1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_range(unsigned long size, unsigned long align, 154 unsigned long start, unsigned long end, gfp_t gfp_mask, 155 pgprot_t prot, unsigned long vm_flags, int node, 156 const void *caller) 157 { 158 return __vmalloc(size, gfp_mask); 159 } 160 161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 162 int node, const void *caller) 163 { 164 return __vmalloc(size, gfp_mask); 165 } 166 167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = __vmalloc(size, flags); 172 if (ret) { 173 struct vm_area_struct *vma; 174 175 mmap_write_lock(current->mm); 176 vma = find_vma(current->mm, (unsigned long)ret); 177 if (vma) 178 vma->vm_flags |= VM_USERMAP; 179 mmap_write_unlock(current->mm); 180 } 181 182 return ret; 183 } 184 185 void *vmalloc_user(unsigned long size) 186 { 187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 188 } 189 EXPORT_SYMBOL(vmalloc_user); 190 191 struct page *vmalloc_to_page(const void *addr) 192 { 193 return virt_to_page(addr); 194 } 195 EXPORT_SYMBOL(vmalloc_to_page); 196 197 unsigned long vmalloc_to_pfn(const void *addr) 198 { 199 return page_to_pfn(virt_to_page(addr)); 200 } 201 EXPORT_SYMBOL(vmalloc_to_pfn); 202 203 long vread(char *buf, char *addr, unsigned long count) 204 { 205 /* Don't allow overflow */ 206 if ((unsigned long) buf + count < count) 207 count = -(unsigned long) buf; 208 209 memcpy(buf, addr, count); 210 return count; 211 } 212 213 long vwrite(char *buf, char *addr, unsigned long count) 214 { 215 /* Don't allow overflow */ 216 if ((unsigned long) addr + count < count) 217 count = -(unsigned long) addr; 218 219 memcpy(addr, buf, count); 220 return count; 221 } 222 223 /* 224 * vmalloc - allocate virtually contiguous memory 225 * 226 * @size: allocation size 227 * 228 * Allocate enough pages to cover @size from the page level 229 * allocator and map them into contiguous kernel virtual space. 230 * 231 * For tight control over page level allocator and protection flags 232 * use __vmalloc() instead. 233 */ 234 void *vmalloc(unsigned long size) 235 { 236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(vmalloc); 239 240 /* 241 * vzalloc - allocate virtually contiguous memory with zero fill 242 * 243 * @size: allocation size 244 * 245 * Allocate enough pages to cover @size from the page level 246 * allocator and map them into contiguous kernel virtual space. 247 * The memory allocated is set to zero. 248 * 249 * For tight control over page level allocator and protection flags 250 * use __vmalloc() instead. 251 */ 252 void *vzalloc(unsigned long size) 253 { 254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 255 } 256 EXPORT_SYMBOL(vzalloc); 257 258 /** 259 * vmalloc_node - allocate memory on a specific node 260 * @size: allocation size 261 * @node: numa node 262 * 263 * Allocate enough pages to cover @size from the page level 264 * allocator and map them into contiguous kernel virtual space. 265 * 266 * For tight control over page level allocator and protection flags 267 * use __vmalloc() instead. 268 */ 269 void *vmalloc_node(unsigned long size, int node) 270 { 271 return vmalloc(size); 272 } 273 EXPORT_SYMBOL(vmalloc_node); 274 275 /** 276 * vzalloc_node - allocate memory on a specific node with zero fill 277 * @size: allocation size 278 * @node: numa node 279 * 280 * Allocate enough pages to cover @size from the page level 281 * allocator and map them into contiguous kernel virtual space. 282 * The memory allocated is set to zero. 283 * 284 * For tight control over page level allocator and protection flags 285 * use __vmalloc() instead. 286 */ 287 void *vzalloc_node(unsigned long size, int node) 288 { 289 return vzalloc(size); 290 } 291 EXPORT_SYMBOL(vzalloc_node); 292 293 /** 294 * vmalloc_exec - allocate virtually contiguous, executable memory 295 * @size: allocation size 296 * 297 * Kernel-internal function to allocate enough pages to cover @size 298 * the page level allocator and map them into contiguous and 299 * executable kernel virtual space. 300 * 301 * For tight control over page level allocator and protection flags 302 * use __vmalloc() instead. 303 */ 304 305 void *vmalloc_exec(unsigned long size) 306 { 307 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM); 308 } 309 310 /** 311 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 312 * @size: allocation size 313 * 314 * Allocate enough 32bit PA addressable pages to cover @size from the 315 * page level allocator and map them into contiguous kernel virtual space. 316 */ 317 void *vmalloc_32(unsigned long size) 318 { 319 return __vmalloc(size, GFP_KERNEL); 320 } 321 EXPORT_SYMBOL(vmalloc_32); 322 323 /** 324 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 325 * @size: allocation size 326 * 327 * The resulting memory area is 32bit addressable and zeroed so it can be 328 * mapped to userspace without leaking data. 329 * 330 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 331 * remap_vmalloc_range() are permissible. 332 */ 333 void *vmalloc_32_user(unsigned long size) 334 { 335 /* 336 * We'll have to sort out the ZONE_DMA bits for 64-bit, 337 * but for now this can simply use vmalloc_user() directly. 