1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/hugetlb.h> 13 #include <linux/shm.h> 14 #include <linux/ksm.h> 15 #include <linux/mman.h> 16 #include <linux/swap.h> 17 #include <linux/capability.h> 18 #include <linux/fs.h> 19 #include <linux/swapops.h> 20 #include <linux/highmem.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/mmu_notifier.h> 24 #include <linux/uaccess.h> 25 #include <linux/mm-arch-hooks.h> 26 #include <linux/userfaultfd_k.h> 27 28 #include <asm/cacheflush.h> 29 #include <asm/tlbflush.h> 30 31 #include "internal.h" 32 33 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 p4d_t *p4d; 37 pud_t *pud; 38 pmd_t *pmd; 39 40 pgd = pgd_offset(mm, addr); 41 if (pgd_none_or_clear_bad(pgd)) 42 return NULL; 43 44 p4d = p4d_offset(pgd, addr); 45 if (p4d_none_or_clear_bad(p4d)) 46 return NULL; 47 48 pud = pud_offset(p4d, addr); 49 if (pud_none_or_clear_bad(pud)) 50 return NULL; 51 52 pmd = pmd_offset(pud, addr); 53 if (pmd_none(*pmd)) 54 return NULL; 55 56 return pmd; 57 } 58 59 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 60 unsigned long addr) 61 { 62 pgd_t *pgd; 63 p4d_t *p4d; 64 pud_t *pud; 65 pmd_t *pmd; 66 67 pgd = pgd_offset(mm, addr); 68 p4d = p4d_alloc(mm, pgd, addr); 69 if (!p4d) 70 return NULL; 71 pud = pud_alloc(mm, p4d, addr); 72 if (!pud) 73 return NULL; 74 75 pmd = pmd_alloc(mm, pud, addr); 76 if (!pmd) 77 return NULL; 78 79 VM_BUG_ON(pmd_trans_huge(*pmd)); 80 81 return pmd; 82 } 83 84 static void take_rmap_locks(struct vm_area_struct *vma) 85 { 86 if (vma->vm_file) 87 i_mmap_lock_write(vma->vm_file->f_mapping); 88 if (vma->anon_vma) 89 anon_vma_lock_write(vma->anon_vma); 90 } 91 92 static void drop_rmap_locks(struct vm_area_struct *vma) 93 { 94 if (vma->anon_vma) 95 anon_vma_unlock_write(vma->anon_vma); 96 if (vma->vm_file) 97 i_mmap_unlock_write(vma->vm_file->f_mapping); 98 } 99 100 static pte_t move_soft_dirty_pte(pte_t pte) 101 { 102 /* 103 * Set soft dirty bit so we can notice 104 * in userspace the ptes were moved. 105 */ 106 #ifdef CONFIG_MEM_SOFT_DIRTY 107 if (pte_present(pte)) 108 pte = pte_mksoft_dirty(pte); 109 else if (is_swap_pte(pte)) 110 pte = pte_swp_mksoft_dirty(pte); 111 #endif 112 return pte; 113 } 114 115 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 116 unsigned long old_addr, unsigned long old_end, 117 struct vm_area_struct *new_vma, pmd_t *new_pmd, 118 unsigned long new_addr, bool need_rmap_locks) 119 { 120 struct mm_struct *mm = vma->vm_mm; 121 pte_t *old_pte, *new_pte, pte; 122 spinlock_t *old_ptl, *new_ptl; 123 bool force_flush = false; 124 unsigned long len = old_end - old_addr; 125 126 /* 127 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 128 * locks to ensure that rmap will always observe either the old or the 129 * new ptes. This is the easiest way to avoid races with 130 * truncate_pagecache(), page migration, etc... 131 * 132 * When need_rmap_locks is false, we use other ways to avoid 133 * such races: 134 * 135 * - During exec() shift_arg_pages(), we use a specially tagged vma 136 * which rmap call sites look for using vma_is_temporary_stack(). 137 * 138 * - During mremap(), new_vma is often known to be placed after vma 139 * in rmap traversal order. This ensures rmap will always observe 140 * either the old pte, or the new pte, or both (the page table locks 141 * serialize access to individual ptes, but only rmap traversal 142 * order guarantees that we won't miss both the old and new ptes). 143 */ 144 if (need_rmap_locks) 145 take_rmap_locks(vma); 146 147 /* 148 * We don't have to worry about the ordering of src and dst 149 * pte locks because exclusive mmap_lock prevents deadlock. 