma) { 1582 static int limit; 1583 if (limit < 5) { 1584 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1585 current->pid, current->comm, 1586 start, start + len - 1); 1587 limit++; 1588 } 1589 return -EINVAL; 1590 } 1591 1592 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1593 if (vma->vm_file) { 1594 do { 1595 if (start > vma->vm_start) 1596 return -EINVAL; 1597 if (end == vma->vm_end) 1598 goto erase_whole_vma; 1599 vma = vma->vm_next; 1600 } while (vma); 1601 return -EINVAL; 1602 } else { 1603 /* the chunk must be a subset of the VMA found */ 1604 if (start == vma->vm_start && end == vma->vm_end) 1605 goto erase_whole_vma; 1606 if (start < vma->vm_start || end > vma->vm_end) 1607 return -EINVAL; 1608 if (offset_in_page(start)) 1609 return -EINVAL; 1610 if (end != vma->vm_end && offset_in_page(end)) 1611 return -EINVAL; 1612 if (start != vma->vm_start && end != vma->vm_end) { 1613 ret = split_vma(mm, vma, start, 1); 1614 if (ret < 0) 1615 return ret; 1616 } 1617 return shrink_vma(mm, vma, start, end); 1618 } 1619 1620 erase_whole_vma: 1621 delete_vma_from_mm(vma); 1622 delete_vma(mm, vma); 1623 return 0; 1624 } 1625 EXPORT_SYMBOL(do_munmap); 1626 1627 int vm_munmap(unsigned long addr, size_t len) 1628 { 1629 struct mm_struct *mm = current->mm; 1630 int ret; 1631 1632 down_write(&mm->mmap_sem); 1633 ret = do_munmap(mm, addr, len, NULL); 1634 up_write(&mm->mmap_sem); 1635 return ret; 1636 } 1637 EXPORT_SYMBOL(vm_munmap); 1638 1639 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1640 { 1641 return vm_munmap(addr, len); 1642 } 1643 1644 /* 1645 * release all the mappings made in a process's VM space 1646 */ 1647 void exit_mmap(struct mm_struct *mm) 1648 { 1649 struct vm_area_struct *vma; 1650 1651 if (!mm) 1652 return; 1653 1654 mm->total_vm = 0; 1655 1656 while ((vma = mm->mmap)) { 1657 mm->mmap = vma->vm_next; 1658 delete_vma_from_mm(vma); 1659 delete_vma(mm, vma); 1660 cond_resched(); 1661 } 1662 } 1663 1664 int vm_brk(unsigned long addr, unsigned long len) 1665 { 1666 return -ENOMEM; 1667 } 1668 1669 /* 1670 * expand (or shrink) an existing mapping, potentially moving it at the same 1671 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1672 * 1673 * under NOMMU conditions, we only permit changing a mapping's size, and only 1674 * as long as it stays within the region allocated by do_mmap_private() and the 1675 * block is not shareable 1676 * 1677 * MREMAP_FIXED is not supported under NOMMU conditions 1678 */ 1679 static unsigned long do_mremap(unsigned long addr, 1680 unsigned long old_len, unsigned long new_len, 1681 unsigned long flags, unsigned long new_addr) 1682 { 1683 struct vm_area_struct *vma; 1684 1685 /* insanity checks first */ 1686 old_len = PAGE_ALIGN(old_len); 1687 new_len = PAGE_ALIGN(new_len); 1688 if (old_len == 0 || new_len == 0) 1689 return (unsigned long) -EINVAL; 1690 1691 if (offset_in_page(addr)) 1692 return -EINVAL; 1693 1694 if (flags & MREMAP_FIXED && new_addr != addr) 1695 return (unsigned long) -EINVAL; 1696 1697 vma = find_vma_exact(current->mm, addr, old_len); 1698 if (!vma) 1699 return (unsigned long) -EINVAL; 1700 1701 if (vma->vm_end != vma->vm_start + old_len) 1702 return (unsigned long) -EFAULT; 1703 1704 if (vma->vm_flags & VM_MAYSHARE) 1705 return (unsigned long) -EPERM; 1706 1707 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1708 return (unsigned long) -ENOMEM; 1709 1710 /* all checks complete - do it */ 1711 vma->vm_end = vma->vm_start + new_len; 1712 return vma->vm_start; 1713 } 1714 1715 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1716 unsigned long, new_len, unsigned long, flags, 1717 unsigned long, new_addr) 1718 { 1719 unsigned long ret; 1720 1721 down_write(¤t->mm->mmap_sem); 1722 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1723 up_write(¤t->mm->mmap_sem); 1724 return ret; 1725 } 1726 1727 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1728 unsigned int foll_flags) 1729 { 1730 return NULL; 1731 } 1732 1733 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1734 unsigned long pfn, unsigned long size, pgprot_t prot) 1735 { 1736 if (addr != (pfn << PAGE_SHIFT)) 1737 return -EINVAL; 1738 1739 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1740 return 0; 1741 } 1742 EXPORT_SYMBOL(remap_pfn_range); 1743 1744 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1745 { 1746 unsigned long pfn = start >> PAGE_SHIFT; 1747 unsigned long vm_len = vma->vm_end - vma->vm_start; 1748 1749 pfn += vma->vm_pgoff; 1750 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1751 } 1752 EXPORT_SYMBOL(vm_iomap_memory); 1753 1754 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1755 unsigned long pgoff) 1756 { 1757 unsigned int size = vma->vm_end - vma->vm_start; 1758 1759 if (!