xref: /openbmc/linux/mm/nommu.c (revision 0d456bad)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 #if 0
40 #define kenter(FMT, ...) \
41 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54 
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66 
67 atomic_long_t mmap_pages_allocated;
68 
69 /*
70  * The global memory commitment made in the system can be a metric
71  * that can be used to drive ballooning decisions when Linux is hosted
72  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
73  * balancing memory across competing virtual machines that are hosted.
74  * Several metrics drive this policy engine including the guest reported
75  * memory commitment.
76  */
77 unsigned long vm_memory_committed(void)
78 {
79 	return percpu_counter_read_positive(&vm_committed_as);
80 }
81 
82 EXPORT_SYMBOL_GPL(vm_memory_committed);
83 
84 EXPORT_SYMBOL(mem_map);
85 EXPORT_SYMBOL(num_physpages);
86 
87 /* list of mapped, potentially shareable regions */
88 static struct kmem_cache *vm_region_jar;
89 struct rb_root nommu_region_tree = RB_ROOT;
90 DECLARE_RWSEM(nommu_region_sem);
91 
92 const struct vm_operations_struct generic_file_vm_ops = {
93 };
94 
95 /*
96  * Return the total memory allocated for this pointer, not
97  * just what the caller asked for.
98  *
99  * Doesn't have to be accurate, i.e. may have races.
100  */
101 unsigned int kobjsize(const void *objp)
102 {
103 	struct page *page;
104 
105 	/*
106 	 * If the object we have should not have ksize performed on it,
107 	 * return size of 0
108 	 */
109 	if (!objp || !virt_addr_valid(objp))
110 		return 0;
111 
112 	page = virt_to_head_page(objp);
113 
114 	/*
115 	 * If the allocator sets PageSlab, we know the pointer came from
116 	 * kmalloc().
117 	 */
118 	if (PageSlab(page))
119 		return ksize(objp);
120 
121 	/*
122 	 * If it's not a compound page, see if we have a matching VMA
123 	 * region. This test is intentionally done in reverse order,
124 	 * so if there's no VMA, we still fall through and hand back
125 	 * PAGE_SIZE for 0-order pages.
126 	 */
127 	if (!PageCompound(page)) {
128 		struct vm_area_struct *vma;
129 
130 		vma = find_vma(current->mm, (unsigned long)objp);
131 		if (vma)
132 			return vma->vm_end - vma->vm_start;
133 	}
134 
135 	/*
136 	 * The ksize() function is only guaranteed to work for pointers
137 	 * returned by kmalloc(). So handle arbitrary pointers here.
138 	 */
139 	return PAGE_SIZE << compound_order(page);
140 }
141 
142 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
143 		     unsigned long start, int nr_pages, unsigned int foll_flags,
144 		     struct page **pages, struct vm_area_struct **vmas,
145 		     int *retry)
146 {
147 	struct vm_area_struct *vma;
148 	unsigned long vm_flags;
149 	int i;
150 
151 	/* calculate required read or write permissions.
152 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
153 	 */
154 	vm_flags  = (foll_flags & FOLL_WRITE) ?
155 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
156 	vm_flags &= (foll_flags & FOLL_FORCE) ?
157 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
158 
159 	for (i = 0; i < nr_pages; i++) {
160 		vma = find_vma(mm, start);
161 		if (!vma)
162 			goto finish_or_fault;
163 
164 		/* protect what we can, including chardevs */
165 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
166 		    !(vm_flags & vma->vm_flags))
167 			goto finish_or_fault;
168 
169 		if (pages) {
170 			pages[i] = virt_to_page(start);
171 			if (pages[i])
172 				page_cache_get(pages[i]);
173 		}
174 		if (vmas)
175 			vmas[i] = vma;
176 		start = (start + PAGE_SIZE) & PAGE_MASK;
177 	}
178 
179 	return i;
180 
181 finish_or_fault:
182 	return i ? : -EFAULT;
183 }
184 
185 /*
186  * get a list of pages in an address range belonging to the specified process
187  * and indicate the VMA that covers each page
188  * - this is potentially dodgy as we may end incrementing the page count of a
189  *   slab page or a secondary page from a compound page
190  * - don't permit access to VMAs that don't support it, such as I/O mappings
191  */
192 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
193 	unsigned long start, int nr_pages, int write, int force,
194 	struct page **pages, struct vm_area_struct **vmas)
195 {
196 	int flags = 0;
197 
198 	if (write)
199 		flags |= FOLL_WRITE;
200 	if (force)
201 		flags |= FOLL_FORCE;
202 
203 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
204 				NULL);
205 }
206 EXPORT_SYMBOL(get_user_pages);
207 
208 /**
209  * follow_pfn - look up PFN at a user virtual address
210  * @vma: memory mapping
211  * @address: user virtual address
212  * @pfn: location to store found PFN
213  *
214  * Only IO mappings and raw PFN mappings are allowed.
215  *
216  * Returns zero and the pfn at @pfn on success, -ve otherwise.
217  */
218 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
219 	unsigned long *pfn)
220 {
221 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
222 		return -EINVAL;
223 
224 	*pfn = address >> PAGE_SHIFT;
225 	return 0;
226 }
227 EXPORT_SYMBOL(follow_pfn);
228 
229 DEFINE_RWLOCK(vmlist_lock);
230 struct vm_struct *vmlist;
231 
232 void vfree(const void *addr)
233 {
234 	kfree(addr);
235 }
236 EXPORT_SYMBOL(vfree);
237 
238 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
239 {
240 	/*
241 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
242 	 * returns only a logical address.
243 	 */
244 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
245 }
246 EXPORT_SYMBOL(__vmalloc);
247 
248 void *vmalloc_user(unsigned long size)
249 {
250 	void *ret;
251 
252 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
253 			PAGE_KERNEL);
254 	if (ret) {
255 		struct vm_area_struct *vma;
256 
257 		down_write(&current->mm->mmap_sem);
258 		vma = find_vma(current->mm, (unsigned long)ret);
259 		if (vma)
260 			vma->vm_flags |= VM_USERMAP;
261 		up_write(&current->mm->mmap_sem);
262 	}
263 
264 	return ret;
265 }
266 EXPORT_SYMBOL(vmalloc_user);
267 
268 struct page *vmalloc_to_page(const void *addr)
269 {
270 	return virt_to_page(addr);
271 }
272 EXPORT_SYMBOL(vmalloc_to_page);
273 
274 unsigned long vmalloc_to_pfn(const void *addr)
275 {
276 	return page_to_pfn(virt_to_page(addr));
277 }
278 EXPORT_SYMBOL(vmalloc_to_pfn);
279 
280 long vread(char *buf, char *addr, unsigned long count)
281 {
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return(count);
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually continguos memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into continguos kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually continguos memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into continguos kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370 
371 /**
372  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *	@size:		allocation size
374  *
375  *	Kernel-internal function to allocate enough pages to cover @size
376  *	the page level allocator and map them into contiguous and
377  *	executable kernel virtual space.
378  *
379  *	For tight control over page level allocator and protection flags
380  *	use __vmalloc() instead.