150 */ 151 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 152 new_pte = pte_offset_map(new_pmd, new_addr); 153 new_ptl = pte_lockptr(mm, new_pmd); 154 if (new_ptl != old_ptl) 155 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 156 flush_tlb_batched_pending(vma->vm_mm); 157 arch_enter_lazy_mmu_mode(); 158 159 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 160 new_pte++, new_addr += PAGE_SIZE) { 161 if (pte_none(*old_pte)) 162 continue; 163 164 pte = ptep_get_and_clear(mm, old_addr, old_pte); 165 /* 166 * If we are remapping a valid PTE, make sure 167 * to flush TLB before we drop the PTL for the 168 * PTE. 169 * 170 * NOTE! Both old and new PTL matter: the old one 171 * for racing with page_mkclean(), the new one to 172 * make sure the physical page stays valid until 173 * the TLB entry for the old mapping has been 174 * flushed. 175 */ 176 if (pte_present(pte)) 177 force_flush = true; 178 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 179 pte = move_soft_dirty_pte(pte); 180 set_pte_at(mm, new_addr, new_pte, pte); 181 } 182 183 arch_leave_lazy_mmu_mode(); 184 if (force_flush) 185 flush_tlb_range(vma, old_end - len, old_end); 186 if (new_ptl != old_ptl) 187 spin_unlock(new_ptl); 188 pte_unmap(new_pte - 1); 189 pte_unmap_unlock(old_pte - 1, old_ptl); 190 if (need_rmap_locks) 191 drop_rmap_locks(vma); 192 } 193 194 #ifdef CONFIG_HAVE_MOVE_PMD 195 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 196 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 197 { 198 spinlock_t *old_ptl, *new_ptl; 199 struct mm_struct *mm = vma->vm_mm; 200 pmd_t pmd; 201 202 /* 203 * The destination pmd shouldn't be established, free_pgtables() 204 * should have released it. 205 * 206 * However, there's a case during execve() where we use mremap 207 * to move the initial stack, and in that case the target area 208 * may overlap the source area (always moving down). 209 * 210 * If everything is PMD-aligned, that works fine, as moving 211 * each pmd down will clear the source pmd. But if we first 212 * have a few 4kB-only pages that get moved down, and then 213 * hit the "now the rest is PMD-aligned, let's do everything 214 * one pmd at a time", we will still have the old (now empty 215 * of any 4kB pages, but still there) PMD in the page table 216 * tree. 217 * 218 * Warn on it once - because we really should try to figure 219 * out how to do this better - but then say "I won't move 220 * this pmd". 221 * 222 * One alternative might be to just unmap the target pmd at 223 * this point, and verify that it really is empty. We'll see. 224 */ 225 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 226 return false; 227 228 /* 229 * We don't have to worry about the ordering of src and dst 230 * ptlocks because exclusive mmap_lock prevents deadlock. 231 */ 232 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 233 new_ptl = pmd_lockptr(mm, new_pmd); 234 if (new_ptl != old_ptl) 235 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 236 237 /* Clear the pmd */ 238 pmd = *old_pmd; 239 pmd_clear(old_pmd); 240 241 VM_BUG_ON(!pmd_none(*new_pmd)); 242 243 /* Set the new pmd */ 244 set_pmd_at(mm, new_addr, new_pmd, pmd); 245 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 246 if (new_ptl != old_ptl) 247 spin_unlock(new_ptl); 248 spin_unlock(old_ptl); 249 250 return true; 251 } 252 #endif 253 254 unsigned long move_page_tables(struct vm_area_struct *vma, 255 unsigned long old_addr, struct vm_area_struct *new_vma, 256 unsigned long new_addr, unsigned long len, 257 bool need_rmap_locks) 258 { 259 unsigned long extent, next, old_end; 260 struct mmu_notifier_range range; 261 pmd_t *old_pmd, *new_pmd; 262 263 old_end = old_addr + len; 264 flush_cache_range(vma, old_addr, old_end); 265 266 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 267 old_addr, old_end); 268 mmu_notifier_invalidate_range_start(&range); 269 270 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 271 cond_resched(); 272 next = (old_addr + PMD_SIZE) & PMD_MASK; 273 /* even if next overflowed, extent below will be ok */ 274 extent = next - old_addr; 275 if (extent > old_end - old_addr) 276 extent = old_end - old_addr; 277 next = (new_addr + PMD_SIZE) & PMD_MASK; 278 if (extent > next - new_addr) 279 extent = next - new_addr; 280 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 281 if (!old_pmd) 282 continue; 283 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 284 if (!new_pmd) 285 break; 286 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || pmd_devmap(*old_pmd)) { 287 if (extent == HPAGE_PMD_SIZE) { 288 bool moved; 289 /* See comment in move_ptes() */ 290 if (need_rmap_locks) 291 take_rmap_locks(vma); 292 moved = move_huge_pmd(vma, old_addr, new_addr, 293 old_pmd, new_pmd); 294 if (need_rmap_locks) 295 drop_rmap_locks(vma); 296 if (moved) 297 continue; 298 } 299 split_huge_pmd(vma, old_pmd, old_addr); 300 if (pmd_trans_unstable(old_pmd)) 301 continue; 302 } else if (extent == PMD_SIZE) { 303 #ifdef CONFIG_HAVE_MOVE_PMD 304 /* 305 * If the extent is PMD-sized, try to speed the move by 306 * moving at the PMD level if possible. 307 */ 308 bool moved; 309 310 if (need_rmap_locks) 311 take_rmap_locks(vma); 312 moved = move_normal_pmd(vma, old_addr, new_addr, 313 old_pmd, new_pmd); 314 if (need_rmap_locks) 315 drop_rmap_locks(vma); 316 if (moved) 317 continue; 318 #endif 319 } 320 321 if (pte_alloc(new_vma->vm_mm, new_pmd)) 322 break; 323 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 324 new_pmd, new_addr, need_rmap_locks); 325 } 326 327 mmu_notifier_invalidate_range_end(&range); 328 329 return len + old_addr - old_end; /* how much done */ 330 } 331 332 static unsigned long move_vma(struct vm_area_struct *vma, 333 unsigned long old_addr, unsigned long old_len, 334 unsigned long new_len, unsigned long new_addr, 335 bool *locked, unsigned long flags, 336 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 337 { 338 struct mm_struct *mm = vma->vm_mm; 339 struct vm_area_struct *new_vma; 340 unsigned long vm_flags = vma->vm_flags; 341 unsigned long new_pgoff; 342 unsigned long moved_len; 343 unsigned long excess = 0; 344 unsigned long hiwater_vm; 345 int split = 0; 346 int err; 347 bool need_rmap_locks; 348 349 /* 350 * We'd prefer to avoid failure later on in do_munmap: 351 * which may split one vma into three before unmapping. 352 */ 353 if (mm->map_count >= sysctl_max_map_count - 3) 354 return -ENOMEM; 355 356 /* 357 * Advise KSM to break any KSM pages in the area to be moved: 358 * it would be confusing if they were to turn up at the new 359 * location, where they happen to coincide with different KSM 360 * pages recently unmapped. But leave vma->vm_flags as it was, 361 * so KSM can come around to merge on vma and new_vma afterwards. 362 */ 363 err = ksm_madvise(vma, old_addr, old_addr + old_len, 364 MADV_UNMERGEABLE, &vm_flags); 365 if (err) 366 return err; 367 368 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 369 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 370 &need_rmap_locks); 371 if (!new_vma) 372 return -ENOMEM; 373 374 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 375 need_rmap_locks); 376 if (moved_len < old_len) { 377 err = -ENOMEM; 378 } else if (vma->vm_ops && vma->vm_ops->mremap) { 379 err = vma->vm_ops->mremap(new_vma); 380 } 381 382 if (unlikely(err)) { 383 /* 384 * On error, move entries back from new area to old, 385 * which will succeed since page tables still there, 386 * and then proceed to unmap new area instead of old. 387 */ 388 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 389 true); 390 vma = new_vma; 391 old_len = new_len; 392 old_addr = new_addr; 393 new_addr = err; 394 } else { 395 mremap_userfaultfd_prep(new_vma, uf); 396 arch_remap(mm, old_addr, old_addr + old_len, 397 new_addr, new_addr + new_len); 398 } 399 400 /* Conceal VM_ACCOUNT so old reservation is not undone */ 401 if (vm_flags & VM_ACCOUNT) { 402 vma->vm_flags &= ~VM_ACCOUNT; 403 excess = vma->vm_end - vma->vm_start - old_len; 404 if (old_addr > vma->vm_start && 405 old_addr + old_len < vma->vm_end) 406 split = 1; 407 } 408 409 /* 410 * If we failed to move page tables we still do total_vm increment 411 * since do_munmap() will decrement it by old_len == new_len. 412 * 413 * Since total_vm is about to be raised artificially high for a 414 * moment, we need to restore high watermark afterwards: if stats 415 * are taken meanwhile, total_vm and hiwater_vm appear too high. 416 * If this were a serious issue, we'd add a flag to do_munmap(). 