xref: /openbmc/linux/mm/nommu.c (revision 185c8f33)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 	unsigned long *pfn)
125 {
126 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 		return -EINVAL;
128 
129 	*pfn = address >> PAGE_SHIFT;
130 	return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133 
134 LIST_HEAD(vmap_area_list);
135 
136 void vfree(const void *addr)
137 {
138 	kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141 
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 	/*
145 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 	 * returns only a logical address.
147 	 */
148 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151 
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 		unsigned long start, unsigned long end, gfp_t gfp_mask,
154 		pgprot_t prot, unsigned long vm_flags, int node,
155 		const void *caller)
156 {
157 	return __vmalloc(size, gfp_mask);
158 }
159 
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 		int node, const void *caller)
162 {
163 	return __vmalloc(size, gfp_mask);
164 }
165 
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 	void *ret;
169 
170 	ret = __vmalloc(size, flags);
171 	if (ret) {
172 		struct vm_area_struct *vma;
173 
174 		mmap_write_lock(current->mm);
175 		vma = find_vma(current->mm, (unsigned long)ret);
176 		if (vma)
177 			vm_flags_set(vma, VM_USERMAP);
178 		mmap_write_unlock(current->mm);
179 	}
180 
181 	return ret;
182 }
183 
184 void *vmalloc_user(unsigned long size)
185 {
186 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189 
190 struct page *vmalloc_to_page(const void *addr)
191 {
192 	return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195 
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 	return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201 
202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204 	/* Don't allow overflow */
205 	if ((unsigned long) addr + count < count)
206 		count = -(unsigned long) addr;
207 
208 	return copy_to_iter(addr, count, iter);
209 }
210 
211 /*
212  *	vmalloc  -  allocate virtually contiguous memory
213  *
214  *	@size:		allocation size
215  *
216  *	Allocate enough pages to cover @size from the page level
217  *	allocator and map them into contiguous kernel virtual space.
218  *
219  *	For tight control over page level allocator and protection flags
220  *	use __vmalloc() instead.
221  */
222 void *vmalloc(unsigned long size)
223 {
224 	return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227 
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page((void *)from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 	vma->vm_mm = mm;
550 
551 	/* add the VMA to the mapping */
552 	if (vma->vm_file) {
553 		struct address_space *mapping = vma->vm_file->f_mapping;
554 
555 		i_mmap_lock_write(mapping);
556 		flush_dcache_mmap_lock(mapping);
557 		vma_interval_tree_insert(vma, &mapping->i_mmap);
558 		flush_dcache_mmap_unlock(mapping);
559 		i_mmap_unlock_write(mapping);
560 	}
561 }
562 
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 	vma->vm_mm->map_count--;
566 	/* remove the VMA from the mapping */
567 	if (vma->vm_file) {
568 		struct address_space *mapping;
569 		mapping = vma->vm_file->f_mapping;
570 
571 		i_mmap_lock_write(mapping);
572 		flush_dcache_mmap_lock(mapping);
573 		vma_interval_tree_remove(vma, &mapping->i_mmap);
574 		flush_dcache_mmap_unlock(mapping);
575 		i_mmap_unlock_write(mapping);
576 	}
577 }
578 
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585 
586 	if (vma_iter_prealloc(&vmi)) {
587 		pr_warn("Allocation of vma tree for process %d failed\n",
588 		       current->pid);
589 		return -ENOMEM;
590 	}
591 	cleanup_vma_from_mm(vma);
592 
593 	/* remove from the MM's tree and list */
594 	vma_iter_clear(&vmi, vma->vm_start, vma->vm_end);
595 	return 0;
596 }
597 /*
598  * destroy a VMA record
599  */
600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
601 {
602 	if (vma->vm_ops && vma->vm_ops->close)
603 		vma->vm_ops->close(vma);
604 	if (vma->vm_file)
605 		fput(vma->vm_file);
606 	put_nommu_region(vma->vm_region);
607 	vm_area_free(vma);
608 }
609 
610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611 					     unsigned long start_addr,
612 					     unsigned long end_addr)
613 {
614 	unsigned long index = start_addr;
615 
616 	mmap_assert_locked(mm);
617 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620 
621 /*
622  * look up the first VMA in which addr resides, NULL if none
623  * - should be called with mm->mmap_lock at least held readlocked
624  */
625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627 	VMA_ITERATOR(vmi, mm, addr);
628 
629 	return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632 
633 /*
634  * At least xtensa ends up having protection faults even with no
635  * MMU.. No stack expansion, at least.
