1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/hugetlb.h> 13 #include <linux/shm.h> 14 #include <linux/ksm.h> 15 #include <linux/mman.h> 16 #include <linux/swap.h> 17 #include <linux/capability.h> 18 #include <linux/fs.h> 19 #include <linux/swapops.h> 20 #include <linux/highmem.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/mmu_notifier.h> 24 #include <linux/uaccess.h> 25 #include <linux/userfaultfd_k.h> 26 27 #include <asm/cacheflush.h> 28 #include <asm/tlb.h> 29 #include <asm/pgalloc.h> 30 31 #include "internal.h" 32 33 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 p4d_t *p4d; 37 pud_t *pud; 38 39 pgd = pgd_offset(mm, addr); 40 if (pgd_none_or_clear_bad(pgd)) 41 return NULL; 42 43 p4d = p4d_offset(pgd, addr); 44 if (p4d_none_or_clear_bad(p4d)) 45 return NULL; 46 47 pud = pud_offset(p4d, addr); 48 if (pud_none_or_clear_bad(pud)) 49 return NULL; 50 51 return pud; 52 } 53 54 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 55 { 56 pud_t *pud; 57 pmd_t *pmd; 58 59 pud = get_old_pud(mm, addr); 60 if (!pud) 61 return NULL; 62 63 pmd = pmd_offset(pud, addr); 64 if (pmd_none(*pmd)) 65 return NULL; 66 67 return pmd; 68 } 69 70 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 71 unsigned long addr) 72 { 73 pgd_t *pgd; 74 p4d_t *p4d; 75 76 pgd = pgd_offset(mm, addr); 77 p4d = p4d_alloc(mm, pgd, addr); 78 if (!p4d) 79 return NULL; 80 81 return pud_alloc(mm, p4d, addr); 82 } 83 84 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 85 unsigned long addr) 86 { 87 pud_t *pud; 88 pmd_t *pmd; 89 90 pud = alloc_new_pud(mm, vma, addr); 91 if (!pud) 92 return NULL; 93 94 pmd = pmd_alloc(mm, pud, addr); 95 if (!pmd) 96 return NULL; 97 98 VM_BUG_ON(pmd_trans_huge(*pmd)); 99 100 return pmd; 101 } 102 103 static void take_rmap_locks(struct vm_area_struct *vma) 104 { 105 if (vma->vm_file) 106 i_mmap_lock_write(vma->vm_file->f_mapping); 107 if (vma->anon_vma) 108 anon_vma_lock_write(vma->anon_vma); 109 } 110 111 static void drop_rmap_locks(struct vm_area_struct *vma) 112 { 113 if (vma->anon_vma) 114 anon_vma_unlock_write(vma->anon_vma); 115 if (vma->vm_file) 116 i_mmap_unlock_write(vma->vm_file->f_mapping); 117 } 118 119 static pte_t move_soft_dirty_pte(pte_t pte) 120 { 121 /* 122 * Set soft dirty bit so we can notice 123 * in userspace the ptes were moved. 124 */ 125 #ifdef CONFIG_MEM_SOFT_DIRTY 126 if (pte_present(pte)) 127 pte = pte_mksoft_dirty(pte); 128 else if (is_swap_pte(pte)) 129 pte = pte_swp_mksoft_dirty(pte); 130 #endif 131 return pte; 132 } 133 134 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 135 unsigned long old_addr, unsigned long old_end, 136 struct vm_area_struct *new_vma, pmd_t *new_pmd, 137 unsigned long new_addr, bool need_rmap_locks) 138 { 139 struct mm_struct *mm = vma->vm_mm; 140 pte_t *old_pte, *new_pte, pte; 141 spinlock_t *old_ptl, *new_ptl; 142 bool force_flush = false; 143 unsigned long len = old_end - old_addr; 144 145 /* 146 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 147 * locks to ensure that rmap will always observe either the old or the 148 * new ptes. This is the easiest way to avoid races with 149 * truncate_pagecache(), page migration, etc... 150 * 151 * When need_rmap_locks is false, we use other ways to avoid 152 * such races: 153 * 154 * - During exec() shift_arg_pages(), we use a specially tagged vma 155 * which rmap call sites look for using vma_is_temporary_stack(). 156 * 157 * - During mremap(), new_vma is often known to be placed after vma 158 * in rmap traversal order. This ensures rmap will always observe 159 * either the old pte, or the new pte, or both (the page table locks 160 * serialize access to individual ptes, but only rmap traversal 161 * order guarantees that we won't miss both the old and new ptes). 162 */ 163 if (need_rmap_locks) 164 take_rmap_locks(vma); 165 166 /* 167 * We don't have to worry about the ordering of src and dst 168 * pte locks because exclusive mmap_lock prevents deadlock. 169 */ 170 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 171 new_pte = pte_offset_map(new_pmd, new_addr); 172 new_ptl = pte_lockptr(mm, new_pmd); 173 if (new_ptl != old_ptl) 174 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 175 flush_tlb_batched_pending(vma->vm_mm); 176 arch_enter_lazy_mmu_mode(); 177 178 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 179 new_pte++, new_addr += PAGE_SIZE) { 180 if (pte_none(*old_pte)) 181 continue; 182 183 pte = ptep_get_and_clear(mm, old_addr, old_pte); 184 /* 185 * If we are remapping a valid PTE, make sure 186 * to flush TLB before we drop the PTL for the 187 * PTE. 188 * 189 * NOTE! Both old and new PTL matter: the old one 190 * for racing with page_mkclean(), the new one to 191 * make sure the physical page stays valid until 192 * the TLB entry for the old mapping has been 193 * flushed. 