381  */
382 
383 void *vmalloc_exec(unsigned long size)
384 {
385 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387 
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *	@size:		allocation size
391  *
392  *	Allocate enough 32bit PA addressable pages to cover @size from the
393  *	page level allocator and map them into continguos kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400 
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *	@size:		allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413 	/*
414 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 	 * but for now this can simply use vmalloc_user() directly.
416 	 */
417 	return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420 
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423 	BUG();
424 	return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427 
428 void vunmap(const void *addr)
429 {
430 	BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433 
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436 	BUG();
437 	return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440 
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443 	BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446 
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451 
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void  __attribute__((weak)) vmalloc_sync_all(void)
457 {
458 }
459 
460 /**
461  *	alloc_vm_area - allocate a range of kernel address space
462  *	@size:		size of the area
463  *
464  *	Returns:	NULL on failure, vm_struct on success
465  *
466  *	This function reserves a range of kernel address space, and
467  *	allocates pagetables to map that range.  No actual mappings
468  *	are created.  If the kernel address space is not shared
469  *	between processes, it syncs the pagetable across all
470  *	processes.
471  */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474 	BUG();
475 	return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478 
479 void free_vm_area(struct vm_struct *area)
480 {
481 	BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484 
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486 		   struct page *page)
487 {
488 	return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491 
492 /*
493  *  sys_brk() for the most part doesn't need the global kernel
494  *  lock, except when an application is doing something nasty
495  *  like trying to un-brk an area that has already been mapped
496  *  to a regular file.  in this case, the unmapping will need
497  *  to invoke file system routines that need the global lock.
498  */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501 	struct mm_struct *mm = current->mm;
502 
503 	if (brk < mm->start_brk || brk > mm->context.end_brk)
504 		return mm->brk;
505 
506 	if (mm->brk == brk)
507 		return mm->brk;
508 
509 	/*
510 	 * Always allow shrinking brk
511 	 */
512 	if (brk <= mm->brk) {
513 		mm->brk = brk;
514 		return brk;
515 	}
516 
517 	/*
518 	 * Ok, looks good - let it rip.
519 	 */
520 	flush_icache_range(mm->brk, brk);
521 	return mm->brk = brk;
522 }
523 
524 /*
525  * initialise the VMA and region record slabs
526  */
527 void __init mmap_init(void)
528 {
529 	int ret;
530 
531 	ret = percpu_counter_init(&vm_committed_as, 0);
532 	VM_BUG_ON(ret);
533 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
534 }
535 
536 /*
537  * validate the region tree
538  * - the caller must hold the region lock
539  */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543 	struct vm_region *region, *last;
544 	struct rb_node *p, *lastp;
545 
546 	lastp = rb_first(&nommu_region_tree);
547 	if (!lastp)
548 		return;
549 
550 	last = rb_entry(lastp, struct vm_region, vm_rb);
551 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
552 	BUG_ON(unlikely(last->vm_top < last->vm_end));
553 
554 	while ((p = rb_next(lastp))) {
555 		region = rb_entry(p, struct vm_region, vm_rb);
556 		last = rb_entry(lastp, struct vm_region, vm_rb);
557 
558 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
559 		BUG_ON(unlikely(region->vm_top < region->vm_end));
560 		BUG_ON(unlikely(region->vm_start < last->vm_top));
561 
562 		lastp = p;
563 	}
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570 
571 /*
572  * add a region into the global tree
573  */
574 static void add_nommu_region(struct vm_region *region)
575 {
576 	struct vm_region *pregion;
577 	struct rb_node **p, *parent;
578 
579 	validate_nommu_regions();
580 
581 	parent = NULL;
582 	p = &nommu_region_tree.rb_node;
583 	while (*p) {
584 		parent = *p;
585 		pregion = rb_entry(parent, struct vm_region, vm_rb);
586 		if (region->vm_start < pregion->vm_start)
587 			p = &(*p)->rb_left;
588 		else if (region->vm_start > pregion->vm_start)
589 			p = &(*p)->rb_right;
590 		else if (pregion == region)
591 			return;
592 		else
593 			BUG();
594 	}
595 
596 	rb_link_node(&region->vm_rb, parent, p);
597 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
598 
599 	validate_nommu_regions();
600 }
601 
602 /*
603  * delete a region from the global tree
604  */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607 	BUG_ON(!nommu_region_tree.rb_node);
608 
609 	validate_nommu_regions();
610 	rb_erase(&region->vm_rb, &nommu_region_tree);
611 	validate_nommu_regions();
612 }
613 
614 /*
615  * free a contiguous series of pages
616  */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619 	for (; from < to; from += PAGE_SIZE) {
620 		struct page *page = virt_to_page(from);
621 
622 		kdebug("- free %lx", from);
623 		atomic_long_dec(&mmap_pages_allocated);
624 		if (page_count(page) != 1)
625 			kdebug("free page %p: refcount not one: %d",
626 			       page, page_count(page));
627 		put_page(page);
628 	}
629 }
630 
631 /*
632  * release a reference to a region
633  * - the caller must hold the region semaphore for writing, which this releases
634  * - the region may not have been added to the tree yet, in which case vm_top
635  *   will equal vm_start
636  */
637 static void __put_nommu_region(struct vm_region *region)
638 	__releases(nommu_region_sem)
639 {
640 	kenter("%p{%d}", region, region->vm_usage);
641 
642 	BUG_ON(!nommu_region_tree.rb_node);
643 
644 	if (--region->vm_usage == 0) {
645 		if (region->vm_top > region->vm_start)
646 			delete_nommu_region(region);
647 		up_write(&nommu_region_sem);
648 
649 		if (region->vm_file)
650 			fput(region->vm_file);
651 
652 		/* IO memory and memory shared directly out of the pagecache
653 		 * from ramfs/tmpfs mustn't be released here */
654 		if (region->vm_flags & VM_MAPPED_COPY) {
655 			kdebug("free series");
656 			free_page_series(region->vm_start, region->vm_top);
657 		}
658 		kmem_cache_free(vm_region_jar, region);
659 	} else {
660 		up_write(&nommu_region_sem);
661 	}
662 }
663 
664 /*
665  * release a reference to a region
666  */
667 static void put_nommu_region(struct vm_region *region)
668 {
669 	down_write(&nommu_region_sem);
670 	__put_nommu_region(region);
671 }
672 
673 /*