636  */
637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
638 			unsigned long addr, struct pt_regs *regs)
639 {
640 	struct vm_area_struct *vma;
641 
642 	mmap_read_lock(mm);
643 	vma = vma_lookup(mm, addr);
644 	if (!vma)
645 		mmap_read_unlock(mm);
646 	return vma;
647 }
648 
649 /*
650  * expand a stack to a given address
651  * - not supported under NOMMU conditions
652  */
653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
654 {
655 	return -ENOMEM;
656 }
657 
658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
659 {
660 	mmap_read_unlock(mm);
661 	return NULL;
662 }
663 
664 /*
665  * look up the first VMA exactly that exactly matches addr
666  * - should be called with mm->mmap_lock at least held readlocked
667  */
668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
669 					     unsigned long addr,
670 					     unsigned long len)
671 {
672 	struct vm_area_struct *vma;
673 	unsigned long end = addr + len;
674 	VMA_ITERATOR(vmi, mm, addr);
675 
676 	vma = vma_iter_load(&vmi);
677 	if (!vma)
678 		return NULL;
679 	if (vma->vm_start != addr)
680 		return NULL;
681 	if (vma->vm_end != end)
682 		return NULL;
683 
684 	return vma;
685 }
686 
687 /*
688  * determine whether a mapping should be permitted and, if so, what sort of
689  * mapping we're capable of supporting
690  */
691 static int validate_mmap_request(struct file *file,
692 				 unsigned long addr,
693 				 unsigned long len,
694 				 unsigned long prot,
695 				 unsigned long flags,
696 				 unsigned long pgoff,
697 				 unsigned long *_capabilities)
698 {
699 	unsigned long capabilities, rlen;
700 	int ret;
701 
702 	/* do the simple checks first */
703 	if (flags & MAP_FIXED)
704 		return -EINVAL;
705 
706 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
707 	    (flags & MAP_TYPE) != MAP_SHARED)
708 		return -EINVAL;
709 
710 	if (!len)
711 		return -EINVAL;
712 
713 	/* Careful about overflows.. */
714 	rlen = PAGE_ALIGN(len);
715 	if (!rlen || rlen > TASK_SIZE)
716 		return -ENOMEM;
717 
718 	/* offset overflow? */
719 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
720 		return -EOVERFLOW;
721 
722 	if (file) {
723 		/* files must support mmap */
724 		if (!file->f_op->mmap)
725 			return -ENODEV;
726 
727 		/* work out if what we've got could possibly be shared
728 		 * - we support chardevs that provide their own "memory"
729 		 * - we support files/blockdevs that are memory backed
730 		 */
731 		if (file->f_op->mmap_capabilities) {
732 			capabilities = file->f_op->mmap_capabilities(file);
733 		} else {
734 			/* no explicit capabilities set, so assume some
735 			 * defaults */
736 			switch (file_inode(file)->i_mode & S_IFMT) {
737 			case S_IFREG:
738 			case S_IFBLK:
739 				capabilities = NOMMU_MAP_COPY;
740 				break;
741 
742 			case S_IFCHR:
743 				capabilities =
744 					NOMMU_MAP_DIRECT |
745 					NOMMU_MAP_READ |
746 					NOMMU_MAP_WRITE;
747 				break;
748 
749 			default:
750 				return -EINVAL;
751 			}
752 		}
753 
754 		/* eliminate any capabilities that we can't support on this
755 		 * device */
756 		if (!file->f_op->get_unmapped_area)
757 			capabilities &= ~NOMMU_MAP_DIRECT;
758 		if (!(file->f_mode & FMODE_CAN_READ))
759 			capabilities &= ~NOMMU_MAP_COPY;
760 
761 		/* The file shall have been opened with read permission. */
762 		if (!(file->f_mode & FMODE_READ))
763 			return -EACCES;
764 
765 		if (flags & MAP_SHARED) {
766 			/* do checks for writing, appending and locking */
767 			if ((prot & PROT_WRITE) &&
768 			    !(file->f_mode & FMODE_WRITE))
769 				return -EACCES;
770 
771 			if (IS_APPEND(file_inode(file)) &&
772 			    (file->f_mode & FMODE_WRITE))
773 				return -EACCES;
774 
775 			if (!(capabilities & NOMMU_MAP_DIRECT))
776 				return -ENODEV;
777 
778 			/* we mustn't privatise shared mappings */
779 			capabilities &= ~NOMMU_MAP_COPY;
780 		} else {
781 			/* we're going to read the file into private memory we
782 			 * allocate */
783 			if (!(capabilities & NOMMU_MAP_COPY))
784 				return -ENODEV;
785 
786 			/* we don't permit a private writable mapping to be
787 			 * shared with the backing device */
788 			if (prot & PROT_WRITE)
789 				capabilities &= ~NOMMU_MAP_DIRECT;
790 		}
791 
792 		if (capabilities & NOMMU_MAP_DIRECT) {
793 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
794 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
795 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
796 			    ) {
797 				capabilities &= ~NOMMU_MAP_DIRECT;
798 				if (flags & MAP_SHARED) {
799 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
800 					return -EINVAL;
801 				}
802 			}
803 		}
804 
805 		/* handle executable mappings and implied executable
806 		 * mappings */
807 		if (path_noexec(&file->f_path)) {
808 			if (prot & PROT_EXEC)
809 				return -EPERM;
810 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
811 			/* handle implication of PROT_EXEC by PROT_READ */
812 			if (current->personality & READ_IMPLIES_EXEC) {
813 				if (capabilities & NOMMU_MAP_EXEC)
814 					prot |= PROT_EXEC;
815 			}
816 		} else if ((prot & PROT_READ) &&
817 			 (prot & PROT_EXEC) &&
818 			 !(capabilities & NOMMU_MAP_EXEC)
819 			 ) {
820 			/* backing file is not executable, try to copy */
821 			capabilities &= ~NOMMU_MAP_DIRECT;
822 		}
823 	} else {
824 		/* anonymous mappings are always memory backed and can be
825 		 * privately mapped
826 		 */
827 		capabilities = NOMMU_MAP_COPY;
828 
829 		/* handle PROT_EXEC implication by PROT_READ */
830 		if ((prot & PROT_READ) &&
831 		    (current->personality & READ_IMPLIES_EXEC))
832 			prot |= PROT_EXEC;
833 	}
834 
835 	/* allow the security API to have its say */
836 	ret = security_mmap_addr(addr);
837 	if (ret < 0)
838 		return ret;
839 
840 	/* looks okay */
841 	*_capabilities = capabilities;
842 	return 0;
843 }
844 
845 /*
846  * we've determined that we can make the mapping, now translate what we
847  * now know into VMA flags
848  */
849 static unsigned long determine_vm_flags(struct file *file,
850 					unsigned long prot,
851 					unsigned long flags,
852 					unsigned long capabilities)
853 {
854 	unsigned long vm_flags;
855 
856 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
857 
858 	if (!file) {
859 		/*
860 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
861 		 * there is no fork().