338 */ 339 return vmalloc_user(size); 340 } 341 EXPORT_SYMBOL(vmalloc_32_user); 342 343 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 344 { 345 BUG(); 346 return NULL; 347 } 348 EXPORT_SYMBOL(vmap); 349 350 void vunmap(const void *addr) 351 { 352 BUG(); 353 } 354 EXPORT_SYMBOL(vunmap); 355 356 void *vm_map_ram(struct page **pages, unsigned int count, int node) 357 { 358 BUG(); 359 return NULL; 360 } 361 EXPORT_SYMBOL(vm_map_ram); 362 363 void vm_unmap_ram(const void *mem, unsigned int count) 364 { 365 BUG(); 366 } 367 EXPORT_SYMBOL(vm_unmap_ram); 368 369 void vm_unmap_aliases(void) 370 { 371 } 372 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 373 374 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 375 { 376 BUG(); 377 return NULL; 378 } 379 EXPORT_SYMBOL_GPL(alloc_vm_area); 380 381 void free_vm_area(struct vm_struct *area) 382 { 383 BUG(); 384 } 385 EXPORT_SYMBOL_GPL(free_vm_area); 386 387 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 388 struct page *page) 389 { 390 return -EINVAL; 391 } 392 EXPORT_SYMBOL(vm_insert_page); 393 394 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 395 unsigned long num) 396 { 397 return -EINVAL; 398 } 399 EXPORT_SYMBOL(vm_map_pages); 400 401 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 402 unsigned long num) 403 { 404 return -EINVAL; 405 } 406 EXPORT_SYMBOL(vm_map_pages_zero); 407 408 /* 409 * sys_brk() for the most part doesn't need the global kernel 410 * lock, except when an application is doing something nasty 411 * like trying to un-brk an area that has already been mapped 412 * to a regular file. in this case, the unmapping will need 413 * to invoke file system routines that need the global lock. 414 */ 415 SYSCALL_DEFINE1(brk, unsigned long, brk) 416 { 417 struct mm_struct *mm = current->mm; 418 419 if (brk < mm->start_brk || brk > mm->context.end_brk) 420 return mm->brk; 421 422 if (mm->brk == brk) 423 return mm->brk; 424 425 /* 426 * Always allow shrinking brk 427 */ 428 if (brk <= mm->brk) { 429 mm->brk = brk; 430 return brk; 431 } 432 433 /* 434 * Ok, looks good - let it rip. 435 */ 436 flush_icache_user_range(mm->brk, brk); 437 return mm->brk = brk; 438 } 439 440 /* 441 * initialise the percpu counter for VM and region record slabs 442 */ 443 void __init mmap_init(void) 444 { 445 int ret; 446 447 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 448 VM_BUG_ON(ret); 449 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 450 } 451 452 /* 453 * validate the region tree 454 * - the caller must hold the region lock 455 */ 456 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 457 static noinline void validate_nommu_regions(void) 458 { 459 struct vm_region *region, *last; 460 struct rb_node *p, *lastp; 461 462 lastp = rb_first(&nommu_region_tree); 463 if (!lastp) 464 return; 465 466 last = rb_entry(lastp, struct vm_region, vm_rb); 467 BUG_ON(last->vm_end <= last->vm_start); 468 BUG_ON(last->vm_top < last->vm_end); 469 470 while ((p = rb_next(lastp))) { 471 region = rb_entry(p, struct vm_region, vm_rb); 472 last = rb_entry(lastp, struct vm_region, vm_rb); 473 474 BUG_ON(region->vm_end <= region->vm_start); 475 BUG_ON(region->vm_top < region->vm_end); 476 BUG_ON(region->vm_start < last->vm_top); 477 478 lastp = p; 479 } 480 } 481 #else 482 static void validate_nommu_regions(void) 483 { 484 } 485 #endif 486 487 /* 488 * add a region into the global tree 489 */ 490 static void add_nommu_region(struct vm_region *region) 491 { 492 struct vm_region *pregion; 493 struct rb_node **p, *parent; 494 495 validate_nommu_regions(); 496 497 parent = NULL; 498 p = &nommu_region_tree.rb_node; 499 while (*p) { 500 parent = *p; 501 pregion = rb_entry(parent, struct vm_region, vm_rb); 502 if (region->vm_start < pregion->vm_start) 503 p = &(*p)->rb_left; 504 else if (region->vm_start > pregion->vm_start) 505 p = &(*p)->rb_right; 506 else if (pregion == region) 507 return; 508 else 509 BUG(); 510 } 511 512 rb_link_node(®ion->vm_rb, parent, p); 513 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 514 515 validate_nommu_regions(); 516 } 517 518 /* 519 * delete a region from the global tree 520 */ 521 static void delete_nommu_region(struct vm_region *region) 522 { 523 BUG_ON(!nommu_region_tree.rb_node); 524 525 validate_nommu_regions(); 526 rb_erase(®ion->vm_rb, &nommu_region_tree); 527 validate_nommu_regions(); 528 } 529 530 /* 531 * free a contiguous series of pages 532 */ 533 static void free_page_series(unsigned long from, unsigned long to) 534 { 535 for (; from < to; from += PAGE_SIZE) { 536 struct page *page = virt_to_page(from); 537 538 atomic_long_dec(&mmap_pages_allocated); 539 put_page(page); 540 } 541 } 542 543 /* 544 * release a reference to a region 545 * - the caller must hold the region semaphore for writing, which this releases 546 * - the region may not have been added to the tree yet, in which case vm_top 547 * will equal vm_start 548 */ 549 static void __put_nommu_region(struct vm_region *region) 550 __releases(nommu_region_sem) 551 { 552 BUG_ON(!nommu_region_tree.rb_node); 553 554 if (--region->vm_usage == 0) { 555 if (region->vm_top > region->vm_start) 556 delete_nommu_region(region); 557 up_write(&nommu_region_sem); 558 559 if (region->vm_file) 560 fput(region->vm_file); 561 562 /* IO memory and memory shared directly out of the pagecache 563 * from ramfs/tmpfs mustn't be released here */ 564 if (region->vm_flags & VM_MAPPED_COPY) 565 free_page_series(region->vm_start, region->vm_top); 566 kmem_cache_free(vm_region_jar, region); 567 } else { 568 up_write(&nommu_region_sem); 569 } 570 } 571 572 /* 573 * release a reference to a region 574 */ 575 static void put_nommu_region(struct vm_region *region) 576 { 577 down_write(&nommu_region_sem); 578 __put_nommu_region(region); 579 } 580 581 /* 582 * add a VMA into a process's mm_struct in the appropriate place in the list 583 * and tree and add to the address space's page tree also if not an anonymous 584 * page 585 * - should be called with mm->mmap_lock held writelocked 586 */ 587 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 588 { 589 struct vm_area_struct *pvma, *prev; 590 struct address_space *mapping; 591 struct rb_node **p, *parent, *rb_prev; 592 593 BUG_ON(!vma->vm_region); 594 595 mm->map_count++; 596 vma->vm_mm = mm; 597 598 /* add the VMA to the mapping */ 599 if (vma->vm_file) { 600 mapping = vma->vm_file->f_mapping; 601 602 i_mmap_lock_write(mapping); 603 flush_dcache_mmap_lock(mapping); 604 vma_interval_tree_insert(vma, &mapping->i_mmap); 605 flush_dcache_mmap_unlock(mapping); 606 