674  * update protection on a vma
675  */
676 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
677 {
678 #ifdef CONFIG_MPU
679 	struct mm_struct *mm = vma->vm_mm;
680 	long start = vma->vm_start & PAGE_MASK;
681 	while (start < vma->vm_end) {
682 		protect_page(mm, start, flags);
683 		start += PAGE_SIZE;
684 	}
685 	update_protections(mm);
686 #endif
687 }
688 
689 /*
690  * add a VMA into a process's mm_struct in the appropriate place in the list
691  * and tree and add to the address space's page tree also if not an anonymous
692  * page
693  * - should be called with mm->mmap_sem held writelocked
694  */
695 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
696 {
697 	struct vm_area_struct *pvma, *prev;
698 	struct address_space *mapping;
699 	struct rb_node **p, *parent, *rb_prev;
700 
701 	kenter(",%p", vma);
702 
703 	BUG_ON(!vma->vm_region);
704 
705 	mm->map_count++;
706 	vma->vm_mm = mm;
707 
708 	protect_vma(vma, vma->vm_flags);
709 
710 	/* add the VMA to the mapping */
711 	if (vma->vm_file) {
712 		mapping = vma->vm_file->f_mapping;
713 
714 		mutex_lock(&mapping->i_mmap_mutex);
715 		flush_dcache_mmap_lock(mapping);
716 		vma_interval_tree_insert(vma, &mapping->i_mmap);
717 		flush_dcache_mmap_unlock(mapping);
718 		mutex_unlock(&mapping->i_mmap_mutex);
719 	}
720 
721 	/* add the VMA to the tree */
722 	parent = rb_prev = NULL;
723 	p = &mm->mm_rb.rb_node;
724 	while (*p) {
725 		parent = *p;
726 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
727 
728 		/* sort by: start addr, end addr, VMA struct addr in that order
729 		 * (the latter is necessary as we may get identical VMAs) */
730 		if (vma->vm_start < pvma->vm_start)
731 			p = &(*p)->rb_left;
732 		else if (vma->vm_start > pvma->vm_start) {
733 			rb_prev = parent;
734 			p = &(*p)->rb_right;
735 		} else if (vma->vm_end < pvma->vm_end)
736 			p = &(*p)->rb_left;
737 		else if (vma->vm_end > pvma->vm_end) {
738 			rb_prev = parent;
739 			p = &(*p)->rb_right;
740 		} else if (vma < pvma)
741 			p = &(*p)->rb_left;
742 		else if (vma > pvma) {
743 			rb_prev = parent;
744 			p = &(*p)->rb_right;
745 		} else
746 			BUG();
747 	}
748 
749 	rb_link_node(&vma->vm_rb, parent, p);
750 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
751 
752 	/* add VMA to the VMA list also */
753 	prev = NULL;
754 	if (rb_prev)
755 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
756 
757 	__vma_link_list(mm, vma, prev, parent);
758 }
759 
760 /*
761  * delete a VMA from its owning mm_struct and address space
762  */
763 static void delete_vma_from_mm(struct vm_area_struct *vma)
764 {
765 	struct address_space *mapping;
766 	struct mm_struct *mm = vma->vm_mm;
767 
768 	kenter("%p", vma);
769 
770 	protect_vma(vma, 0);
771 
772 	mm->map_count--;
773 	if (mm->mmap_cache == vma)
774 		mm->mmap_cache = NULL;
775 
776 	/* remove the VMA from the mapping */
777 	if (vma->vm_file) {
778 		mapping = vma->vm_file->f_mapping;
779 
780 		mutex_lock(&mapping->i_mmap_mutex);
781 		flush_dcache_mmap_lock(mapping);
782 		vma_interval_tree_remove(vma, &mapping->i_mmap);
783 		flush_dcache_mmap_unlock(mapping);
784 		mutex_unlock(&mapping->i_mmap_mutex);
785 	}
786 
787 	/* remove from the MM's tree and list */
788 	rb_erase(&vma->vm_rb, &mm->mm_rb);
789 
790 	if (vma->vm_prev)
791 		vma->vm_prev->vm_next = vma->vm_next;
792 	else
793 		mm->mmap = vma->vm_next;
794 
795 	if (vma->vm_next)
796 		vma->vm_next->vm_prev = vma->vm_prev;
797 }
798 
799 /*
800  * destroy a VMA record
801  */
802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
803 {
804 	kenter("%p", vma);
805 	if (vma->vm_ops && vma->vm_ops->close)
806 		vma->vm_ops->close(vma);
807 	if (vma->vm_file)
808 		fput(vma->vm_file);
809 	put_nommu_region(vma->vm_region);
810 	kmem_cache_free(vm_area_cachep, vma);
811 }
812 
813 /*
814  * look up the first VMA in which addr resides, NULL if none
815  * - should be called with mm->mmap_sem at least held readlocked
816  */
817 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
818 {
819 	struct vm_area_struct *vma;
820 
821 	/* check the cache first */
822 	vma = mm->mmap_cache;
823 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
824 		return vma;
825 
826 	/* trawl the list (there may be multiple mappings in which addr
827 	 * resides) */
828 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
829 		if (vma->vm_start > addr)
830 			return NULL;
831 		if (vma->vm_end > addr) {
832 			mm->mmap_cache = vma;
833 			return vma;
834 		}
835 	}
836 
837 	return NULL;
838 }
839 EXPORT_SYMBOL(find_vma);
840 
841 /*
842  * find a VMA
843  * - we don't extend stack VMAs under NOMMU conditions
844  */
845 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
846 {
847 	return find_vma(mm, addr);
848 }
849 
850 /*
851  * expand a stack to a given address
852  * - not supported under NOMMU conditions
853  */
854 int expand_stack(struct vm_area_struct *vma, unsigned long address)
855 {
856 	return -ENOMEM;
857 }
858 
859 /*
860  * look up the first VMA exactly that exactly matches addr
861  * - should be called with mm->mmap_sem at least held readlocked
862  */
863 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
864 					     unsigned long addr,
865 					     unsigned long len)
866 {
867 	struct vm_area_struct *vma;
868 	unsigned long end = addr + len;
869 
870 	/* check the cache first */
871 	vma = mm->mmap_cache;
872 	if (vma && vma->vm_start == addr && vma->vm_end == end)
873 		return vma;
874 
875 	/* trawl the list (there may be multiple mappings in which addr
876 	 * resides) */
877 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
878 		if (vma->vm_start < addr)
879 			continue;
880 		if (vma->vm_start > addr)
881 			return NULL;
882 		if (vma->vm_end == end) {
883 			mm->mmap_cache = vma;
884 			return vma;
885 		}
886 	}
887 
888 	return NULL;
889 }
890 
891 /*
892  * determine whether a mapping should be permitted and, if so, what sort of
893  * mapping we're capable of supporting
894  */
895 static int validate_mmap_request(struct file *file,
896 				 unsigned long addr,
897 				 unsigned long len,
898 				 unsigned long prot,
899 				 unsigned long flags,
900 				 unsigned long pgoff,
901 				 unsigned long *_capabilities)
902 {
903 	unsigned long capabilities, rlen;
904 	int ret;
905 
906 	/* do the simple checks first */
907 	if (flags & MAP_FIXED) {
908 		printk(KERN_DEBUG
909 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
910 		       current->pid);
911 		return -EINVAL;
912 	}
913 
914 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
915 	    (flags & MAP_TYPE) != MAP_SHARED)
916 		return -EINVAL;
917 
918 	if (!len)
919 		return -EINVAL;
920 
921 	/* Careful about overflows.. */
922 	rlen = PAGE_ALIGN(len);
923 	if (!rlen || rlen > TASK_SIZE)
924 		return -ENOMEM;
925 
926 	/* offset overflow? */
927 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
928 		return -EOVERFLOW;
929 
930 	if (file) {
931 		/* validate file mapping requests */
932 		struct address_space *mapping;