862 		 */
863 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
864 	} else if (flags & MAP_PRIVATE) {
865 		/* MAP_PRIVATE file mapping */
866 		if (capabilities & NOMMU_MAP_DIRECT)
867 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
868 		else
869 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
870 
871 		if (!(prot & PROT_WRITE) && !current->ptrace)
872 			/*
873 			 * R/O private file mapping which cannot be used to
874 			 * modify memory, especially also not via active ptrace
875 			 * (e.g., set breakpoints) or later by upgrading
876 			 * permissions (no mprotect()). We can try overlaying
877 			 * the file mapping, which will work e.g., on chardevs,
878 			 * ramfs/tmpfs/shmfs and romfs/cramf.
879 			 */
880 			vm_flags |= VM_MAYOVERLAY;
881 	} else {
882 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
883 		vm_flags |= VM_SHARED | VM_MAYSHARE |
884 			    (capabilities & NOMMU_VMFLAGS);
885 	}
886 
887 	return vm_flags;
888 }
889 
890 /*
891  * set up a shared mapping on a file (the driver or filesystem provides and
892  * pins the storage)
893  */
894 static int do_mmap_shared_file(struct vm_area_struct *vma)
895 {
896 	int ret;
897 
898 	ret = call_mmap(vma->vm_file, vma);
899 	if (ret == 0) {
900 		vma->vm_region->vm_top = vma->vm_region->vm_end;
901 		return 0;
902 	}
903 	if (ret != -ENOSYS)
904 		return ret;
905 
906 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
907 	 * opposed to tried but failed) so we can only give a suitable error as
908 	 * it's not possible to make a private copy if MAP_SHARED was given */
909 	return -ENODEV;
910 }
911 
912 /*
913  * set up a private mapping or an anonymous shared mapping
914  */
915 static int do_mmap_private(struct vm_area_struct *vma,
916 			   struct vm_region *region,
917 			   unsigned long len,
918 			   unsigned long capabilities)
919 {
920 	unsigned long total, point;
921 	void *base;
922 	int ret, order;
923 
924 	/*
925 	 * Invoke the file's mapping function so that it can keep track of
926 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
927 	 * it may attempt to share, which will make is_nommu_shared_mapping()
928 	 * happy.
929 	 */
930 	if (capabilities & NOMMU_MAP_DIRECT) {
931 		ret = call_mmap(vma->vm_file, vma);
932 		/* shouldn't return success if we're not sharing */
933 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
934 			ret = -ENOSYS;
935 		if (ret == 0) {
936 			vma->vm_region->vm_top = vma->vm_region->vm_end;
937 			return 0;
938 		}
939 		if (ret != -ENOSYS)
940 			return ret;
941 
942 		/* getting an ENOSYS error indicates that direct mmap isn't
943 		 * possible (as opposed to tried but failed) so we'll try to
944 		 * make a private copy of the data and map that instead */
945 	}
946 
947 
948 	/* allocate some memory to hold the mapping
949 	 * - note that this may not return a page-aligned address if the object
950 	 *   we're allocating is smaller than a page
951 	 */
952 	order = get_order(len);
953 	total = 1 << order;
954 	point = len >> PAGE_SHIFT;
955 
956 	/* we don't want to allocate a power-of-2 sized page set */
957 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
958 		total = point;
959 
960 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
961 	if (!base)
962 		goto enomem;
963 
964 	atomic_long_add(total, &mmap_pages_allocated);
965 
966 	vm_flags_set(vma, VM_MAPPED_COPY);
967 	region->vm_flags = vma->vm_flags;
968 	region->vm_start = (unsigned long) base;
969 	region->vm_end   = region->vm_start + len;
970 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
971 
972 	vma->vm_start = region->vm_start;
973 	vma->vm_end   = region->vm_start + len;
974 
975 	if (vma->vm_file) {
976 		/* read the contents of a file into the copy */
977 		loff_t fpos;
978 
979 		fpos = vma->vm_pgoff;
980 		fpos <<= PAGE_SHIFT;
981 
982 		ret = kernel_read(vma->vm_file, base, len, &fpos);
983 		if (ret < 0)
984 			goto error_free;
985 
986 		/* clear the last little bit */
987 		if (ret < len)
988 			memset(base + ret, 0, len - ret);
989 
990 	} else {
991 		vma_set_anonymous(vma);
992 	}
993 
994 	return 0;
995 
996 error_free:
997 	free_page_series(region->vm_start, region->vm_top);
998 	region->vm_start = vma->vm_start = 0;
999 	region->vm_end   = vma->vm_end = 0;
1000 	region->vm_top   = 0;
1001 	return ret;
1002 
1003 enomem:
1004 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1005 	       len, current->pid, current->comm);
1006 	show_free_areas(0, NULL);
1007 	return -ENOMEM;
1008 }
1009 
1010 /*
1011  * handle mapping creation for uClinux