i_mmap_unlock_write(mapping); 607 } 608 609 /* add the VMA to the tree */ 610 parent = rb_prev = NULL; 611 p = &mm->mm_rb.rb_node; 612 while (*p) { 613 parent = *p; 614 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 615 616 /* sort by: start addr, end addr, VMA struct addr in that order 617 * (the latter is necessary as we may get identical VMAs) */ 618 if (vma->vm_start < pvma->vm_start) 619 p = &(*p)->rb_left; 620 else if (vma->vm_start > pvma->vm_start) { 621 rb_prev = parent; 622 p = &(*p)->rb_right; 623 } else if (vma->vm_end < pvma->vm_end) 624 p = &(*p)->rb_left; 625 else if (vma->vm_end > pvma->vm_end) { 626 rb_prev = parent; 627 p = &(*p)->rb_right; 628 } else if (vma < pvma) 629 p = &(*p)->rb_left; 630 else if (vma > pvma) { 631 rb_prev = parent; 632 p = &(*p)->rb_right; 633 } else 634 BUG(); 635 } 636 637 rb_link_node(&vma->vm_rb, parent, p); 638 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 639 640 /* add VMA to the VMA list also */ 641 prev = NULL; 642 if (rb_prev) 643 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 644 645 __vma_link_list(mm, vma, prev); 646 } 647 648 /* 649 * delete a VMA from its owning mm_struct and address space 650 */ 651 static void delete_vma_from_mm(struct vm_area_struct *vma) 652 { 653 int i; 654 struct address_space *mapping; 655 struct mm_struct *mm = vma->vm_mm; 656 struct task_struct *curr = current; 657 658 mm->map_count--; 659 for (i = 0; i < VMACACHE_SIZE; i++) { 660 /* if the vma is cached, invalidate the entire cache */ 661 if (curr->vmacache.vmas[i] == vma) { 662 vmacache_invalidate(mm); 663 break; 664 } 665 } 666 667 /* remove the VMA from the mapping */ 668 if (vma->vm_file) { 669 mapping = vma->vm_file->f_mapping; 670 671 i_mmap_lock_write(mapping); 672 flush_dcache_mmap_lock(mapping); 673 vma_interval_tree_remove(vma, &mapping->i_mmap); 674 flush_dcache_mmap_unlock(mapping); 675 i_mmap_unlock_write(mapping); 676 } 677 678 /* remove from the MM's tree and list */ 679 rb_erase(&vma->vm_rb, &mm->mm_rb); 680 681 __vma_unlink_list(mm, vma); 682 } 683 684 /* 685 * destroy a VMA record 686 */ 687 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 688 { 689 if (vma->vm_ops && vma->vm_ops->close) 690 vma->vm_ops->close(vma); 691 if (vma->vm_file) 692 fput(vma->vm_file); 693 put_nommu_region(vma->vm_region); 694 vm_area_free(vma); 695 } 696 697 /* 698 * look up the first VMA in which addr resides, NULL if none 699 * - should be called with mm->mmap_lock at least held readlocked 700 */ 701 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 702 { 703 struct vm_area_struct *vma; 704 705 /* check the cache first */ 706 vma = vmacache_find(mm, addr); 707 if (likely(vma)) 708 return vma; 709 710 /* trawl the list (there may be multiple mappings in which addr 711 * resides) */ 712 for (vma = mm->mmap; vma; vma = vma->vm_next) { 713 if (vma->vm_start > addr) 714 return NULL; 715 if (vma->vm_end > addr) { 716 vmacache_update(addr, vma); 717 return vma; 718 } 719 } 720 721 return NULL; 722 } 723 EXPORT_SYMBOL(find_vma); 724 725 /* 726 * find a VMA 727 * - we don't extend stack VMAs under NOMMU conditions 728 */ 729 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 730 { 731 return find_vma(mm, addr); 732 } 733 734 /* 735 * expand a stack to a given address 736 * - not supported under NOMMU conditions 737 */ 738 int expand_stack(struct vm_area_struct *vma, unsigned long address) 739 { 740 return -ENOMEM; 741 } 742 743 /* 744 * look up the first VMA exactly that exactly matches addr 745 * - should be called with mm->mmap_lock at least held readlocked 746 */ 747 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 748 unsigned long addr, 749 unsigned long len) 750 { 751 struct vm_area_struct *vma; 752 unsigned long end = addr + len; 753 754 /* check the cache first */ 755 vma = vmacache_find_exact(mm, addr, end); 756 if (vma) 757 return vma; 758 759 /* trawl the list (there may be multiple mappings in which addr 760 * resides) */ 761 for (vma = mm->mmap; vma; vma = vma->vm_next) { 762 if (vma->vm_start < addr) 763 continue; 764 if (vma->vm_start > addr) 765 return NULL; 766 if (vma->vm_end == end) { 767 vmacache_update(addr, vma); 768 return vma; 769 } 770 } 771 772 return NULL; 773 } 774 775 /* 776 * determine whether a mapping should be permitted and, if so, what sort of 777 * mapping we're capable of supporting 778 */ 779 static int validate_mmap_request(struct file *file, 780 unsigned long addr, 781 unsigned long len, 782 unsigned long prot, 783 unsigned long flags, 784 unsigned long pgoff, 785 unsigned long *_capabilities) 786 { 787 unsigned long capabilities, rlen; 788 int ret; 789 790 /* do the simple checks first */ 791 if (flags & MAP_FIXED) 792 return -EINVAL; 793 794 if ((flags & MAP_TYPE) != MAP_PRIVATE && 795 (flags & MAP_TYPE) != MAP_SHARED) 796 return -EINVAL; 797 798 if (!len) 799 return -EINVAL; 800 801 /* Careful about overflows.. */ 802 rlen = PAGE_ALIGN(len); 803 if (!rlen || rlen > TASK_SIZE) 804 return -ENOMEM; 805 806 /* offset overflow? */ 807 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 808 return -EOVERFLOW; 809 810 if (file) { 811 /* files must support mmap */ 812 if (!file->f_op->mmap) 813 return -ENODEV; 814 815 /* work out if what we've got could possibly be shared 816 * - we support chardevs that provide their own "memory" 817 * - we support files/blockdevs that are memory backed 818 */ 819 if (file->f_op->mmap_capabilities) { 820 capabilities = file->f_op->mmap_capabilities(file); 821 } else { 822 /* no explicit capabilities set, so assume some 823 * defaults */ 824 switch (file_inode(file)->i_mode & S_IFMT) { 825 case S_IFREG: 826 case S_IFBLK: 827 capabilities = NOMMU_MAP_COPY; 828 break; 829 830 case S_IFCHR: 831 capabilities = 832 NOMMU_MAP_DIRECT | 833 NOMMU_MAP_READ | 834 NOMMU_MAP_WRITE; 835 break; 836 837 default: 838 return -EINVAL; 839 } 840 } 841 842 /* eliminate any capabilities that we can't support on this 843 * device */ 844 if (!file->f_op->get_unmapped_area) 845 capabilities &= ~NOMMU_MAP_DIRECT; 846 if (!