194 */ 195 if (pte_present(pte)) 196 force_flush = true; 197 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 198 pte = move_soft_dirty_pte(pte); 199 set_pte_at(mm, new_addr, new_pte, pte); 200 } 201 202 arch_leave_lazy_mmu_mode(); 203 if (force_flush) 204 flush_tlb_range(vma, old_end - len, old_end); 205 if (new_ptl != old_ptl) 206 spin_unlock(new_ptl); 207 pte_unmap(new_pte - 1); 208 pte_unmap_unlock(old_pte - 1, old_ptl); 209 if (need_rmap_locks) 210 drop_rmap_locks(vma); 211 } 212 213 #ifndef arch_supports_page_table_move 214 #define arch_supports_page_table_move arch_supports_page_table_move 215 static inline bool arch_supports_page_table_move(void) 216 { 217 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 218 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 219 } 220 #endif 221 222 #ifdef CONFIG_HAVE_MOVE_PMD 223 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 224 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 225 { 226 spinlock_t *old_ptl, *new_ptl; 227 struct mm_struct *mm = vma->vm_mm; 228 pmd_t pmd; 229 230 if (!arch_supports_page_table_move()) 231 return false; 232 /* 233 * The destination pmd shouldn't be established, free_pgtables() 234 * should have released it. 235 * 236 * However, there's a case during execve() where we use mremap 237 * to move the initial stack, and in that case the target area 238 * may overlap the source area (always moving down). 239 * 240 * If everything is PMD-aligned, that works fine, as moving 241 * each pmd down will clear the source pmd. But if we first 242 * have a few 4kB-only pages that get moved down, and then 243 * hit the "now the rest is PMD-aligned, let's do everything 244 * one pmd at a time", we will still have the old (now empty 245 * of any 4kB pages, but still there) PMD in the page table 246 * tree. 247 * 248 * Warn on it once - because we really should try to figure 249 * out how to do this better - but then say "I won't move 250 * this pmd". 251 * 252 * One alternative might be to just unmap the target pmd at 253 * this point, and verify that it really is empty. We'll see. 254 */ 255 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 256 return false; 257 258 /* 259 * We don't have to worry about the ordering of src and dst 260 * ptlocks because exclusive mmap_lock prevents deadlock. 261 */ 262 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 263 new_ptl = pmd_lockptr(mm, new_pmd); 264 if (new_ptl != old_ptl) 265 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 266 267 /* Clear the pmd */ 268 pmd = *old_pmd; 269 pmd_clear(old_pmd); 270 271 VM_BUG_ON(!pmd_none(*new_pmd)); 272 273 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 274 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 275 if (new_ptl != old_ptl) 276 spin_unlock(new_ptl); 277 spin_unlock(old_ptl); 278 279 return true; 280 } 281 #else 282 static inline bool move_normal_pmd(struct vm_area_struct *vma, 283 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 284 pmd_t *new_pmd) 285 { 286 return false; 287 } 288 #endif 289 290 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 291 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 292 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 293 { 294 spinlock_t *old_ptl, *new_ptl; 295 struct mm_struct *mm = vma->vm_mm; 296 pud_t pud; 297 298 if (!arch_supports_page_table_move()) 299 return false; 300 /* 301 * The destination pud shouldn't be established, free_pgtables() 302 * should have released it. 303 */ 304 if (WARN_ON_ONCE(!pud_none(*new_pud))) 305 return false; 306 307 /* 308 * We don't have to worry about the ordering of src and dst 309 * ptlocks because exclusive mmap_lock prevents deadlock. 