1012  */
1013 unsigned long do_mmap(struct file *file,
1014 			unsigned long addr,
1015 			unsigned long len,
1016 			unsigned long prot,
1017 			unsigned long flags,
1018 			unsigned long pgoff,
1019 			unsigned long *populate,
1020 			struct list_head *uf)
1021 {
1022 	struct vm_area_struct *vma;
1023 	struct vm_region *region;
1024 	struct rb_node *rb;
1025 	vm_flags_t vm_flags;
1026 	unsigned long capabilities, result;
1027 	int ret;
1028 	VMA_ITERATOR(vmi, current->mm, 0);
1029 
1030 	*populate = 0;
1031 
1032 	/* decide whether we should attempt the mapping, and if so what sort of
1033 	 * mapping */
1034 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1035 				    &capabilities);
1036 	if (ret < 0)
1037 		return ret;
1038 
1039 	/* we ignore the address hint */
1040 	addr = 0;
1041 	len = PAGE_ALIGN(len);
1042 
1043 	/* we've determined that we can make the mapping, now translate what we
1044 	 * now know into VMA flags */
1045 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1046 
1047 
1048 	/* we're going to need to record the mapping */
1049 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1050 	if (!region)
1051 		goto error_getting_region;
1052 
1053 	vma = vm_area_alloc(current->mm);
1054 	if (!vma)
1055 		goto error_getting_vma;
1056 
1057 	if (vma_iter_prealloc(&vmi))
1058 		goto error_vma_iter_prealloc;
1059 
1060 	region->vm_usage = 1;
1061 	region->vm_flags = vm_flags;
1062 	region->vm_pgoff = pgoff;
1063 
1064 	vm_flags_init(vma, vm_flags);
1065 	vma->vm_pgoff = pgoff;
1066 
1067 	if (file) {
1068 		region->vm_file = get_file(file);
1069 		vma->vm_file = get_file(file);
1070 	}
1071 
1072 	down_write(&nommu_region_sem);
1073 
1074 	/* if we want to share, we need to check for regions created by other
1075 	 * mmap() calls that overlap with our proposed mapping
1076 	 * - we can only share with a superset match on most regular files
1077 	 * - shared mappings on character devices and memory backed files are
1078 	 *   permitted to overlap inexactly as far as we are concerned for in
1079 	 *   these cases, sharing is handled in the driver or filesystem rather
1080 	 *   than here
1081 	 */
1082 	if (is_nommu_shared_mapping(vm_flags)) {
1083 		struct vm_region *pregion;
1084 		unsigned long pglen, rpglen, pgend, rpgend, start;
1085 
1086 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1087 		pgend = pgoff + pglen;
1088 
1089 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1090 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1091 
1092 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1093 				continue;
1094 
1095 			/* search for overlapping mappings on the same file */
1096 			if (file_inode(pregion->vm_file) !=
1097 			    file_inode(file))
1098 				continue;
1099 
1100 			if (pregion->vm_pgoff >= pgend)
1101 				continue;
1102 
1103 			rpglen = pregion->vm_end - pregion->vm_start;
1104 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1105 			rpgend = pregion->vm_pgoff + rpglen;
1106 			if (pgoff >= rpgend)
1107 				continue;
1108 
1109 			/* handle inexactly overlapping matches between
1110 			 * mappings */
1111 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1112 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1113 				/* new mapping is not a subset of the region */
1114 				if (!(capabilities & NOMMU_MAP_DIRECT))
1115 					goto sharing_violation;
1116 				continue;
1117 			}
1118 
1119 			/* we've found a region we can share */
1120 			pregion->vm_usage++;
1121 			vma->vm_region = pregion;
1122 			start = pregion->vm_start;
1123 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1124 			vma->vm_start = start;
1125 			vma->vm_end = start + len;
1126 
1127 			if (pregion->vm_flags & VM_MAPPED_COPY)
1128 				vm_flags_set(vma, VM_MAPPED_COPY);
1129 			else {
1130 				ret = do_mmap_shared_file(vma);
1131 				if (ret < 0) {
1132 					vma->vm_region = NULL;
1133 					vma->vm_start = 0;
1134 					vma->vm_end = 0;
1135 					pregion->vm_usage--;
1136 					pregion = NULL;
1137 					goto error_just_free;
1138 				}
1139 			}
1140 			fput(region->vm_file);
1141 			kmem_cache_free(vm_region_jar, region);
1142 			region = pregion;
1143 			result = start;
1144 			goto share;
1145 		}
1146 
1147 		/* obtain the address at which to make a shared mapping
1148 		 * - this is the hook for quasi-memory character devices to
1149 		 *   tell us the location of a shared mapping
1150 		 */
1151 		if (capabilities & NOMMU_MAP_DIRECT) {
1152 			addr = file->f_op->get_unmapped_area(file, addr, len,
1153 							     pgoff, flags);
1154 			if (IS_ERR_VALUE(addr)) {