(file->f_mode & FMODE_CAN_READ)) 847 capabilities &= ~NOMMU_MAP_COPY; 848 849 /* The file shall have been opened with read permission. */ 850 if (!(file->f_mode & FMODE_READ)) 851 return -EACCES; 852 853 if (flags & MAP_SHARED) { 854 /* do checks for writing, appending and locking */ 855 if ((prot & PROT_WRITE) && 856 !(file->f_mode & FMODE_WRITE)) 857 return -EACCES; 858 859 if (IS_APPEND(file_inode(file)) && 860 (file->f_mode & FMODE_WRITE)) 861 return -EACCES; 862 863 if (locks_verify_locked(file)) 864 return -EAGAIN; 865 866 if (!(capabilities & NOMMU_MAP_DIRECT)) 867 return -ENODEV; 868 869 /* we mustn't privatise shared mappings */ 870 capabilities &= ~NOMMU_MAP_COPY; 871 } else { 872 /* we're going to read the file into private memory we 873 * allocate */ 874 if (!(capabilities & NOMMU_MAP_COPY)) 875 return -ENODEV; 876 877 /* we don't permit a private writable mapping to be 878 * shared with the backing device */ 879 if (prot & PROT_WRITE) 880 capabilities &= ~NOMMU_MAP_DIRECT; 881 } 882 883 if (capabilities & NOMMU_MAP_DIRECT) { 884 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 885 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 886 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 887 ) { 888 capabilities &= ~NOMMU_MAP_DIRECT; 889 if (flags & MAP_SHARED) { 890 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 891 return -EINVAL; 892 } 893 } 894 } 895 896 /* handle executable mappings and implied executable 897 * mappings */ 898 if (path_noexec(&file->f_path)) { 899 if (prot & PROT_EXEC) 900 return -EPERM; 901 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 902 /* handle implication of PROT_EXEC by PROT_READ */ 903 if (current->personality & READ_IMPLIES_EXEC) { 904 if (capabilities & NOMMU_MAP_EXEC) 905 prot |= PROT_EXEC; 906 } 907 } else if ((prot & PROT_READ) && 908 (prot & PROT_EXEC) && 909 !(capabilities & NOMMU_MAP_EXEC) 910 ) { 911 /* backing file is not executable, try to copy */ 912 capabilities &= ~NOMMU_MAP_DIRECT; 913 } 914 } else { 915 /* anonymous mappings are always memory backed and can be 916 * privately mapped 917 */ 918 capabilities = NOMMU_MAP_COPY; 919 920 /* handle PROT_EXEC implication by PROT_READ */ 921 if ((prot & PROT_READ) && 922 (current->personality & READ_IMPLIES_EXEC)) 923 prot |= PROT_EXEC; 924 } 925 926 /* allow the security API to have its say */ 927 ret = security_mmap_addr(addr); 928 if (ret < 0) 929 return ret; 930 931 /* looks okay */ 932 *_capabilities = capabilities; 933 return 0; 934 } 935 936 /* 937 * we've determined that we can make the mapping, now translate what we 938 * now know into VMA flags 939 */ 940 static unsigned long determine_vm_flags(struct file *file, 941 unsigned long prot, 942 unsigned long flags, 943 unsigned long capabilities) 944 { 945 unsigned long vm_flags; 946 947 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 948 /* vm_flags |= mm->def_flags; */ 949 950 if (!(capabilities & NOMMU_MAP_DIRECT)) { 951 /* attempt to share read-only copies of mapped file chunks */ 952 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 953 if (file && !(prot & PROT_WRITE)) 954 vm_flags |= VM_MAYSHARE; 955 } else { 956 /* overlay a shareable mapping on the backing device or inode 957 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 958 * romfs/cramfs */ 959 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 960 if (flags & MAP_SHARED) 961 vm_flags |= VM_SHARED; 962 } 963 964 /* refuse to let anyone share private mappings with this process if 965 * it's being traced - otherwise breakpoints set in it may interfere 966 * with another untraced process 967 */ 968 if ((flags & MAP_PRIVATE) && current->ptrace) 969 vm_flags &= ~VM_MAYSHARE; 970 971 return vm_flags; 972 } 973 974 /* 975 * set up a shared mapping on a file (the driver or filesystem provides and 976 * pins the storage) 977 */ 978 static int do_mmap_shared_file(struct vm_area_struct *vma) 979 { 980 int ret; 981 982 ret = call_mmap(vma->vm_file, vma); 983 if (ret == 0) { 984 vma->vm_region->vm_top = vma->vm_region->vm_end; 985 return 0; 986 } 987 if (ret != -ENOSYS) 988 return ret; 989 990 /* getting -ENOSYS indicates that direct mmap isn't possible (as 991 * opposed to tried but failed) so we can only give a suitable error as 992 * it's not possible to make a private copy if MAP_SHARED was given */ 993 return -ENODEV; 994 } 995 996 /* 997 * set up a private mapping or an anonymous shared mapping 998 */ 999 static int do_mmap_private(struct vm_area_struct *vma, 1000 struct vm_region *region, 1001 unsigned long len, 1002 unsigned long capabilities) 1003 { 1004 unsigned long total, point; 1005 void *base; 1006 int ret, order; 1007 1008 /* invoke the file's mapping function so that it can keep track of 1009 * shared mappings on devices or memory 1010 * - VM_MAYSHARE will be set if it may attempt to share 1011 */ 1012 if (capabilities & NOMMU_MAP_DIRECT) { 1013 ret = call_mmap(vma->vm_file, vma); 1014 if (ret == 0) { 1015 /* shouldn't return success if we're not sharing */ 1016 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1017 vma->vm_region->vm_top = vma->vm_region->vm_end; 1018 return 0; 1019 } 1020 if (ret != -ENOSYS) 1021 return ret; 1022 1023 /* getting an ENOSYS error indicates that direct mmap isn't 1024 * possible (as opposed to tried but failed) so we'll try to 1025 * make a private copy of the data and map that instead */ 1026 } 1027 1028 1029 /* allocate some memory to hold the mapping 1030 * - note that this may not return a page-aligned address if the object 1031 * we're allocating is smaller than a page 1032 */ 1033 order = get_order(len); 1034 total = 1 << order; 1035 point = len >> PAGE_SHIFT; 1036 1037 /* we don't want