(vma->vm_flags & VM_USERMAP)) 1760 return -EINVAL; 1761 1762 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1763 vma->vm_end = vma->vm_start + size; 1764 1765 return 0; 1766 } 1767 EXPORT_SYMBOL(remap_vmalloc_range); 1768 1769 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1770 unsigned long len, unsigned long pgoff, unsigned long flags) 1771 { 1772 return -ENOMEM; 1773 } 1774 1775 vm_fault_t filemap_fault(struct vm_fault *vmf) 1776 { 1777 BUG(); 1778 return 0; 1779 } 1780 EXPORT_SYMBOL(filemap_fault); 1781 1782 void filemap_map_pages(struct vm_fault *vmf, 1783 pgoff_t start_pgoff, pgoff_t end_pgoff) 1784 { 1785 BUG(); 1786 } 1787 EXPORT_SYMBOL(filemap_map_pages); 1788 1789 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1790 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1791 { 1792 struct vm_area_struct *vma; 1793 int write = gup_flags & FOLL_WRITE; 1794 1795 down_read(&mm->mmap_sem); 1796 1797 /* the access must start within one of the target process's mappings */ 1798 vma = find_vma(mm, addr); 1799 if (vma) { 1800 /* don't overrun this mapping */ 1801 if (addr + len >= vma->vm_end) 1802 len = vma->vm_end - addr; 1803 1804 /* only read or write mappings where it is permitted */ 1805 if (write && vma->vm_flags & VM_MAYWRITE) 1806 copy_to_user_page(vma, NULL, addr, 1807 (void *) addr, buf, len); 1808 else if (!write && vma->vm_flags & VM_MAYREAD) 1809 copy_from_user_page(vma, NULL, addr, 1810 buf, (void *) addr, len); 1811 else 1812 len = 0; 1813 } else { 1814 len = 0; 1815 } 1816 1817 up_read(&mm->mmap_sem); 1818 1819 return len; 1820 } 1821 1822 /** 1823 * access_remote_vm - access another process' address space 1824 * @mm: the mm_struct of the target address space 1825 * @addr: start address to access 1826 * @buf: source or destination buffer 1827 * @len: number of bytes to transfer 1828 * @gup_flags: flags modifying lookup behaviour 1829 * 1830 * The caller must hold a reference on @mm. 1831 */ 1832 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1833 void *buf, int len, unsigned int gup_flags) 1834 { 1835 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1836 } 1837 1838 /* 1839 * Access another process' address space. 1840 * - source/target buffer must be kernel space 1841 */ 1842 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1843 unsigned int gup_flags) 1844 { 1845 struct mm_struct *mm; 1846 1847 if (addr + len < addr) 1848 return 0; 1849 1850 mm = get_task_mm(tsk); 1851 if (!mm) 1852 return 0; 1853 1854 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1855 1856 mmput(mm); 1857 return len; 1858 } 1859 EXPORT_SYMBOL_GPL(access_process_vm); 1860 1861 /** 1862 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1863 * @inode: The inode to check 1864 * @size: The current filesize of the inode 1865 * @newsize: The proposed filesize of the inode 1866 * 1867 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1868 * make sure that that any outstanding VMAs aren't broken and then shrink the 1869 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1870 * automatically grant mappings that are too large. 1871 */ 1872 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1873 size_t newsize) 1874 { 1875 struct vm_area_struct *vma; 1876 struct vm_region *region; 1877 pgoff_t low, high; 1878 size_t r_size, r_top; 1879 1880 low = newsize >> PAGE_SHIFT; 1881 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1882 1883 down_write(&nommu_region_sem); 1884 i_mmap_lock_read(inode->i_mapping); 1885 1886 /* search for VMAs that fall within the dead zone */ 1887 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1888 /* found one - only interested if it's shared out of the page 1889 * cache */ 1890 if (vma->vm_flags & VM_SHARED) { 1891 i_mmap_unlock_read(inode->i_mapping); 1892 up_write(&nommu_region_sem); 1893 return -ETXTBSY; /* not quite true, but near enough */ 1894 } 1895 } 1896 1897 /* reduce any regions that overlap the dead zone - if in existence, 1898 * these will be pointed to by VMAs that don't overlap the dead zone 1899 * 1900 * we don't check for any regions that start beyond the EOF as there 1901 * shouldn't be any 1902 */ 1903 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1904 if (!(vma->vm_flags & VM_SHARED)) 1905 continue; 1906 1907 region = vma->vm_region; 1908 r_size = region->vm_top - region->vm_start; 1909 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1910 1911 if (r_top > newsize) { 1912 region->vm_top -= r_top - newsize; 1913 if (region->vm_end > region->vm_top) 1914 region->vm_end = region->vm_top; 1915 } 1916 } 1917 1918 i_mmap_unlock_read(inode->i_mapping); 1919 up_write(&nommu_region_sem); 1920 return 0; 1921 } 1922 1923 /* 1924 * Initialise sysctl_user_reserve_kbytes. 1925 * 1926 * This is intended to prevent a user from starting a single memory hogging 1927 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1928 * mode. 1929 * 1930 * The default value is min(3% of free memory, 128MB) 1931 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1932 */ 1933 static int __meminit init_user_reserve(void) 1934 { 1935 unsigned long free_kbytes; 1936 1937 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1938 1939 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1940 return 0; 1941 } 1942 subsys_initcall(init_user_reserve); 1943 1944 /* 1945 * Initialise sysctl_admin_reserve_kbytes. 1946 * 1947 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1948 * to log in and kill a memory hogging process. 1949 * 1950 * Systems with more than 256MB will reserve 8MB, enough to recover 1951 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1952 * only reserve 3% of free pages by default. 1953 */ 1954 static int __meminit init_admin_reserve(void) 1955 { 1956 unsigned long free_kbytes; 1957 1958 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1959 1960 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1961 return 0; 1962 } 1963 subsys_initcall(init_admin_reserve); 1964