1155 				ret = addr;
1156 				if (ret != -ENOSYS)
1157 					goto error_just_free;
1158 
1159 				/* the driver refused to tell us where to site
1160 				 * the mapping so we'll have to attempt to copy
1161 				 * it */
1162 				ret = -ENODEV;
1163 				if (!(capabilities & NOMMU_MAP_COPY))
1164 					goto error_just_free;
1165 
1166 				capabilities &= ~NOMMU_MAP_DIRECT;
1167 			} else {
1168 				vma->vm_start = region->vm_start = addr;
1169 				vma->vm_end = region->vm_end = addr + len;
1170 			}
1171 		}
1172 	}
1173 
1174 	vma->vm_region = region;
1175 
1176 	/* set up the mapping
1177 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1178 	 */
1179 	if (file && vma->vm_flags & VM_SHARED)
1180 		ret = do_mmap_shared_file(vma);
1181 	else
1182 		ret = do_mmap_private(vma, region, len, capabilities);
1183 	if (ret < 0)
1184 		goto error_just_free;
1185 	add_nommu_region(region);
1186 
1187 	/* clear anonymous mappings that don't ask for uninitialized data */
1188 	if (!vma->vm_file &&
1189 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1190 	     !(flags & MAP_UNINITIALIZED)))
1191 		memset((void *)region->vm_start, 0,
1192 		       region->vm_end - region->vm_start);
1193 
1194 	/* okay... we have a mapping; now we have to register it */
1195 	result = vma->vm_start;
1196 
1197 	current->mm->total_vm += len >> PAGE_SHIFT;
1198 
1199 share:
1200 	BUG_ON(!vma->vm_region);
1201 	setup_vma_to_mm(vma, current->mm);
1202 	current->mm->map_count++;
1203 	/* add the VMA to the tree */
1204 	vma_iter_store(&vmi, vma);
1205 
1206 	/* we flush the region from the icache only when the first executable
1207 	 * mapping of it is made  */
1208 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209 		flush_icache_user_range(region->vm_start, region->vm_end);
1210 		region->vm_icache_flushed = true;
1211 	}
1212 
1213 	up_write(&nommu_region_sem);
1214 
1215 	return result;
1216 
1217 error_just_free:
1218 	up_write(&nommu_region_sem);
1219 error:
1220 	vma_iter_free(&vmi);
1221 	if (region->vm_file)
1222 		fput(region->vm_file);
1223 	kmem_cache_free(vm_region_jar, region);
1224 	if (vma->vm_file)
1225 		fput(vma->vm_file);
1226 	vm_area_free(vma);
1227 	return ret;
1228 
1229 sharing_violation:
1230 	up_write(&nommu_region_sem);
1231 	pr_warn("Attempt to share mismatched mappings\n");
1232 	ret = -EINVAL;
1233 	goto error;
1234 
1235 error_getting_vma:
1236 	kmem_cache_free(vm_region_jar, region);
1237 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238 			len, current->pid);
1239 	show_free_areas(0, NULL);
1240 	return -ENOMEM;
1241 
1242 error_getting_region:
1243 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244 			len, current->pid);
1245 	show_free_areas(0, NULL);
1246 	return -ENOMEM;
1247 
1248 error_vma_iter_prealloc:
1249 	kmem_cache_free(vm_region_jar, region);
1250 	vm_area_free(vma);
1251 	pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1252 	show_free_areas(0, NULL);
1253 	return -ENOMEM;
1254 
1255 }
1256 
1257 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1258 			      unsigned long prot, unsigned long flags,
1259 			      unsigned long fd, unsigned long pgoff)
1260 {
1261 	struct file *file = NULL;
1262 	unsigned long retval = -EBADF;
1263 
1264 	audit_mmap_fd(fd, flags);
1265 	if (!(flags & MAP_ANONYMOUS)) {
1266 		file = fget(fd);
1267 		if (!file)
1268 			goto out;
1269 	}
1270 
1271 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1272 
1273 	if (file)
1274 		fput(file);
1275 out:
1276 	return retval;
1277 }
1278 
1279 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1280 		unsigned long, prot, unsigned long, flags,
1281 		unsigned long, fd, unsigned long, pgoff)
1282 {
1283 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1284 }
1285 
1286 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1287 struct mmap_arg_struct {
1288 	unsigned long addr;
1289 	unsigned long len;
1290 	unsigned long prot;
1291 	unsigned long flags;
1292 	unsigned long fd;
1293 	unsigned long offset;
1294 };
1295 
1296 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1297 {
1298 	struct mmap_arg_struct a;
1299 
1300 	if (copy_from_user(&a, arg, sizeof(a)))
1301 		return -EFAULT;
1302 	if (offset_in_page(a.offset))
1303 		return -EINVAL;
1304 
1305 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1306 			       a.offset >> PAGE_SHIFT);
1307 }
1308 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1309 
1310 /*
1311  * split a vma into two pieces at address 'addr', a new vma is allocated either
1312  * for the first part or the tail.