to allocate a power-of-2 sized page set */ 1038 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1039 total = point; 1040 1041 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1042 if (!base) 1043 goto enomem; 1044 1045 atomic_long_add(total, &mmap_pages_allocated); 1046 1047 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1048 region->vm_start = (unsigned long) base; 1049 region->vm_end = region->vm_start + len; 1050 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1051 1052 vma->vm_start = region->vm_start; 1053 vma->vm_end = region->vm_start + len; 1054 1055 if (vma->vm_file) { 1056 /* read the contents of a file into the copy */ 1057 loff_t fpos; 1058 1059 fpos = vma->vm_pgoff; 1060 fpos <<= PAGE_SHIFT; 1061 1062 ret = kernel_read(vma->vm_file, base, len, &fpos); 1063 if (ret < 0) 1064 goto error_free; 1065 1066 /* clear the last little bit */ 1067 if (ret < len) 1068 memset(base + ret, 0, len - ret); 1069 1070 } else { 1071 vma_set_anonymous(vma); 1072 } 1073 1074 return 0; 1075 1076 error_free: 1077 free_page_series(region->vm_start, region->vm_top); 1078 region->vm_start = vma->vm_start = 0; 1079 region->vm_end = vma->vm_end = 0; 1080 region->vm_top = 0; 1081 return ret; 1082 1083 enomem: 1084 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1085 len, current->pid, current->comm); 1086 show_free_areas(0, NULL); 1087 return -ENOMEM; 1088 } 1089 1090 /* 1091 * handle mapping creation for uClinux 1092 */ 1093 unsigned long do_mmap(struct file *file, 1094 unsigned long addr, 1095 unsigned long len, 1096 unsigned long prot, 1097 unsigned long flags, 1098 vm_flags_t vm_flags, 1099 unsigned long pgoff, 1100 unsigned long *populate, 1101 struct list_head *uf) 1102 { 1103 struct vm_area_struct *vma; 1104 struct vm_region *region; 1105 struct rb_node *rb; 1106 unsigned long capabilities, result; 1107 int ret; 1108 1109 *populate = 0; 1110 1111 /* decide whether we should attempt the mapping, and if so what sort of 1112 * mapping */ 1113 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1114 &capabilities); 1115 if (ret < 0) 1116 return ret; 1117 1118 /* we ignore the address hint */ 1119 addr = 0; 1120 len = PAGE_ALIGN(len); 1121 1122 /* we've determined that we can make the mapping, now translate what we 1123 * now know into VMA flags */ 1124 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1125 1126 /* we're going to need to record the mapping */ 1127 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1128 if (!region) 1129 goto error_getting_region; 1130 1131 vma = vm_area_alloc(current->mm); 1132 if (!vma) 1133 goto error_getting_vma; 1134 1135 region->vm_usage = 1; 1136 region->vm_flags = vm_flags; 1137 region->vm_pgoff = pgoff; 1138 1139 vma->vm_flags = vm_flags; 1140 vma->vm_pgoff = pgoff; 1141 1142 if (file) { 1143 region->vm_file = get_file(file); 1144 vma->vm_file = get_file(file); 1145 } 1146 1147 down_write(&nommu_region_sem); 1148 1149 /* if we want to share, we need to check for regions created by other 1150 * mmap() calls that overlap with our proposed mapping 1151 * - we can only share with a superset match on most regular files 1152 * - shared mappings on character devices and memory backed files are 1153 * permitted to overlap inexactly as far as we are concerned for in 1154 * these cases, sharing is handled in the driver or filesystem rather 1155 * than here 1156 */ 1157 if (vm_flags & VM_MAYSHARE) { 1158 struct vm_region *pregion; 1159 unsigned long pglen, rpglen, pgend, rpgend, start; 1160 1161 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1162 pgend = pgoff + pglen; 1163 1164 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1165 pregion = rb_entry(rb, struct vm_region, vm_rb); 1166 1167 if (!(pregion->vm_flags & VM_MAYSHARE)) 1168 continue; 1169 1170 /* search for overlapping mappings on the same file */ 1171 if (file_inode(pregion->vm_file) != 1172 file_inode(file)) 1173 continue; 1174 1175 if (pregion->vm_pgoff >= pgend) 1176 continue; 1177 1178 rpglen = pregion->vm_end - pregion->vm_start; 1179 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1180 rpgend = pregion->vm_pgoff + rpglen; 1181 if (pgoff >= rpgend) 1182 continue; 1183 1184 /* handle inexactly overlapping matches between 1185 * mappings */ 1186 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1187 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1188 /* new mapping is not a subset of the region */ 1189 if (!(capabilities & NOMMU_MAP_DIRECT)) 1190 goto sharing_violation; 1191 continue; 1192 } 1193 1194 /* we've found a region we can share */ 1195 pregion->vm_usage++; 1196 vma->vm_region = pregion; 1197 start = pregion->vm_start; 1198 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1199 vma->vm_start = start; 1200 vma->vm_end = start + len; 1201 1202 if (pregion->vm_flags & VM_MAPPED_COPY) 1203 vma->vm_flags |= VM_MAPPED_COPY; 1204 else { 1205 ret = do_mmap_shared_file(vma); 1206 if (ret < 0) { 1207 vma->vm_region = NULL; 1208 vma->vm_start = 0; 1209 vma->vm_end = 0; 1210 pregion->vm_usage--; 1211 pregion = NULL; 1212 goto error_just_free; 1213 } 1214 } 1215 fput(region->vm_file); 1216 kmem_cache_free(vm_region_jar, region); 1217 region = pregion; 1218 result = start; 1219 goto share; 1220 } 1221 1222 /* obtain the address at which to make a shared mapping 1223 * - this is the hook for quasi-memory character devices to 1224 * tell us the location of a shared mapping 1225 */ 1226 if (capabilities & NOMMU_MAP_DIRECT) { 1227 addr = file->f_op->get_unmapped_area(file, addr, len, 1228 pgoff, flags); 1229 if (IS_ERR_VALUE(addr)) { 1230 ret = addr; 1231 if (ret != -ENOSYS) 1232 goto error_just_free; 1233 1234 /* the driver refused to tell us where to site 1235 * the mapping so we'll have to attempt to copy 1236 * it */ 1237 ret = -ENODEV; 1238 if (!