933 
934 		/* files must support mmap */
935 		if (!file->f_op || !file->f_op->mmap)
936 			return -ENODEV;
937 
938 		/* work out if what we've got could possibly be shared
939 		 * - we support chardevs that provide their own "memory"
940 		 * - we support files/blockdevs that are memory backed
941 		 */
942 		mapping = file->f_mapping;
943 		if (!mapping)
944 			mapping = file->f_path.dentry->d_inode->i_mapping;
945 
946 		capabilities = 0;
947 		if (mapping && mapping->backing_dev_info)
948 			capabilities = mapping->backing_dev_info->capabilities;
949 
950 		if (!capabilities) {
951 			/* no explicit capabilities set, so assume some
952 			 * defaults */
953 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
954 			case S_IFREG:
955 			case S_IFBLK:
956 				capabilities = BDI_CAP_MAP_COPY;
957 				break;
958 
959 			case S_IFCHR:
960 				capabilities =
961 					BDI_CAP_MAP_DIRECT |
962 					BDI_CAP_READ_MAP |
963 					BDI_CAP_WRITE_MAP;
964 				break;
965 
966 			default:
967 				return -EINVAL;
968 			}
969 		}
970 
971 		/* eliminate any capabilities that we can't support on this
972 		 * device */
973 		if (!file->f_op->get_unmapped_area)
974 			capabilities &= ~BDI_CAP_MAP_DIRECT;
975 		if (!file->f_op->read)
976 			capabilities &= ~BDI_CAP_MAP_COPY;
977 
978 		/* The file shall have been opened with read permission. */
979 		if (!(file->f_mode & FMODE_READ))
980 			return -EACCES;
981 
982 		if (flags & MAP_SHARED) {
983 			/* do checks for writing, appending and locking */
984 			if ((prot & PROT_WRITE) &&
985 			    !(file->f_mode & FMODE_WRITE))
986 				return -EACCES;
987 
988 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
989 			    (file->f_mode & FMODE_WRITE))
990 				return -EACCES;
991 
992 			if (locks_verify_locked(file->f_path.dentry->d_inode))
993 				return -EAGAIN;
994 
995 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
996 				return -ENODEV;
997 
998 			/* we mustn't privatise shared mappings */
999 			capabilities &= ~BDI_CAP_MAP_COPY;
1000 		}
1001 		else {
1002 			/* we're going to read the file into private memory we
1003 			 * allocate */
1004 			if (!(capabilities & BDI_CAP_MAP_COPY))
1005 				return -ENODEV;
1006 
1007 			/* we don't permit a private writable mapping to be
1008 			 * shared with the backing device */
1009 			if (prot & PROT_WRITE)
1010 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1011 		}
1012 
1013 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1014 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1015 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1016 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1017 			    ) {
1018 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1019 				if (flags & MAP_SHARED) {
1020 					printk(KERN_WARNING
1021 					       "MAP_SHARED not completely supported on !MMU\n");
1022 					return -EINVAL;
1023 				}
1024 			}
1025 		}
1026 
1027 		/* handle executable mappings and implied executable
1028 		 * mappings */
1029 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1030 			if (prot & PROT_EXEC)
1031 				return -EPERM;
1032 		}
1033 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1034 			/* handle implication of PROT_EXEC by PROT_READ */
1035 			if (current->personality & READ_IMPLIES_EXEC) {
1036 				if (capabilities & BDI_CAP_EXEC_MAP)
1037 					prot |= PROT_EXEC;
1038 			}
1039 		}
1040 		else if ((prot & PROT_READ) &&
1041 			 (prot & PROT_EXEC) &&
1042 			 !(capabilities & BDI_CAP_EXEC_MAP)
1043 			 ) {
1044 			/* backing file is not executable, try to copy */
1045 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1046 		}
1047 	}
1048 	else {
1049 		/* anonymous mappings are always memory backed and can be
1050 		 * privately mapped
1051 		 */
1052 		capabilities = BDI_CAP_MAP_COPY;
1053 
1054 		/* handle PROT_EXEC implication by PROT_READ */
1055 		if ((prot & PROT_READ) &&
1056 		    (current->personality & READ_IMPLIES_EXEC))
1057 			prot |= PROT_EXEC;
1058 	}
1059 
1060 	/* allow the security API to have its say */
1061 	ret = security_mmap_addr(addr);
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	/* looks okay */
1066 	*_capabilities = capabilities;
1067 	return 0;
1068 }
1069 
1070 /*
1071  * we've determined that we can make the mapping, now translate what we
1072  * now know into VMA flags
1073  */
1074 static unsigned long determine_vm_flags(struct file *file,
1075 					unsigned long prot,
1076 					unsigned long flags,
1077 					unsigned long capabilities)
1078 {
1079 	unsigned long vm_flags;
1080 
1081 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1082 	/* vm_flags |= mm->def_flags; */
1083 
1084 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1085 		/* attempt to share read-only copies of mapped file chunks */
1086 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1087 		if (file && !(prot & PROT_WRITE))
1088 			vm_flags |= VM_MAYSHARE;
1089 	} else {
1090 		/* overlay a shareable mapping on the backing device or inode
1091 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1092 		 * romfs/cramfs */
1093 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1094 		if (flags & MAP_SHARED)
1095 			vm_flags |= VM_SHARED;
1096 	}
1097 
1098 	/* refuse to let anyone share private mappings with this process if
1099 	 * it's being traced - otherwise breakpoints set in it may interfere
1100 	 * with another untraced process
1101 	 */
1102 	if ((flags & MAP_PRIVATE) && current->ptrace)
1103 		vm_flags &= ~VM_MAYSHARE;
1104 
1105 	return vm_flags;
1106 }
1107 
1108 /*
1109  * set up a shared mapping on a file (the driver or filesystem provides and
1110  * pins the storage)
1111  */
1112 static int do_mmap_shared_file(struct vm_area_struct *vma)
1113 {
1114 	int ret;
1115 
1116 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1117 	if (ret == 0) {
1118 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1119 		return 0;
1120 	}
1121 	if (ret != -ENOSYS)
1122 		return ret;
1123 
1124 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1125 	 * opposed to tried but failed) so we can only give a suitable error as
1126 	 * it's not possible to make a private copy if MAP_SHARED was given */
1127 	return -ENODEV;
1128 }
1129 
1130 /*
1131  * set up a private mapping or an anonymous shared mapping
1132  */
1133 static int do_mmap_private(struct vm_area_struct *vma,
1134 			   struct vm_region *region,
1135 			   unsigned long len,
1136 			   unsigned long capabilities)
1137 {
1138 	struct page *pages;
1139 	unsigned long total, point, n;
1140 	void *base;
1141 	int ret, order;
1142 
1143 	/* invoke the file's mapping function so that it can keep track of
1144 	 * shared mappings on devices or memory
1145 	 * - VM_MAYSHARE will be set if it may attempt to share
1146 	 */
1147 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1148 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1149 		if (ret == 0) {
1150 			/* shouldn't return success if we're not sharing */