1313  */
1314 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1315 	      unsigned long addr, int new_below)
1316 {
1317 	struct vm_area_struct *new;
1318 	struct vm_region *region;
1319 	unsigned long npages;
1320 	struct mm_struct *mm;
1321 
1322 	/* we're only permitted to split anonymous regions (these should have
1323 	 * only a single usage on the region) */
1324 	if (vma->vm_file)
1325 		return -ENOMEM;
1326 
1327 	mm = vma->vm_mm;
1328 	if (mm->map_count >= sysctl_max_map_count)
1329 		return -ENOMEM;
1330 
1331 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1332 	if (!region)
1333 		return -ENOMEM;
1334 
1335 	new = vm_area_dup(vma);
1336 	if (!new)
1337 		goto err_vma_dup;
1338 
1339 	if (vma_iter_prealloc(vmi)) {
1340 		pr_warn("Allocation of vma tree for process %d failed\n",
1341 			current->pid);
1342 		goto err_vmi_preallocate;
1343 	}
1344 
1345 	/* most fields are the same, copy all, and then fixup */
1346 	*region = *vma->vm_region;
1347 	new->vm_region = region;
1348 
1349 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1350 
1351 	if (new_below) {
1352 		region->vm_top = region->vm_end = new->vm_end = addr;
1353 	} else {
1354 		region->vm_start = new->vm_start = addr;
1355 		region->vm_pgoff = new->vm_pgoff += npages;
1356 	}
1357 
1358 	if (new->vm_ops && new->vm_ops->open)
1359 		new->vm_ops->open(new);
1360 
1361 	down_write(&nommu_region_sem);
1362 	delete_nommu_region(vma->vm_region);
1363 	if (new_below) {
1364 		vma->vm_region->vm_start = vma->vm_start = addr;
1365 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1366 	} else {
1367 		vma->vm_region->vm_end = vma->vm_end = addr;
1368 		vma->vm_region->vm_top = addr;
1369 	}
1370 	add_nommu_region(vma->vm_region);
1371 	add_nommu_region(new->vm_region);
1372 	up_write(&nommu_region_sem);
1373 
1374 	setup_vma_to_mm(vma, mm);
1375 	setup_vma_to_mm(new, mm);
1376 	vma_iter_store(vmi, new);
1377 	mm->map_count++;
1378 	return 0;
1379 
1380 err_vmi_preallocate:
1381 	vm_area_free(new);
1382 err_vma_dup:
1383 	kmem_cache_free(vm_region_jar, region);
1384 	return -ENOMEM;
1385 }
1386 
1387 /*
1388  * shrink a VMA by removing the specified chunk from either the beginning or
1389  * the end
1390  */
1391 static int vmi_shrink_vma(struct vma_iterator *vmi,
1392 		      struct vm_area_struct *vma,
1393 		      unsigned long from, unsigned long to)
1394 {
1395 	struct vm_region *region;
1396 
1397 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1398 	 * and list */
1399 	if (vma_iter_prealloc(vmi)) {
1400 		pr_warn("Allocation of vma tree for process %d failed\n",
1401 		       current->pid);
1402 		return -ENOMEM;
1403 	}
1404 
1405 	if (from > vma->vm_start) {
1406 		vma_iter_clear(vmi, from, vma->vm_end);
1407 		vma->vm_end = from;
1408 	} else {
1409 		vma_iter_clear(vmi, vma->vm_start, to);
1410 		vma->vm_start = to;
1411 	}
1412 
1413 	/* cut the backing region down to size */
1414 	region = vma->vm_region;
1415 	BUG_ON(region->vm_usage != 1);
1416 
1417 	down_write(&nommu_region_sem);
1418 	delete_nommu_region(region);
1419 	if (from > region->vm_start) {
1420 		to = region->vm_top;
1421 		region->vm_top = region->vm_end = from;
1422 	} else {
1423 		region->vm_start = to;
1424 	}
1425 	add_nommu_region(region);
1426 	up_write(&nommu_region_sem);
1427 
1428 	free_page_series(from, to);
1429 	return 0;
1430 }
1431 
1432 /*
1433  * release a mapping
1434  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1435  *   VMA, though it need not cover the whole VMA
1436  */
1437 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1438 {
1439 	VMA_ITERATOR(vmi, mm, start);
1440 	struct vm_area_struct *vma;
1441 	unsigned long end;
1442 	int ret = 0;
1443 
1444 	len = PAGE_ALIGN(len);
1445 	if (len == 0)
1446 		return -EINVAL;
1447 
1448 	end = start + len;
1449 
1450 	/* find the first potentially overlapping VMA */
1451 	vma = vma_find(&vmi, end);
1452 	if (!vma) {
1453 		static int limit;
1454 		if (limit < 5) {
1455 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1456 					current->pid, current->comm,
1457 					start, start + len - 1);
1458 			limit++;
1459 		}
1460 		return -EINVAL;
1461 	}
1462 
1463 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1464 	if (vma->vm_file) {
1465 		do {
1466 			if (start > vma->vm_start)
1467 				return -EINVAL;
1468 			if (end == vma->vm_end)
1469 				goto erase_whole_vma;
1470 			vma = vma_find(&vmi, end);
1471 		} while (vma);
1472 		return -EINVAL;
1473 	} else {
1474 		/* the chunk must be a subset of the VMA found */
1475 		if (start == vma->vm_start && end == vma->vm_end)
1476 			goto erase_whole_vma;
1477 		if (start < vma->vm_start || end > vma->vm_end)
1478 			return -EINVAL;
1479 		if (offset_in_page(start))
1480 			return -EINVAL;
1481 		if (end != vma->vm_end && offset_in_page(end))
1482 			return -EINVAL;
1483 		if (start != vma->vm_start && end != vma->vm_end) {
1484 			ret = split_vma(&vmi, vma, start, 1);
1485 			if (ret < 0)
1486 				return ret;
1487 		}
1488 		return vmi_shrink_vma(&vmi, vma, start, end);
1489 	}
1490 
1491 erase_whole_vma:
1492 	if (delete_vma_from_mm(vma))
1493 		ret = -ENOMEM;
1494 	else
1495 		delete_vma(mm, vma);
1496 	return ret;
1497 }
1498 
1499 int vm_munmap(unsigned long addr, size_t len)
1500 {
1501 	struct mm_struct *mm = current->mm;
1502 	int ret;
1503 
1504 	mmap_write_lock(mm);
1505 	ret = do_munmap(mm, addr, len, NULL);
1506 	mmap_write_unlock(mm);
1507 	return ret;
1508 }
1509 EXPORT_SYMBOL(vm_munmap);
1510 