(capabilities & NOMMU_MAP_COPY)) 1239 goto error_just_free; 1240 1241 capabilities &= ~NOMMU_MAP_DIRECT; 1242 } else { 1243 vma->vm_start = region->vm_start = addr; 1244 vma->vm_end = region->vm_end = addr + len; 1245 } 1246 } 1247 } 1248 1249 vma->vm_region = region; 1250 1251 /* set up the mapping 1252 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1253 */ 1254 if (file && vma->vm_flags & VM_SHARED) 1255 ret = do_mmap_shared_file(vma); 1256 else 1257 ret = do_mmap_private(vma, region, len, capabilities); 1258 if (ret < 0) 1259 goto error_just_free; 1260 add_nommu_region(region); 1261 1262 /* clear anonymous mappings that don't ask for uninitialized data */ 1263 if (!vma->vm_file && 1264 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1265 !(flags & MAP_UNINITIALIZED))) 1266 memset((void *)region->vm_start, 0, 1267 region->vm_end - region->vm_start); 1268 1269 /* okay... we have a mapping; now we have to register it */ 1270 result = vma->vm_start; 1271 1272 current->mm->total_vm += len >> PAGE_SHIFT; 1273 1274 share: 1275 add_vma_to_mm(current->mm, vma); 1276 1277 /* we flush the region from the icache only when the first executable 1278 * mapping of it is made */ 1279 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1280 flush_icache_user_range(region->vm_start, region->vm_end); 1281 region->vm_icache_flushed = true; 1282 } 1283 1284 up_write(&nommu_region_sem); 1285 1286 return result; 1287 1288 error_just_free: 1289 up_write(&nommu_region_sem); 1290 error: 1291 if (region->vm_file) 1292 fput(region->vm_file); 1293 kmem_cache_free(vm_region_jar, region); 1294 if (vma->vm_file) 1295 fput(vma->vm_file); 1296 vm_area_free(vma); 1297 return ret; 1298 1299 sharing_violation: 1300 up_write(&nommu_region_sem); 1301 pr_warn("Attempt to share mismatched mappings\n"); 1302 ret = -EINVAL; 1303 goto error; 1304 1305 error_getting_vma: 1306 kmem_cache_free(vm_region_jar, region); 1307 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1308 len, current->pid); 1309 show_free_areas(0, NULL); 1310 return -ENOMEM; 1311 1312 error_getting_region: 1313 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1314 len, current->pid); 1315 show_free_areas(0, NULL); 1316 return -ENOMEM; 1317 } 1318 1319 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1320 unsigned long prot, unsigned long flags, 1321 unsigned long fd, unsigned long pgoff) 1322 { 1323 struct file *file = NULL; 1324 unsigned long retval = -EBADF; 1325 1326 audit_mmap_fd(fd, flags); 1327 if (!(flags & MAP_ANONYMOUS)) { 1328 file = fget(fd); 1329 if (!file) 1330 goto out; 1331 } 1332 1333 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1334 1335 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1336 1337 if (file) 1338 fput(file); 1339 out: 1340 return retval; 1341 } 1342 1343 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1344 unsigned long, prot, unsigned long, flags, 1345 unsigned long, fd, unsigned long, pgoff) 1346 { 1347 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1348 } 1349 1350 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1351 struct mmap_arg_struct { 1352 unsigned long addr; 1353 unsigned long len; 1354 unsigned long prot; 1355 unsigned long flags; 1356 unsigned long fd; 1357 unsigned long offset; 1358 }; 1359 1360 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1361 { 1362 struct mmap_arg_struct a; 1363 1364 if (copy_from_user(&a, arg, sizeof(a))) 1365 return -EFAULT; 1366 if (offset_in_page(a.offset)) 1367 return -EINVAL; 1368 1369 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1370 a.offset >> PAGE_SHIFT); 1371 } 1372 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1373 1374 /* 1375 * split a vma into two pieces at address 'addr', a new vma is allocated either 1376 * for the first part or the tail. 1377 */ 1378 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1379 unsigned long addr, int new_below) 1380 { 1381 struct vm_area_struct *new; 1382 struct vm_region *region; 1383 unsigned long npages; 1384 1385 /* we're only permitted to split anonymous regions (these should have 1386 * only a single usage on the region) */ 1387 if (vma->vm_file) 1388 return -ENOMEM; 1389 1390 if (mm->map_count >= sysctl_max_map_count) 1391 return -ENOMEM; 1392 1393 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1394 if (!region) 1395 return -ENOMEM; 1396 1397 new = vm_area_dup(vma); 1398 if (!new) { 1399 kmem_cache_free(vm_region_jar, region); 1400 return -ENOMEM; 1401 } 1402 1403 /* most fields are the same, copy all, and then fixup */ 1404 *region = *vma->vm_region; 1405 new->vm_region = region; 1406 1407 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1408 1409 if (new_below) { 1410 region->vm_top = region->vm_end = new->vm_end = addr; 1411 } else { 1412 region->vm_start = new->vm_start = addr; 1413 region->vm_pgoff = new->vm_pgoff += npages; 1414 } 1415 1416 if (new->vm_ops && new->vm_ops->open) 1417 new->vm_ops->open(new); 1418 1419 delete_vma_from_mm(vma); 1420 down_write(&nommu_region_sem); 1421 delete_nommu_region(vma->vm_region); 1422 if (new_below) { 1423 vma->vm_region->vm_start = vma->vm_start = addr; 1424 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1425 } else { 1426 vma->vm_region->vm_end = vma->vm_end = addr; 1427 vma->vm_region->vm_top = addr; 1428 } 1429 add_nommu_region(vma->vm_region); 1430 add_nommu_region(new->vm_region); 1431 up_write(&nommu_region_sem); 1432 add_vma_to_mm(mm, vma); 1433 add_vma_to_mm(mm, new); 1434 return 0; 1435 } 1436 1437 /* 1438 * shrink a VMA by removing the specified chunk from either the beginning or 1439 * the end 1440 */ 1441 static int shrink_vma(struct mm_struct *mm, 1442 struct vm_area_struct *vma, 1443 unsigned long from, unsigned long to) 1444 { 1445 struct vm_region *region; 1446 1447 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1448 * and list */ 1449 delete_vma_from_mm(vma); 1450 if (from > vma->vm_start) 1451 vma->vm_end = from; 1452 else 1453 