310 */ 311 old_ptl = pud_lock(vma->vm_mm, old_pud); 312 new_ptl = pud_lockptr(mm, new_pud); 313 if (new_ptl != old_ptl) 314 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 315 316 /* Clear the pud */ 317 pud = *old_pud; 318 pud_clear(old_pud); 319 320 VM_BUG_ON(!pud_none(*new_pud)); 321 322 pud_populate(mm, new_pud, pud_pgtable(pud)); 323 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 324 if (new_ptl != old_ptl) 325 spin_unlock(new_ptl); 326 spin_unlock(old_ptl); 327 328 return true; 329 } 330 #else 331 static inline bool move_normal_pud(struct vm_area_struct *vma, 332 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 333 pud_t *new_pud) 334 { 335 return false; 336 } 337 #endif 338 339 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 340 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 341 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 342 { 343 spinlock_t *old_ptl, *new_ptl; 344 struct mm_struct *mm = vma->vm_mm; 345 pud_t pud; 346 347 /* 348 * The destination pud shouldn't be established, free_pgtables() 349 * should have released it. 350 */ 351 if (WARN_ON_ONCE(!pud_none(*new_pud))) 352 return false; 353 354 /* 355 * We don't have to worry about the ordering of src and dst 356 * ptlocks because exclusive mmap_lock prevents deadlock. 357 */ 358 old_ptl = pud_lock(vma->vm_mm, old_pud); 359 new_ptl = pud_lockptr(mm, new_pud); 360 if (new_ptl != old_ptl) 361 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 362 363 /* Clear the pud */ 364 pud = *old_pud; 365 pud_clear(old_pud); 366 367 VM_BUG_ON(!pud_none(*new_pud)); 368 369 /* Set the new pud */ 370 /* mark soft_ditry when we add pud level soft dirty support */ 371 set_pud_at(mm, new_addr, new_pud, pud); 372 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 373 if (new_ptl != old_ptl) 374 spin_unlock(new_ptl); 375 spin_unlock(old_ptl); 376 377 return true; 378 } 379 #else 380 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 381 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 382 { 383 WARN_ON_ONCE(1); 384 return false; 385 386 } 387 #endif 388 389 enum pgt_entry { 390 NORMAL_PMD, 391 HPAGE_PMD, 392 NORMAL_PUD, 393 HPAGE_PUD, 394 }; 395 396 /* 397 * Returns an extent of the corresponding size for the pgt_entry specified if 398 * valid. Else returns a smaller extent bounded by the end of the source and 399 * destination pgt_entry. 400 */ 401 static __always_inline unsigned long get_extent(enum pgt_entry entry, 402 unsigned long old_addr, unsigned long old_end, 403 unsigned long new_addr) 404 { 405 unsigned long next, extent, mask, size; 406 407 switch (entry) { 408 case HPAGE_PMD: 409 case NORMAL_PMD: 410 mask = PMD_MASK; 411 size = PMD_SIZE; 412 break; 413 case HPAGE_PUD: 414 case NORMAL_PUD: 415 mask = PUD_MASK; 416 size = PUD_SIZE; 417 break; 418 default: 419 BUILD_BUG(); 420 break; 421 } 422 423 next = (old_addr + size) & mask; 424 /* even if next overflowed, extent below will be ok */ 425 extent = next - old_addr; 426 if (extent > old_end - old_addr) 427 extent = old_end - old_addr; 428 next = (new_addr + size) & mask; 429 if (extent > next - new_addr) 430 extent = next - new_addr; 431 return extent; 432 } 433 434 /* 435 * Attempts to speedup the move by moving entry at the level corresponding to 436 * pgt_entry. Returns true if the move was successful, else false. 437 */ 438 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 439 unsigned long old_addr, unsigned long new_addr, 440 void *old_entry, void *new_entry, bool need_rmap_locks) 441 { 442 bool moved = false; 443 444 /* See comment in move_ptes() */ 445 if (need_rmap_locks) 446 take_rmap_locks(vma); 447 448 switch (entry) { 449 case NORMAL_PMD: 450 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 451 new_entry); 452 break; 453 case NORMAL_PUD: 454 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 455 new_entry); 456 break; 457 case HPAGE_PMD: 458 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 459 move_huge_pmd(vma, old_addr, new_addr, old_entry, 460 new_entry); 461 break; 462 case HPAGE_PUD: 463 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 464 move_huge_pud(vma, old_addr, new_addr, old_entry, 465 new_entry); 466 break; 467 468 default: 469 WARN_ON_ONCE(1); 470 break; 471 } 472 473 if (need_rmap_locks) 474 drop_rmap_locks(vma); 475 476 return moved; 477 } 478 479 unsigned long move_page_tables(struct vm_area_struct *vma, 480 unsigned long old_addr, struct vm_area_struct *new_vma, 481 unsigned long new_addr, unsigned long len, 482 bool need_rmap_locks) 483 { 484 unsigned long extent, old_end; 485 struct mmu_notifier_range range; 486 pmd_t *old_pmd, *new_pmd; 487 pud_t *old_pud, *new_pud; 488 489 if (!len) 490 return 0; 491 492 old_end = old_addr + len; 493 494 if (is_vm_hugetlb_page(vma)) 495 return move_hugetlb_page_tables(vma, new_vma, old_addr, 496 new_addr, len); 497 498 flush_cache_range(vma, old_addr, old_end); 499 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 500 old_addr, old_end); 501 mmu_notifier_invalidate_range_start(&range); 502 503 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 504 cond_resched(); 505 /* 506 * If extent is PUD-sized try to speed up the move by moving at the 507 * PUD level if possible. 