1511 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1512 {
1513 	return vm_munmap(addr, len);
1514 }
1515 
1516 /*
1517  * release all the mappings made in a process's VM space
1518  */
1519 void exit_mmap(struct mm_struct *mm)
1520 {
1521 	VMA_ITERATOR(vmi, mm, 0);
1522 	struct vm_area_struct *vma;
1523 
1524 	if (!mm)
1525 		return;
1526 
1527 	mm->total_vm = 0;
1528 
1529 	/*
1530 	 * Lock the mm to avoid assert complaining even though this is the only
1531 	 * user of the mm
1532 	 */
1533 	mmap_write_lock(mm);
1534 	for_each_vma(vmi, vma) {
1535 		cleanup_vma_from_mm(vma);
1536 		delete_vma(mm, vma);
1537 		cond_resched();
1538 	}
1539 	__mt_destroy(&mm->mm_mt);
1540 	mmap_write_unlock(mm);
1541 }
1542 
1543 int vm_brk(unsigned long addr, unsigned long len)
1544 {
1545 	return -ENOMEM;
1546 }
1547 
1548 /*
1549  * expand (or shrink) an existing mapping, potentially moving it at the same
1550  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1551  *
1552  * under NOMMU conditions, we only permit changing a mapping's size, and only
1553  * as long as it stays within the region allocated by do_mmap_private() and the
1554  * block is not shareable
1555  *
1556  * MREMAP_FIXED is not supported under NOMMU conditions
1557  */
1558 static unsigned long do_mremap(unsigned long addr,
1559 			unsigned long old_len, unsigned long new_len,
1560 			unsigned long flags, unsigned long new_addr)
1561 {
1562 	struct vm_area_struct *vma;
1563 
1564 	/* insanity checks first */
1565 	old_len = PAGE_ALIGN(old_len);
1566 	new_len = PAGE_ALIGN(new_len);
1567 	if (old_len == 0 || new_len == 0)
1568 		return (unsigned long) -EINVAL;
1569 
1570 	if (offset_in_page(addr))
1571 		return -EINVAL;
1572 
1573 	if (flags & MREMAP_FIXED && new_addr != addr)
1574 		return (unsigned long) -EINVAL;
1575 
1576 	vma = find_vma_exact(current->mm, addr, old_len);
1577 	if (!vma)
1578 		return (unsigned long) -EINVAL;
1579 
1580 	if (vma->vm_end != vma->vm_start + old_len)
1581 		return (unsigned long) -EFAULT;
1582 
1583 	if (is_nommu_shared_mapping(vma->vm_flags))
1584 		return (unsigned long) -EPERM;
1585 
1586 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1587 		return (unsigned long) -ENOMEM;
1588 
1589 	/* all checks complete - do it */
1590 	vma->vm_end = vma->vm_start + new_len;
1591 	return vma->vm_start;
1592 }
1593 
1594 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1595 		unsigned long, new_len, unsigned long, flags,
1596 		unsigned long, new_addr)
1597 {
1598 	unsigned long ret;
1599 
1600 	mmap_write_lock(current->mm);
1601 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1602 	mmap_write_unlock(current->mm);
1603 	return ret;
1604 }
1605 
1606 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1607 			 unsigned int foll_flags)
1608 {
1609 	return NULL;
1610 }
1611 
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 		unsigned long pfn, unsigned long size, pgprot_t prot)
1614 {
1615 	if (addr != (pfn << PAGE_SHIFT))
1616 		return -EINVAL;
1617 
1618 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL(remap_pfn_range);
1622 
1623 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1624 {
1625 	unsigned long pfn = start >> PAGE_SHIFT;
1626 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1627 
1628 	pfn += vma->vm_pgoff;
1629 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1630 }
1631 EXPORT_SYMBOL(vm_iomap_memory);
1632 
1633 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1634 			unsigned long pgoff)
1635 {
1636 	unsigned int size = vma->vm_end - vma->vm_start;
1637 
1638 	if (!(vma->vm_flags & VM_USERMAP))
1639 		return -EINVAL;
1640 
1641 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1642 	vma->vm_end = vma->vm_start + size;
1643 
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(remap_vmalloc_range);
1647 
1648 vm_fault_t filemap_fault(struct vm_fault *vmf)
1649 {
1650 	BUG();
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL(filemap_fault);
1654 
1655 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1656 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1657 {
1658 	BUG();
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL(filemap_map_pages);
1662 
1663 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1664 		       int len, unsigned int gup_flags)
1665 {
1666 	struct vm_area_struct *vma;
1667 	int write = gup_flags & FOLL_WRITE;
1668 
1669 	if (mmap_read_lock_killable(mm))
1670 		return 0;
1671 
1672 	/* the access must start within one of the target process's mappings */
1673 	vma = find_vma(mm, addr);
1674 	if (vma) {
1675 		/* don't overrun this mapping */
1676 		if (addr + len >= vma->vm_end)
1677 			len = vma->vm_end - addr;
1678 
1679 		/* only read or write mappings where it is permitted */
1680 		if (write && vma->vm_flags & VM_MAYWRITE)
1681 			copy_to_user_page(vma, NULL, addr,
1682 					 (void *) addr, buf, len);
1683 		else if (!write && vma->vm_flags & VM_MAYREAD)
1684 			copy_from_user_page(vma, NULL, addr,
1685 					    buf, (void *) addr, len);
1686 		else
1687 			len = 0;
1688 	} else {
1689 		len = 0;
1690 	}
1691 
1692 	mmap_read_unlock(mm);
1693 
1694 	return len;
1695 }
1696 
1697 /**
1698  * access_remote_vm - access another process' address space
1699  * @mm:		the mm_struct of the target address space
1700  * @addr:	start address to access
1701  * @buf:	source or destination buffer
1702  * @len:	number of bytes to transfer
1703  * @gup_flags:	flags modifying lookup behaviour
1704  *
1705  * The caller must hold a reference on @mm.