1151 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1152 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1153 			return 0;
1154 		}
1155 		if (ret != -ENOSYS)
1156 			return ret;
1157 
1158 		/* getting an ENOSYS error indicates that direct mmap isn't
1159 		 * possible (as opposed to tried but failed) so we'll try to
1160 		 * make a private copy of the data and map that instead */
1161 	}
1162 
1163 
1164 	/* allocate some memory to hold the mapping
1165 	 * - note that this may not return a page-aligned address if the object
1166 	 *   we're allocating is smaller than a page
1167 	 */
1168 	order = get_order(len);
1169 	kdebug("alloc order %d for %lx", order, len);
1170 
1171 	pages = alloc_pages(GFP_KERNEL, order);
1172 	if (!pages)
1173 		goto enomem;
1174 
1175 	total = 1 << order;
1176 	atomic_long_add(total, &mmap_pages_allocated);
1177 
1178 	point = len >> PAGE_SHIFT;
1179 
1180 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1181 	 * the excess */
1182 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1183 		while (total > point) {
1184 			order = ilog2(total - point);
1185 			n = 1 << order;
1186 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1187 			atomic_long_sub(n, &mmap_pages_allocated);
1188 			total -= n;
1189 			set_page_refcounted(pages + total);
1190 			__free_pages(pages + total, order);
1191 		}
1192 	}
1193 
1194 	for (point = 1; point < total; point++)
1195 		set_page_refcounted(&pages[point]);
1196 
1197 	base = page_address(pages);
1198 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1199 	region->vm_start = (unsigned long) base;
1200 	region->vm_end   = region->vm_start + len;
1201 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1202 
1203 	vma->vm_start = region->vm_start;
1204 	vma->vm_end   = region->vm_start + len;
1205 
1206 	if (vma->vm_file) {
1207 		/* read the contents of a file into the copy */
1208 		mm_segment_t old_fs;
1209 		loff_t fpos;
1210 
1211 		fpos = vma->vm_pgoff;
1212 		fpos <<= PAGE_SHIFT;
1213 
1214 		old_fs = get_fs();
1215 		set_fs(KERNEL_DS);
1216 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1217 		set_fs(old_fs);
1218 
1219 		if (ret < 0)
1220 			goto error_free;
1221 
1222 		/* clear the last little bit */
1223 		if (ret < len)
1224 			memset(base + ret, 0, len - ret);
1225 
1226 	}
1227 
1228 	return 0;
1229 
1230 error_free:
1231 	free_page_series(region->vm_start, region->vm_top);
1232 	region->vm_start = vma->vm_start = 0;
1233 	region->vm_end   = vma->vm_end = 0;
1234 	region->vm_top   = 0;
1235 	return ret;
1236 
1237 enomem:
1238 	printk("Allocation of length %lu from process %d (%s) failed\n",
1239 	       len, current->pid, current->comm);
1240 	show_free_areas(0);
1241 	return -ENOMEM;
1242 }
1243 
1244 /*
1245  * handle mapping creation for uClinux
1246  */
1247 unsigned long do_mmap_pgoff(struct file *file,
1248 			    unsigned long addr,
1249 			    unsigned long len,
1250 			    unsigned long prot,
1251 			    unsigned long flags,
1252 			    unsigned long pgoff)
1253 {
1254 	struct vm_area_struct *vma;
1255 	struct vm_region *region;
1256 	struct rb_node *rb;
1257 	unsigned long capabilities, vm_flags, result;
1258 	int ret;
1259 
1260 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1261 
1262 	/* decide whether we should attempt the mapping, and if so what sort of
1263 	 * mapping */
1264 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1265 				    &capabilities);
1266 	if (ret < 0) {
1267 		kleave(" = %d [val]", ret);
1268 		return ret;
1269 	}
1270 
1271 	/* we ignore the address hint */
1272 	addr = 0;
1273 	len = PAGE_ALIGN(len);
1274 
1275 	/* we've determined that we can make the mapping, now translate what we
1276 	 * now know into VMA flags */
1277 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1278 
1279 	/* we're going to need to record the mapping */
1280 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1281 	if (!region)
1282 		goto error_getting_region;
1283 
1284 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1285 	if (!vma)
1286 		goto error_getting_vma;
1287 
1288 	region->vm_usage = 1;
1289 	region->vm_flags = vm_flags;
1290 	region->vm_pgoff = pgoff;
1291 
1292 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1293 	vma->vm_flags = vm_flags;
1294 	vma->vm_pgoff = pgoff;
1295 
1296 	if (file) {
1297 		region->vm_file = get_file(file);
1298 		vma->vm_file = get_file(file);
1299 	}
1300 
1301 	down_write(&nommu_region_sem);
1302 
1303 	/* if we want to share, we need to check for regions created by other
1304 	 * mmap() calls that overlap with our proposed mapping
1305 	 * - we can only share with a superset match on most regular files
1306 	 * - shared mappings on character devices and memory backed files are
1307 	 *   permitted to overlap inexactly as far as we are concerned for in
1308 	 *   these cases, sharing is handled in the driver or filesystem rather
1309 	 *   than here
1310 	 */
1311 	if (vm_flags & VM_MAYSHARE) {
1312 		struct vm_region *pregion;
1313 		unsigned long pglen, rpglen, pgend, rpgend, start;
1314 
1315 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1316 		pgend = pgoff + pglen;
1317 
1318 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1319 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1320 
1321 			if (!(pregion->vm_flags & VM_MAYSHARE))
1322 				continue;
1323 
1324 			/* search for overlapping mappings on the same file */
1325 			if (pregion->vm_file->f_path.dentry->d_inode !=
1326 			    file->f_path.dentry->d_inode)
1327 				continue;
1328 
1329 			if (pregion->vm_pgoff >= pgend)
1330 				continue;
1331 
1332 			rpglen = pregion->vm_end - pregion->vm_start;
1333 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1334 			rpgend = pregion->vm_pgoff + rpglen;
1335 			if (pgoff >= rpgend)
1336 				continue;
1337 
1338 			/* handle inexactly overlapping matches between
1339 			 * mappings */
1340 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1341 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1342 				/* new mapping is not a subset of the region */
1343 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1344 					goto sharing_violation;
1345 				continue;
1346 			}
1347 
1348 			/* we've found a region we can share */
1349 			pregion->vm_usage++;
1350 			vma->vm_region = pregion;
1351 			start = pregion->vm_start;
1352 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1353 			vma->vm_start = start;
1354 			vma->vm_end = start + len;
1355 
1356 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1357 				kdebug("share copy");
1358 				vma->vm_flags |= VM_MAPPED_COPY;
1359 			} else {
1360 				kdebug("share mmap");
1361 				ret = do_mmap_shared_file(vma);
1362 				if (ret < 0) {
1363 					vma->vm_region = NULL;
1364 					vma->vm_start = 0;
1365 					vma->vm_end = 0;
1366 					pregion->vm_usage--;
1367 					pregion = NULL;
1368 					goto error_just_free;
1369 				}
1370 			}
1371 			fput(region->vm_file);
1372 			kmem_cache_free(vm_region_jar, region);