417 */ 418 hiwater_vm = mm->hiwater_vm; 419 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 420 421 /* Tell pfnmap has moved from this vma */ 422 if (unlikely(vma->vm_flags & VM_PFNMAP)) 423 untrack_pfn_moved(vma); 424 425 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 426 if (vm_flags & VM_ACCOUNT) { 427 /* Always put back VM_ACCOUNT since we won't unmap */ 428 vma->vm_flags |= VM_ACCOUNT; 429 430 vm_acct_memory(new_len >> PAGE_SHIFT); 431 } 432 433 /* 434 * VMAs can actually be merged back together in copy_vma 435 * calling merge_vma. This can happen with anonymous vmas 436 * which have not yet been faulted, so if we were to consider 437 * this VMA split we'll end up adding VM_ACCOUNT on the 438 * next VMA, which is completely unrelated if this VMA 439 * was re-merged. 440 */ 441 if (split && new_vma == vma) 442 split = 0; 443 444 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 445 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 446 447 /* Because we won't unmap we don't need to touch locked_vm */ 448 goto out; 449 } 450 451 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 452 /* OOM: unable to split vma, just get accounts right */ 453 vm_unacct_memory(excess >> PAGE_SHIFT); 454 excess = 0; 455 } 456 457 if (vm_flags & VM_LOCKED) { 458 mm->locked_vm += new_len >> PAGE_SHIFT; 459 *locked = true; 460 } 461 out: 462 mm->hiwater_vm = hiwater_vm; 463 464 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 465 if (excess) { 466 vma->vm_flags |= VM_ACCOUNT; 467 if (split) 468 vma->vm_next->vm_flags |= VM_ACCOUNT; 469 } 470 471 return new_addr; 472 } 473 474 static struct vm_area_struct *vma_to_resize(unsigned long addr, 475 unsigned long old_len, unsigned long new_len, unsigned long flags, 476 unsigned long *p) 477 { 478 struct mm_struct *mm = current->mm; 479 struct vm_area_struct *vma = find_vma(mm, addr); 480 unsigned long pgoff; 481 482 if (!vma || vma->vm_start > addr) 483 return ERR_PTR(-EFAULT); 484 485 /* 486 * !old_len is a special case where an attempt is made to 'duplicate' 487 * a mapping. This makes no sense for private mappings as it will 488 * instead create a fresh/new mapping unrelated to the original. This 489 * is contrary to the basic idea of mremap which creates new mappings 490 * based on the original. There are no known use cases for this 491 * behavior. As a result, fail such attempts. 492 */ 493 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 494 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 495 return ERR_PTR(-EINVAL); 496 } 497 498 if (flags & MREMAP_DONTUNMAP && (!vma_is_anonymous(vma) || 499 vma->vm_flags & VM_SHARED)) 500 return ERR_PTR(-EINVAL); 501 502 if (is_vm_hugetlb_page(vma)) 503 return ERR_PTR(-EINVAL); 504 505 /* We can't remap across vm area boundaries */ 506 if (old_len > vma->vm_end - addr) 507 return ERR_PTR(-EFAULT); 508 509 if (new_len == old_len) 510 return vma; 511 512 /* Need to be careful about a growing mapping */ 513 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 514 pgoff += vma->vm_pgoff; 515 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 516 return ERR_PTR(-EINVAL); 517 518 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 519 return ERR_PTR(-EFAULT); 520 521 if (vma->vm_flags & VM_LOCKED) { 522 unsigned long locked, lock_limit; 523 locked = mm->locked_vm << PAGE_SHIFT; 524 lock_limit = rlimit(RLIMIT_MEMLOCK); 525 locked += new_len - old_len; 526 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 527 return ERR_PTR(-EAGAIN); 528 } 529 530 if (!may_expand_vm(mm, vma->vm_flags, 531 (new_len - old_len) >> PAGE_SHIFT)) 532 return ERR_PTR(-ENOMEM); 533 534 if (vma->vm_flags & VM_ACCOUNT) { 535 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT; 536 if (security_vm_enough_memory_mm(mm, charged)) 537 return ERR_PTR(-ENOMEM); 538 *p = charged; 539 } 540 541 return vma; 542 } 543 544 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 545 unsigned long new_addr, unsigned long new_len, bool *locked, 546 unsigned long flags, struct vm_userfaultfd_ctx *uf, 547 struct list_head *uf_unmap_early, 548 struct list_head *uf_unmap) 549 { 550 struct mm_struct *mm = current->mm; 551 struct vm_area_struct *vma; 552 unsigned long ret = -EINVAL; 553 unsigned long charged = 0; 554 unsigned long map_flags = 0; 555 556 if (offset_in_page(new_addr)) 557 goto out; 558 559 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 560 goto out; 561 562 /* Ensure the old/new locations do not overlap */ 563 if (addr + old_len > new_addr && new_addr + new_len > addr) 564 goto out; 565 566 /* 567 * move_vma() need us to stay 4 maps below the threshold, otherwise 568 * it will bail out at the very beginning. 569 * That is a problem if we have already unmaped the regions here 570 * (new_addr, and old_addr), because userspace will not know the 571 * state of the vma's after it gets -ENOMEM. 572 * So, to avoid such scenario we can pre-compute if the whole 573 * operation has high chances to success map-wise. 574 * Worst-scenario case is when both vma's (new_addr and old_addr) get 575 * split in 3 before unmaping it. 576 * That means 2 more maps (1 for each) to the ones we already hold. 577 * Check whether current map count plus 2 still leads us to 4 maps below 578 * the threshold, otherwise return -ENOMEM here to be more safe. 579 */ 580 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 581 return -ENOMEM; 582 583 if (flags & MREMAP_FIXED) { 584 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 585 if (ret) 586 goto out; 587 } 588 589 if (old_len >= new_len) { 590 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 591 if (ret && old_len != new_len) 592 goto out; 593 old_len = new_len; 594 } 595 596 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 597 if (IS_ERR(vma)) { 598 ret = PTR_ERR(vma); 599 goto out; 600 } 601 602 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 603 if (flags & MREMAP_DONTUNMAP && 604 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 605 ret = -ENOMEM; 606 goto out; 607 } 608 609 if (flags & MREMAP_FIXED) 610 map_flags |= MAP_FIXED; 611 612 if (vma->vm_flags & VM_MAYSHARE) 613 map_flags |= MAP_SHARED; 614 615 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 616 ((addr - vma->vm_start) >> PAGE_SHIFT), 617 map_flags); 618 if (IS_ERR_VALUE(ret)) 619 goto out1; 620 621 /* We got a new mapping */ 622 if (!(flags & MREMAP_FIXED)) 623 new_addr = ret; 624 625 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 626 uf_unmap); 627 628 if (!(offset_in_page(ret))) 629 goto out; 630 631 out1: 632 vm_unacct_memory(charged); 633 634 out: 635 return ret; 636 } 637 638 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 639 { 640 unsigned long end = vma->vm_end + delta; 641 if (end < vma->vm_end) /* overflow */ 642 return 0; 643 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */ 644 return 0; 645 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 646 0, MAP_FIXED) & ~PAGE_MASK) 647 return 0; 648 return 1; 649 } 650 651 /* 652 * Expand (or shrink) an existing mapping, potentially moving it at the 653 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 654 * 655 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 656 * This option implies MREMAP_MAYMOVE. 