vma->vm_start = to; 1454 add_vma_to_mm(mm, vma); 1455 1456 /* cut the backing region down to size */ 1457 region = vma->vm_region; 1458 BUG_ON(region->vm_usage != 1); 1459 1460 down_write(&nommu_region_sem); 1461 delete_nommu_region(region); 1462 if (from > region->vm_start) { 1463 to = region->vm_top; 1464 region->vm_top = region->vm_end = from; 1465 } else { 1466 region->vm_start = to; 1467 } 1468 add_nommu_region(region); 1469 up_write(&nommu_region_sem); 1470 1471 free_page_series(from, to); 1472 return 0; 1473 } 1474 1475 /* 1476 * release a mapping 1477 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1478 * VMA, though it need not cover the whole VMA 1479 */ 1480 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1481 { 1482 struct vm_area_struct *vma; 1483 unsigned long end; 1484 int ret; 1485 1486 len = PAGE_ALIGN(len); 1487 if (len == 0) 1488 return -EINVAL; 1489 1490 end = start + len; 1491 1492 /* find the first potentially overlapping VMA */ 1493 vma = find_vma(mm, start); 1494 if (!vma) { 1495 static int limit; 1496 if (limit < 5) { 1497 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1498 current->pid, current->comm, 1499 start, start + len - 1); 1500 limit++; 1501 } 1502 return -EINVAL; 1503 } 1504 1505 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1506 if (vma->vm_file) { 1507 do { 1508 if (start > vma->vm_start) 1509 return -EINVAL; 1510 if (end == vma->vm_end) 1511 goto erase_whole_vma; 1512 vma = vma->vm_next; 1513 } while (vma); 1514 return -EINVAL; 1515 } else { 1516 /* the chunk must be a subset of the VMA found */ 1517 if (start == vma->vm_start && end == vma->vm_end) 1518 goto erase_whole_vma; 1519 if (start < vma->vm_start || end > vma->vm_end) 1520 return -EINVAL; 1521 if (offset_in_page(start)) 1522 return -EINVAL; 1523 if (end != vma->vm_end && offset_in_page(end)) 1524 return -EINVAL; 1525 if (start != vma->vm_start && end != vma->vm_end) { 1526 ret = split_vma(mm, vma, start, 1); 1527 if (ret < 0) 1528 return ret; 1529 } 1530 return shrink_vma(mm, vma, start, end); 1531 } 1532 1533 erase_whole_vma: 1534 delete_vma_from_mm(vma); 1535 delete_vma(mm, vma); 1536 return 0; 1537 } 1538 EXPORT_SYMBOL(do_munmap); 1539 1540 int vm_munmap(unsigned long addr, size_t len) 1541 { 1542 struct mm_struct *mm = current->mm; 1543 int ret; 1544 1545 mmap_write_lock(mm); 1546 ret = do_munmap(mm, addr, len, NULL); 1547 mmap_write_unlock(mm); 1548 return ret; 1549 } 1550 EXPORT_SYMBOL(vm_munmap); 1551 1552 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1553 { 1554 return vm_munmap(addr, len); 1555 } 1556 1557 /* 1558 * release all the mappings made in a process's VM space 1559 */ 1560 void exit_mmap(struct mm_struct *mm) 1561 { 1562 struct vm_area_struct *vma; 1563 1564 if (!mm) 1565 return; 1566 1567 mm->total_vm = 0; 1568 1569 while ((vma = mm->mmap)) { 1570 mm->mmap = vma->vm_next; 1571 delete_vma_from_mm(vma); 1572 delete_vma(mm, vma); 1573 cond_resched(); 1574 } 1575 } 1576 1577 int vm_brk(unsigned long addr, unsigned long len) 1578 { 1579 return -ENOMEM; 1580 } 1581 1582 /* 1583 * expand (or shrink) an existing mapping, potentially moving it at the same 1584 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1585 * 1586 * under NOMMU conditions, we only permit changing a mapping's size, and only 1587 * as long as it stays within the region allocated by do_mmap_private() and the 1588 * block is not shareable 1589 * 1590 * MREMAP_FIXED is not supported under NOMMU conditions 1591 */ 1592 static unsigned long do_mremap(unsigned long addr, 1593 unsigned long old_len, unsigned long new_len, 1594 unsigned long flags, unsigned long new_addr) 1595 { 1596 struct vm_area_struct *vma; 1597 1598 /* insanity checks first */ 1599 old_len = PAGE_ALIGN(old_len); 1600 new_len = PAGE_ALIGN(new_len); 1601 if (old_len == 0 || new_len == 0) 1602 return (unsigned long) -EINVAL; 1603 1604 if (offset_in_page(addr)) 1605 return -EINVAL; 1606 1607 if (flags & MREMAP_FIXED && new_addr != addr) 1608 return (unsigned long) -EINVAL; 1609 1610 vma = find_vma_exact(current->mm, addr, old_len); 1611 if (!vma) 1612 return (unsigned long) -EINVAL; 1613 1614 if (vma->vm_end != vma->vm_start + old_len) 1615 return (unsigned long) -EFAULT; 1616 1617 if (vma->vm_flags & VM_MAYSHARE) 1618 return (unsigned long) -EPERM; 1619 1620 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1621 return (unsigned long) -ENOMEM; 1622 1623 /* all checks complete - do it */ 1624 vma->vm_end = vma->vm_start + new_len; 1625 return vma->vm_start; 1626 } 1627 1628 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1629 unsigned long, new_len, unsigned long, flags, 1630 unsigned long, new_addr) 1631 { 1632 unsigned long ret; 1633 1634 mmap_write_lock(current->mm); 1635 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1636 mmap_write_unlock(current->mm); 1637 return ret; 1638 } 1639 1640 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1641 unsigned int foll_flags) 1642 { 1643 return NULL; 1644 } 1645 1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1647 unsigned long pfn, unsigned long size, pgprot_t prot) 1648 { 1649 if (addr != (pfn << PAGE_SHIFT)) 1650 return -EINVAL; 1651 1652 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1653 return 0; 1654 } 1655 EXPORT_SYMBOL(remap_pfn_range); 1656 1657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1658 { 1659 unsigned long pfn = start >> PAGE_SHIFT; 1660 unsigned long vm_len = vma->vm_end - vma->vm_start; 1661 1662 pfn += vma->vm_pgoff; 1663 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1664 } 1665 EXPORT_SYMBOL(vm_iomap_memory); 1666 1667 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1668 unsigned long pgoff) 1669 { 1670 unsigned int size = vma->vm_end - vma->vm_start; 1671 1672 if (!