1373 			region = pregion;
1374 			result = start;
1375 			goto share;
1376 		}
1377 
1378 		/* obtain the address at which to make a shared mapping
1379 		 * - this is the hook for quasi-memory character devices to
1380 		 *   tell us the location of a shared mapping
1381 		 */
1382 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1383 			addr = file->f_op->get_unmapped_area(file, addr, len,
1384 							     pgoff, flags);
1385 			if (IS_ERR_VALUE(addr)) {
1386 				ret = addr;
1387 				if (ret != -ENOSYS)
1388 					goto error_just_free;
1389 
1390 				/* the driver refused to tell us where to site
1391 				 * the mapping so we'll have to attempt to copy
1392 				 * it */
1393 				ret = -ENODEV;
1394 				if (!(capabilities & BDI_CAP_MAP_COPY))
1395 					goto error_just_free;
1396 
1397 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1398 			} else {
1399 				vma->vm_start = region->vm_start = addr;
1400 				vma->vm_end = region->vm_end = addr + len;
1401 			}
1402 		}
1403 	}
1404 
1405 	vma->vm_region = region;
1406 
1407 	/* set up the mapping
1408 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1409 	 */
1410 	if (file && vma->vm_flags & VM_SHARED)
1411 		ret = do_mmap_shared_file(vma);
1412 	else
1413 		ret = do_mmap_private(vma, region, len, capabilities);
1414 	if (ret < 0)
1415 		goto error_just_free;
1416 	add_nommu_region(region);
1417 
1418 	/* clear anonymous mappings that don't ask for uninitialized data */
1419 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1420 		memset((void *)region->vm_start, 0,
1421 		       region->vm_end - region->vm_start);
1422 
1423 	/* okay... we have a mapping; now we have to register it */
1424 	result = vma->vm_start;
1425 
1426 	current->mm->total_vm += len >> PAGE_SHIFT;
1427 
1428 share:
1429 	add_vma_to_mm(current->mm, vma);
1430 
1431 	/* we flush the region from the icache only when the first executable
1432 	 * mapping of it is made  */
1433 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1434 		flush_icache_range(region->vm_start, region->vm_end);
1435 		region->vm_icache_flushed = true;
1436 	}
1437 
1438 	up_write(&nommu_region_sem);
1439 
1440 	kleave(" = %lx", result);
1441 	return result;
1442 
1443 error_just_free:
1444 	up_write(&nommu_region_sem);
1445 error:
1446 	if (region->vm_file)
1447 		fput(region->vm_file);
1448 	kmem_cache_free(vm_region_jar, region);
1449 	if (vma->vm_file)
1450 		fput(vma->vm_file);
1451 	kmem_cache_free(vm_area_cachep, vma);
1452 	kleave(" = %d", ret);
1453 	return ret;
1454 
1455 sharing_violation:
1456 	up_write(&nommu_region_sem);
1457 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1458 	ret = -EINVAL;
1459 	goto error;
1460 
1461 error_getting_vma:
1462 	kmem_cache_free(vm_region_jar, region);
1463 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1464 	       " from process %d failed\n",
1465 	       len, current->pid);
1466 	show_free_areas(0);
1467 	return -ENOMEM;
1468 
1469 error_getting_region:
1470 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1471 	       " from process %d failed\n",
1472 	       len, current->pid);
1473 	show_free_areas(0);
1474 	return -ENOMEM;
1475 }
1476 
1477 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1478 		unsigned long, prot, unsigned long, flags,
1479 		unsigned long, fd, unsigned long, pgoff)
1480 {
1481 	struct file *file = NULL;
1482 	unsigned long retval = -EBADF;
1483 
1484 	audit_mmap_fd(fd, flags);
1485 	if (!(flags & MAP_ANONYMOUS)) {
1486 		file = fget(fd);
1487 		if (!file)
1488 			goto out;
1489 	}
1490 
1491 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1492 
1493 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1494 
1495 	if (file)
1496 		fput(file);
1497 out:
1498 	return retval;
1499 }
1500 
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct {
1503 	unsigned long addr;
1504 	unsigned long len;
1505 	unsigned long prot;
1506 	unsigned long flags;
1507 	unsigned long fd;
1508 	unsigned long offset;
1509 };
1510 
1511 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1512 {
1513 	struct mmap_arg_struct a;
1514 
1515 	if (copy_from_user(&a, arg, sizeof(a)))
1516 		return -EFAULT;
1517 	if (a.offset & ~PAGE_MASK)
1518 		return -EINVAL;
1519 
1520 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1521 			      a.offset >> PAGE_SHIFT);
1522 }
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1524 
1525 /*
1526  * split a vma into two pieces at address 'addr', a new vma is allocated either
1527  * for the first part or the tail.
1528  */
1529 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1530 	      unsigned long addr, int new_below)
1531 {
1532 	struct vm_area_struct *new;
1533 	struct vm_region *region;
1534 	unsigned long npages;
1535 
1536 	kenter("");
1537 
1538 	/* we're only permitted to split anonymous regions (these should have
1539 	 * only a single usage on the region) */
1540 	if (vma->vm_file)
1541 		return -ENOMEM;
1542 
1543 	if (mm->map_count >= sysctl_max_map_count)
1544 		return -ENOMEM;
1545 
1546 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1547 	if (!region)
1548 		return -ENOMEM;
1549 
1550 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1551 	if (!new) {
1552 		kmem_cache_free(vm_region_jar, region);
1553 		return -ENOMEM;
1554 	}
1555 
1556 	/* most fields are the same, copy all, and then fixup */
1557 	*new = *vma;
1558 	*region = *vma->vm_region;
1559 	new->vm_region = region;
1560 
1561 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1562 
1563 	if (new_below) {
1564 		region->vm_top = region->vm_end = new->vm_end = addr;
1565 	} else {
1566 		region->vm_start = new->vm_start = addr;
1567 		region->vm_pgoff = new->vm_pgoff += npages;
1568 	}
1569 
1570 	if (new->vm_ops && new->vm_ops->open)
1571 		new->vm_ops->open(new);
1572 
1573 	delete_vma_from_mm(vma);
1574 	down_write(&nommu_region_sem);
1575 	delete_nommu_region(vma->vm_region);
1576 	if (new_below) {
1577 		vma->vm_region->vm_start = vma->vm_start = addr;
1578 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1579 	} else {
1580 		vma->vm_region->vm_end = vma->vm_end = addr;
1581 		vma->vm_region->vm_top = addr;
1582 	}
1583 	add_nommu_region(vma->vm_region);
1584 	add_nommu_region(new->vm_region);
1585 	up_write(&nommu_region_sem);
1586 	add_vma_to_mm(mm, vma);
1587 	add_vma_to_mm(mm, new);
1588 	return 0;
1589 }
1590 
1591 /*
1592  * shrink a VMA by removing the specified chunk from either the beginning or
1593  * the end
1594  */
1595 static int shrink_vma(struct mm_struct *mm,
1596 		      struct vm_area_struct *vma,
1597 		      unsigned long from, unsigned long to)
1598 {
1599 	struct vm_region *region;
1600 
1601 	kenter("");
1602 
1603 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1604 	 * and list */
1605 	delete_vma_from_mm(vma);
1606 	if (from > vma->vm_start)
1607 		vma->vm_end = from;
1608 	else
1609 		vma->vm_start = to;
1610 	add_vma_to_mm(mm, vma);
1611 
1612 	/* cut the backing region down to size */
1613 	region = vma->vm_region;