1706  */
1707 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1708 		void *buf, int len, unsigned int gup_flags)
1709 {
1710 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1711 }
1712 
1713 /*
1714  * Access another process' address space.
1715  * - source/target buffer must be kernel space
1716  */
1717 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1718 		unsigned int gup_flags)
1719 {
1720 	struct mm_struct *mm;
1721 
1722 	if (addr + len < addr)
1723 		return 0;
1724 
1725 	mm = get_task_mm(tsk);
1726 	if (!mm)
1727 		return 0;
1728 
1729 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1730 
1731 	mmput(mm);
1732 	return len;
1733 }
1734 EXPORT_SYMBOL_GPL(access_process_vm);
1735 
1736 /**
1737  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1738  * @inode: The inode to check
1739  * @size: The current filesize of the inode
1740  * @newsize: The proposed filesize of the inode
1741  *
1742  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1743  * make sure that any outstanding VMAs aren't broken and then shrink the
1744  * vm_regions that extend beyond so that do_mmap() doesn't
1745  * automatically grant mappings that are too large.
1746  */
1747 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1748 				size_t newsize)
1749 {
1750 	struct vm_area_struct *vma;
1751 	struct vm_region *region;
1752 	pgoff_t low, high;
1753 	size_t r_size, r_top;
1754 
1755 	low = newsize >> PAGE_SHIFT;
1756 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1757 
1758 	down_write(&nommu_region_sem);
1759 	i_mmap_lock_read(inode->i_mapping);
1760 
1761 	/* search for VMAs that fall within the dead zone */
1762 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1763 		/* found one - only interested if it's shared out of the page
1764 		 * cache */
1765 		if (vma->vm_flags & VM_SHARED) {
1766 			i_mmap_unlock_read(inode->i_mapping);
1767 			up_write(&nommu_region_sem);
1768 			return -ETXTBSY; /* not quite true, but near enough */
1769 		}
1770 	}
1771 
1772 	/* reduce any regions that overlap the dead zone - if in existence,
1773 	 * these will be pointed to by VMAs that don't overlap the dead zone
1774 	 *
1775 	 * we don't check for any regions that start beyond the EOF as there
1776 	 * shouldn't be any
1777 	 */
1778 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1779 		if (!(vma->vm_flags & VM_SHARED))
1780 			continue;
1781 
1782 		region = vma->vm_region;
1783 		r_size = region->vm_top - region->vm_start;
1784 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1785 
1786 		if (r_top > newsize) {
1787 			region->vm_top -= r_top - newsize;
1788 			if (region->vm_end > region->vm_top)
1789 				region->vm_end = region->vm_top;
1790 		}
1791 	}
1792 
1793 	i_mmap_unlock_read(inode->i_mapping);
1794 	up_write(&nommu_region_sem);
1795 	return 0;
1796 }
1797 
1798 /*
1799  * Initialise sysctl_user_reserve_kbytes.
1800  *
1801  * This is intended to prevent a user from starting a single memory hogging
1802  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1803  * mode.
1804  *
1805  * The default value is min(3% of free memory, 128MB)
1806  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1807  */
1808 static int __meminit init_user_reserve(void)
1809 {
1810 	unsigned long free_kbytes;
1811 
1812 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1813 
1814 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1815 	return 0;
1816 }
1817 subsys_initcall(init_user_reserve);
1818 
1819 /*
1820  * Initialise sysctl_admin_reserve_kbytes.
1821  *
1822  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1823  * to log in and kill a memory hogging process.
1824  *
1825  * Systems with more than 256MB will reserve 8MB, enough to recover
1826  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1827  * only reserve 3% of free pages by default.
1828  */
1829 static int __meminit init_admin_reserve(void)
1830 {
1831 	unsigned long free_kbytes;
1832 
1833 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1834 
1835 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1836 	return 0;
1837 }
1838 subsys_initcall(init_admin_reserve);
1839