(vma->vm_flags & VM_USERMAP)) 1673 return -EINVAL; 1674 1675 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1676 vma->vm_end = vma->vm_start + size; 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL(remap_vmalloc_range); 1681 1682 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1683 unsigned long len, unsigned long pgoff, unsigned long flags) 1684 { 1685 return -ENOMEM; 1686 } 1687 1688 vm_fault_t filemap_fault(struct vm_fault *vmf) 1689 { 1690 BUG(); 1691 return 0; 1692 } 1693 EXPORT_SYMBOL(filemap_fault); 1694 1695 void filemap_map_pages(struct vm_fault *vmf, 1696 pgoff_t start_pgoff, pgoff_t end_pgoff) 1697 { 1698 BUG(); 1699 } 1700 EXPORT_SYMBOL(filemap_map_pages); 1701 1702 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1703 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1704 { 1705 struct vm_area_struct *vma; 1706 int write = gup_flags & FOLL_WRITE; 1707 1708 if (mmap_read_lock_killable(mm)) 1709 return 0; 1710 1711 /* the access must start within one of the target process's mappings */ 1712 vma = find_vma(mm, addr); 1713 if (vma) { 1714 /* don't overrun this mapping */ 1715 if (addr + len >= vma->vm_end) 1716 len = vma->vm_end - addr; 1717 1718 /* only read or write mappings where it is permitted */ 1719 if (write && vma->vm_flags & VM_MAYWRITE) 1720 copy_to_user_page(vma, NULL, addr, 1721 (void *) addr, buf, len); 1722 else if (!write && vma->vm_flags & VM_MAYREAD) 1723 copy_from_user_page(vma, NULL, addr, 1724 buf, (void *) addr, len); 1725 else 1726 len = 0; 1727 } else { 1728 len = 0; 1729 } 1730 1731 mmap_read_unlock(mm); 1732 1733 return len; 1734 } 1735 1736 /** 1737 * access_remote_vm - access another process' address space 1738 * @mm: the mm_struct of the target address space 1739 * @addr: start address to access 1740 * @buf: source or destination buffer 1741 * @len: number of bytes to transfer 1742 * @gup_flags: flags modifying lookup behaviour 1743 * 1744 * The caller must hold a reference on @mm. 1745 */ 1746 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1747 void *buf, int len, unsigned int gup_flags) 1748 { 1749 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1750 } 1751 1752 /* 1753 * Access another process' address space. 1754 * - source/target buffer must be kernel space 1755 */ 1756 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1757 unsigned int gup_flags) 1758 { 1759 struct mm_struct *mm; 1760 1761 if (addr + len < addr) 1762 return 0; 1763 1764 mm = get_task_mm(tsk); 1765 if (!mm) 1766 return 0; 1767 1768 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1769 1770 mmput(mm); 1771 return len; 1772 } 1773 EXPORT_SYMBOL_GPL(access_process_vm); 1774 1775 /** 1776 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1777 * @inode: The inode to check 1778 * @size: The current filesize of the inode 1779 * @newsize: The proposed filesize of the inode 1780 * 1781 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1782 * make sure that that any outstanding VMAs aren't broken and then shrink the 1783 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1784 * automatically grant mappings that are too large. 1785 */ 1786 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1787 size_t newsize) 1788 { 1789 struct vm_area_struct *vma; 1790 struct vm_region *region; 1791 pgoff_t low, high; 1792 size_t r_size, r_top; 1793 1794 low = newsize >> PAGE_SHIFT; 1795 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1796 1797 down_write(&nommu_region_sem); 1798 i_mmap_lock_read(inode->i_mapping); 1799 1800 /* search for VMAs that fall within the dead zone */ 1801 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1802 /* found one - only interested if it's shared out of the page 1803 * cache */ 1804 if (vma->vm_flags & VM_SHARED) { 1805 i_mmap_unlock_read(inode->i_mapping); 1806 up_write(&nommu_region_sem); 1807 return -ETXTBSY; /* not quite true, but near enough */ 1808 } 1809 } 1810 1811 /* reduce any regions that overlap the dead zone - if in existence, 1812 * these will be pointed to by VMAs that don't overlap the dead zone 1813 * 1814 * we don't check for any regions that start beyond the EOF as there 1815 * shouldn't be any 1816 */ 1817 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1818 if (!(vma->vm_flags & VM_SHARED)) 1819 continue; 1820 1821 region = vma->vm_region; 1822 r_size = region->vm_top - region->vm_start; 1823 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1824 1825 if (r_top > newsize) { 1826 region->vm_top -= r_top - newsize; 1827 if (region->vm_end > region->vm_top) 1828 region->vm_end = region->vm_top; 1829 } 1830 } 1831 1832 i_mmap_unlock_read(inode->i_mapping); 1833 up_write(&nommu_region_sem); 1834 return 0; 1835 } 1836 1837 /* 1838 * Initialise sysctl_user_reserve_kbytes. 1839 * 1840 * This is intended to prevent a user from starting a single memory hogging 1841 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1842 * mode. 1843 * 1844 * The default value is min(3% of free memory, 128MB) 1845 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1846 */ 1847 static int __meminit init_user_reserve(void) 1848 { 1849 unsigned long free_kbytes; 1850 1851 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1852 1853 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1854 return 0; 1855 } 1856 subsys_initcall(init_user_reserve); 1857 1858 /* 1859 * Initialise sysctl_admin_reserve_kbytes. 1860 * 1861 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1862 * to log in and kill a memory hogging process. 1863 * 1864 * Systems with more than 256MB will reserve 8MB, enough to recover 1865 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1866 * only reserve 3% of free pages by default. 1867 */ 1868 static int __meminit init_admin_reserve(void) 1869 { 1870 unsigned long free_kbytes; 1871 1872 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1873 1874 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1875 return 0; 1876 } 1877 subsys_initcall(init_admin_reserve); 1878