1614 	BUG_ON(region->vm_usage != 1);
1615 
1616 	down_write(&nommu_region_sem);
1617 	delete_nommu_region(region);
1618 	if (from > region->vm_start) {
1619 		to = region->vm_top;
1620 		region->vm_top = region->vm_end = from;
1621 	} else {
1622 		region->vm_start = to;
1623 	}
1624 	add_nommu_region(region);
1625 	up_write(&nommu_region_sem);
1626 
1627 	free_page_series(from, to);
1628 	return 0;
1629 }
1630 
1631 /*
1632  * release a mapping
1633  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634  *   VMA, though it need not cover the whole VMA
1635  */
1636 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1637 {
1638 	struct vm_area_struct *vma;
1639 	unsigned long end;
1640 	int ret;
1641 
1642 	kenter(",%lx,%zx", start, len);
1643 
1644 	len = PAGE_ALIGN(len);
1645 	if (len == 0)
1646 		return -EINVAL;
1647 
1648 	end = start + len;
1649 
1650 	/* find the first potentially overlapping VMA */
1651 	vma = find_vma(mm, start);
1652 	if (!vma) {
1653 		static int limit = 0;
1654 		if (limit < 5) {
1655 			printk(KERN_WARNING
1656 			       "munmap of memory not mmapped by process %d"
1657 			       " (%s): 0x%lx-0x%lx\n",
1658 			       current->pid, current->comm,
1659 			       start, start + len - 1);
1660 			limit++;
1661 		}
1662 		return -EINVAL;
1663 	}
1664 
1665 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1666 	if (vma->vm_file) {
1667 		do {
1668 			if (start > vma->vm_start) {
1669 				kleave(" = -EINVAL [miss]");
1670 				return -EINVAL;
1671 			}
1672 			if (end == vma->vm_end)
1673 				goto erase_whole_vma;
1674 			vma = vma->vm_next;
1675 		} while (vma);
1676 		kleave(" = -EINVAL [split file]");
1677 		return -EINVAL;
1678 	} else {
1679 		/* the chunk must be a subset of the VMA found */
1680 		if (start == vma->vm_start && end == vma->vm_end)
1681 			goto erase_whole_vma;
1682 		if (start < vma->vm_start || end > vma->vm_end) {
1683 			kleave(" = -EINVAL [superset]");
1684 			return -EINVAL;
1685 		}
1686 		if (start & ~PAGE_MASK) {
1687 			kleave(" = -EINVAL [unaligned start]");
1688 			return -EINVAL;
1689 		}
1690 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1691 			kleave(" = -EINVAL [unaligned split]");
1692 			return -EINVAL;
1693 		}
1694 		if (start != vma->vm_start && end != vma->vm_end) {
1695 			ret = split_vma(mm, vma, start, 1);
1696 			if (ret < 0) {
1697 				kleave(" = %d [split]", ret);
1698 				return ret;
1699 			}
1700 		}
1701 		return shrink_vma(mm, vma, start, end);
1702 	}
1703 
1704 erase_whole_vma:
1705 	delete_vma_from_mm(vma);
1706 	delete_vma(mm, vma);
1707 	kleave(" = 0");
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL(do_munmap);
1711 
1712 int vm_munmap(unsigned long addr, size_t len)
1713 {
1714 	struct mm_struct *mm = current->mm;
1715 	int ret;
1716 
1717 	down_write(&mm->mmap_sem);
1718 	ret = do_munmap(mm, addr, len);
1719 	up_write(&mm->mmap_sem);
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL(vm_munmap);
1723 
1724 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1725 {
1726 	return vm_munmap(addr, len);
1727 }
1728 
1729 /*
1730  * release all the mappings made in a process's VM space
1731  */
1732 void exit_mmap(struct mm_struct *mm)
1733 {
1734 	struct vm_area_struct *vma;
1735 
1736 	if (!mm)
1737 		return;
1738 
1739 	kenter("");
1740 
1741 	mm->total_vm = 0;
1742 
1743 	while ((vma = mm->mmap)) {
1744 		mm->mmap = vma->vm_next;
1745 		delete_vma_from_mm(vma);
1746 		delete_vma(mm, vma);
1747 		cond_resched();
1748 	}
1749 
1750 	kleave("");
1751 }
1752 
1753 unsigned long vm_brk(unsigned long addr, unsigned long len)
1754 {
1755 	return -ENOMEM;
1756 }
1757 
1758 /*
1759  * expand (or shrink) an existing mapping, potentially moving it at the same
1760  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1761  *
1762  * under NOMMU conditions, we only permit changing a mapping's size, and only
1763  * as long as it stays within the region allocated by do_mmap_private() and the
1764  * block is not shareable
1765  *
1766  * MREMAP_FIXED is not supported under NOMMU conditions
1767  */
1768 unsigned long do_mremap(unsigned long addr,
1769 			unsigned long old_len, unsigned long new_len,
1770 			unsigned long flags, unsigned long new_addr)
1771 {
1772 	struct vm_area_struct *vma;
1773 
1774 	/* insanity checks first */
1775 	old_len = PAGE_ALIGN(old_len);
1776 	new_len = PAGE_ALIGN(new_len);
1777 	if (old_len == 0 || new_len == 0)
1778 		return (unsigned long) -EINVAL;
1779 
1780 	if (addr & ~PAGE_MASK)
1781 		return -EINVAL;
1782 
1783 	if (flags & MREMAP_FIXED && new_addr != addr)
1784 		return (unsigned long) -EINVAL;
1785 
1786 	vma = find_vma_exact(current->mm, addr, old_len);
1787 	if (!vma)
1788 		return (unsigned long) -EINVAL;
1789 
1790 	if (vma->vm_end != vma->vm_start + old_len)
1791 		return (unsigned long) -EFAULT;
1792 
1793 	if (vma->vm_flags & VM_MAYSHARE)
1794 		return (unsigned long) -EPERM;
1795 
1796 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1797 		return (unsigned long) -ENOMEM;
1798 
1799 	/* all checks complete - do it */
1800 	vma->vm_end = vma->vm_start + new_len;
1801 	return vma->vm_start;
1802 }
1803 EXPORT_SYMBOL(do_mremap);
1804 
1805 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1806 		unsigned long, new_len, unsigned long, flags,
1807 		unsigned long, new_addr)
1808 {
1809 	unsigned long ret;
1810 
1811 	down_write(&current->mm->mmap_sem);
1812 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1813 	up_write(&current->mm->mmap_sem);
1814 	return ret;
1815 }
1816 
1817 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1818 			unsigned int foll_flags)
1819 {
1820 	return NULL;
1821 }
1822 
1823 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1824 		unsigned long pfn, unsigned long size, pgprot_t prot)
1825 {
1826 	if (addr != (pfn << PAGE_SHIFT))
1827 		return -EINVAL;
1828 
1829 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(remap_pfn_range);
1833 
1834 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1835 			unsigned long pgoff)
1836 {
1837 	unsigned int size = vma->vm_end - vma->vm_start;
1838 
1839 	if (!(vma->vm_flags & VM_USERMAP))
1840 		return -EINVAL;
1841 
1842 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1843 	vma->vm_end = vma->vm_start + size;
1844 
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(remap_vmalloc_range);
1848 
1849 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1850 	unsigned long len, unsigned long pgoff, unsigned long flags)
1851 {
1852 	return -ENOMEM;
1853 }
1854 
1855 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1856 {
1857 }
1858 
1859 void unmap_mapping_range(struct address_space *mapping,
1860 			 loff_t const holebegin, loff_t const holelen,
1861 			 int even_cows)
1862 {
1863 }
1864 EXPORT_SYMBOL(unmap_mapping_range);
1865 
1866 /*
1867  * Check that a process has enough memory to allocate a new virtual
1868  * mapping. 0 means there is enough memory for the allocation to
1869  * succeed and -ENOMEM implies there is not.