657 */ 658 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 659 unsigned long, new_len, unsigned long, flags, 660 unsigned long, new_addr) 661 { 662 struct mm_struct *mm = current->mm; 663 struct vm_area_struct *vma; 664 unsigned long ret = -EINVAL; 665 unsigned long charged = 0; 666 bool locked = false; 667 bool downgraded = false; 668 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 669 LIST_HEAD(uf_unmap_early); 670 LIST_HEAD(uf_unmap); 671 672 /* 673 * There is a deliberate asymmetry here: we strip the pointer tag 674 * from the old address but leave the new address alone. This is 675 * for consistency with mmap(), where we prevent the creation of 676 * aliasing mappings in userspace by leaving the tag bits of the 677 * mapping address intact. A non-zero tag will cause the subsequent 678 * range checks to reject the address as invalid. 679 * 680 * See Documentation/arm64/tagged-address-abi.rst for more information. 681 */ 682 addr = untagged_addr(addr); 683 684 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 685 return ret; 686 687 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 688 return ret; 689 690 /* 691 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 692 * in the process. 693 */ 694 if (flags & MREMAP_DONTUNMAP && 695 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 696 return ret; 697 698 699 if (offset_in_page(addr)) 700 return ret; 701 702 old_len = PAGE_ALIGN(old_len); 703 new_len = PAGE_ALIGN(new_len); 704 705 /* 706 * We allow a zero old-len as a special case 707 * for DOS-emu "duplicate shm area" thing. But 708 * a zero new-len is nonsensical. 709 */ 710 if (!new_len) 711 return ret; 712 713 if (mmap_write_lock_killable(current->mm)) 714 return -EINTR; 715 716 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 717 ret = mremap_to(addr, old_len, new_addr, new_len, 718 &locked, flags, &uf, &uf_unmap_early, 719 &uf_unmap); 720 goto out; 721 } 722 723 /* 724 * Always allow a shrinking remap: that just unmaps 725 * the unnecessary pages.. 726 * __do_munmap does all the needed commit accounting, and 727 * downgrades mmap_lock to read if so directed. 728 */ 729 if (old_len >= new_len) { 730 int retval; 731 732 retval = __do_munmap(mm, addr+new_len, old_len - new_len, 733 &uf_unmap, true); 734 if (retval < 0 && old_len != new_len) { 735 ret = retval; 736 goto out; 737 /* Returning 1 indicates mmap_lock is downgraded to read. */ 738 } else if (retval == 1) 739 downgraded = true; 740 ret = addr; 741 goto out; 742 } 743 744 /* 745 * Ok, we need to grow.. 746 */ 747 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 748 if (IS_ERR(vma)) { 749 ret = PTR_ERR(vma); 750 goto out; 751 } 752 753 /* old_len exactly to the end of the area.. 754 */ 755 if (old_len == vma->vm_end - addr) { 756 /* can we just expand the current mapping? */ 757 if (vma_expandable(vma, new_len - old_len)) { 758 int pages = (new_len - old_len) >> PAGE_SHIFT; 759 760 if (vma_adjust(vma, vma->vm_start, addr + new_len, 761 vma->vm_pgoff, NULL)) { 762 ret = -ENOMEM; 763 goto out; 764 } 765 766 vm_stat_account(mm, vma->vm_flags, pages); 767 if (vma->vm_flags & VM_LOCKED) { 768 mm->locked_vm += pages; 769 locked = true; 770 new_addr = addr; 771 } 772 ret = addr; 773 goto out; 774 } 775 } 776 777 /* 778 * We weren't able to just expand or shrink the area, 779 * we need to create a new one and move it.. 780 */ 781 ret = -ENOMEM; 782 if (flags & MREMAP_MAYMOVE) { 783 unsigned long map_flags = 0; 784 if (vma->vm_flags & VM_MAYSHARE) 785 map_flags |= MAP_SHARED; 786 787 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 788 vma->vm_pgoff + 789 ((addr - vma->vm_start) >> PAGE_SHIFT), 790 map_flags); 791 if (IS_ERR_VALUE(new_addr)) { 792 ret = new_addr; 793 goto out; 794 } 795 796 ret = move_vma(vma, addr, old_len, new_len, new_addr, 797 &locked, flags, &uf, &uf_unmap); 798 } 799 out: 800 if (offset_in_page(ret)) { 801 vm_unacct_memory(charged); 802 locked = false; 803 } 804 if (downgraded) 805 mmap_read_unlock(current->mm); 806 else 807 mmap_write_unlock(current->mm); 808 if (locked && new_len > old_len) 809 mm_populate(new_addr + old_len, new_len - old_len); 810 userfaultfd_unmap_complete(mm, &uf_unmap_early); 811 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 812 userfaultfd_unmap_complete(mm, &uf_unmap); 813 return ret; 814 } 815