1870  *
1871  * We currently support three overcommit policies, which are set via the
1872  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1873  *
1874  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1875  * Additional code 2002 Jul 20 by Robert Love.
1876  *
1877  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1878  *
1879  * Note this is a helper function intended to be used by LSMs which
1880  * wish to use this logic.
1881  */
1882 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1883 {
1884 	unsigned long free, allowed;
1885 
1886 	vm_acct_memory(pages);
1887 
1888 	/*
1889 	 * Sometimes we want to use more memory than we have
1890 	 */
1891 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1892 		return 0;
1893 
1894 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1895 		free = global_page_state(NR_FREE_PAGES);
1896 		free += global_page_state(NR_FILE_PAGES);
1897 
1898 		/*
1899 		 * shmem pages shouldn't be counted as free in this
1900 		 * case, they can't be purged, only swapped out, and
1901 		 * that won't affect the overall amount of available
1902 		 * memory in the system.
1903 		 */
1904 		free -= global_page_state(NR_SHMEM);
1905 
1906 		free += nr_swap_pages;
1907 
1908 		/*
1909 		 * Any slabs which are created with the
1910 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1911 		 * which are reclaimable, under pressure.  The dentry
1912 		 * cache and most inode caches should fall into this
1913 		 */
1914 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1915 
1916 		/*
1917 		 * Leave reserved pages. The pages are not for anonymous pages.
1918 		 */
1919 		if (free <= totalreserve_pages)
1920 			goto error;
1921 		else
1922 			free -= totalreserve_pages;
1923 
1924 		/*
1925 		 * Leave the last 3% for root
1926 		 */
1927 		if (!cap_sys_admin)
1928 			free -= free / 32;
1929 
1930 		if (free > pages)
1931 			return 0;
1932 
1933 		goto error;
1934 	}
1935 
1936 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1937 	/*
1938 	 * Leave the last 3% for root
1939 	 */
1940 	if (!cap_sys_admin)
1941 		allowed -= allowed / 32;
1942 	allowed += total_swap_pages;
1943 
1944 	/* Don't let a single process grow too big:
1945 	   leave 3% of the size of this process for other processes */
1946 	if (mm)
1947 		allowed -= mm->total_vm / 32;
1948 
1949 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1950 		return 0;
1951 
1952 error:
1953 	vm_unacct_memory(pages);
1954 
1955 	return -ENOMEM;
1956 }
1957 
1958 int in_gate_area_no_mm(unsigned long addr)
1959 {
1960 	return 0;
1961 }
1962 
1963 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1964 {
1965 	BUG();
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(filemap_fault);
1969 
1970 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1971 			     unsigned long size, pgoff_t pgoff)
1972 {
1973 	BUG();
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(generic_file_remap_pages);
1977 
1978 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1979 		unsigned long addr, void *buf, int len, int write)
1980 {
1981 	struct vm_area_struct *vma;
1982 
1983 	down_read(&mm->mmap_sem);
1984 
1985 	/* the access must start within one of the target process's mappings */
1986 	vma = find_vma(mm, addr);
1987 	if (vma) {
1988 		/* don't overrun this mapping */
1989 		if (addr + len >= vma->vm_end)
1990 			len = vma->vm_end - addr;
1991 
1992 		/* only read or write mappings where it is permitted */
1993 		if (write && vma->vm_flags & VM_MAYWRITE)
1994 			copy_to_user_page(vma, NULL, addr,
1995 					 (void *) addr, buf, len);
1996 		else if (!write && vma->vm_flags & VM_MAYREAD)
1997 			copy_from_user_page(vma, NULL, addr,
1998 					    buf, (void *) addr, len);
1999 		else
2000 			len = 0;
2001 	} else {
2002 		len = 0;
2003 	}
2004 
2005 	up_read(&mm->mmap_sem);
2006 
2007 	return len;
2008 }
2009 
2010 /**
2011  * @access_remote_vm - access another process' address space
2012  * @mm:		the mm_struct of the target address space
2013  * @addr:	start address to access
2014  * @buf:	source or destination buffer
2015  * @len:	number of bytes to transfer
2016  * @write:	whether the access is a write
2017  *
2018  * The caller must hold a reference on @mm.
2019  */
2020 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2021 		void *buf, int len, int write)
2022 {
2023 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2024 }
2025 
2026 /*
2027  * Access another process' address space.
2028  * - source/target buffer must be kernel space
2029  */
2030 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2031 {
2032 	struct mm_struct *mm;
2033 
2034 	if (addr + len < addr)
2035 		return 0;
2036 
2037 	mm = get_task_mm(tsk);
2038 	if (!mm)
2039 		return 0;
2040 
2041 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2042 
2043 	mmput(mm);
2044 	return len;
2045 }
2046 
2047 /**
2048  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2049  * @inode: The inode to check
2050  * @size: The current filesize of the inode
2051  * @newsize: The proposed filesize of the inode
2052  *
2053  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2054  * make sure that that any outstanding VMAs aren't broken and then shrink the
2055  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2056  * automatically grant mappings that are too large.
2057  */
2058 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2059 				size_t newsize)
2060 {
2061 	struct vm_area_struct *vma;
2062 	struct vm_region *region;
2063 	pgoff_t low, high;
2064 	size_t r_size, r_top;
2065 
2066 	low = newsize >> PAGE_SHIFT;
2067 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2068 
2069 	down_write(&nommu_region_sem);
2070 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2071 
2072 	/* search for VMAs that fall within the dead zone */
2073 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2074 		/* found one - only interested if it's shared out of the page
2075 		 * cache */
2076 		if (vma->vm_flags & VM_SHARED) {
2077 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2078 			up_write(&nommu_region_sem);
2079 			return -ETXTBSY; /* not quite true, but near enough */
2080 		}
2081 	}
2082 
2083 	/* reduce any regions that overlap the dead zone - if in existence,
2084 	 * these will be pointed to by VMAs that don't overlap the dead zone
2085 	 *
2086 	 * we don't check for any regions that start beyond the EOF as there
2087 	 * shouldn't be any
2088 	 */
2089 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2090 				  0, ULONG_MAX) {
2091 		if (!(vma->vm_flags & VM_SHARED))
2092 			continue;
2093 
2094 		region = vma->vm_region;
2095 		r_size = region->vm_top - region->vm_start;
2096 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2097 
2098 		if (r_top > newsize) {
2099 			region->vm_top -= r_top - newsize;
2100 			if (region->vm_end > region->vm_top)
2101 				region->vm_end = region->vm_top;
2102 		}
2103 	}
2104 
2105 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2106 	up_write(&nommu_region_sem);
2107 	return 0;
2108 }
2109