508 */ 509 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 510 511 old_pud = get_old_pud(vma->vm_mm, old_addr); 512 if (!old_pud) 513 continue; 514 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 515 if (!new_pud) 516 break; 517 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 518 if (extent == HPAGE_PUD_SIZE) { 519 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 520 old_pud, new_pud, need_rmap_locks); 521 /* We ignore and continue on error? */ 522 continue; 523 } 524 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 525 526 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 527 old_pud, new_pud, true)) 528 continue; 529 } 530 531 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 532 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 533 if (!old_pmd) 534 continue; 535 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 536 if (!new_pmd) 537 break; 538 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 539 pmd_devmap(*old_pmd)) { 540 if (extent == HPAGE_PMD_SIZE && 541 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 542 old_pmd, new_pmd, need_rmap_locks)) 543 continue; 544 split_huge_pmd(vma, old_pmd, old_addr); 545 if (pmd_trans_unstable(old_pmd)) 546 continue; 547 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 548 extent == PMD_SIZE) { 549 /* 550 * If the extent is PMD-sized, try to speed the move by 551 * moving at the PMD level if possible. 552 */ 553 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 554 old_pmd, new_pmd, true)) 555 continue; 556 } 557 558 if (pte_alloc(new_vma->vm_mm, new_pmd)) 559 break; 560 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 561 new_pmd, new_addr, need_rmap_locks); 562 } 563 564 mmu_notifier_invalidate_range_end(&range); 565 566 return len + old_addr - old_end; /* how much done */ 567 } 568 569 static unsigned long move_vma(struct vm_area_struct *vma, 570 unsigned long old_addr, unsigned long old_len, 571 unsigned long new_len, unsigned long new_addr, 572 bool *locked, unsigned long flags, 573 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 574 { 575 long to_account = new_len - old_len; 576 struct mm_struct *mm = vma->vm_mm; 577 struct vm_area_struct *new_vma; 578 unsigned long vm_flags = vma->vm_flags; 579 unsigned long new_pgoff; 580 unsigned long moved_len; 581 unsigned long excess = 0; 582 unsigned long hiwater_vm; 583 int split = 0; 584 int err = 0; 585 bool need_rmap_locks; 586 587 /* 588 * We'd prefer to avoid failure later on in do_munmap: 589 * which may split one vma into three before unmapping. 590 */ 591 if (mm->map_count >= sysctl_max_map_count - 3) 592 return -ENOMEM; 593 594 if (unlikely(flags & MREMAP_DONTUNMAP)) 595 to_account = new_len; 596 597 if (vma->vm_ops && vma->vm_ops->may_split) { 598 if (vma->vm_start != old_addr) 599 err = vma->vm_ops->may_split(vma, old_addr); 600 if (!err && vma->vm_end != old_addr + old_len) 601 err = vma->vm_ops->may_split(vma, old_addr + old_len); 602 if (err) 603 return err; 604 } 605 606 /* 607 * Advise KSM to break any KSM pages in the area to be moved: 608 * it would be confusing if they were to turn up at the new 609 * location, where they happen to coincide with different KSM 610 * pages recently unmapped. But leave vma->vm_flags as it was, 611 * so KSM can come around to merge on vma and new_vma afterwards. 612 */ 613 err = ksm_madvise(vma, old_addr, old_addr + old_len, 614 MADV_UNMERGEABLE, &vm_flags); 615 if (err) 616 return err; 617 618 if (vm_flags & VM_ACCOUNT) { 619 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 620 return -ENOMEM; 621 } 622 623 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 624 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 625 &need_rmap_locks); 626 if (!new_vma) { 627 if (vm_flags & VM_ACCOUNT) 628 vm_unacct_memory(to_account >> PAGE_SHIFT); 629 return -ENOMEM; 630 } 631 632 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 633 need_rmap_locks); 634 if (moved_len < old_len) { 635 err = -ENOMEM; 636 } else if (vma->vm_ops && vma->vm_ops->mremap) { 637 err = vma->vm_ops->mremap(new_vma); 638 } 639 640 if (unlikely(err)) { 641 /* 642 * On error, move entries back from new area to old, 643 * which will succeed since page tables still there, 644 * and then proceed to unmap new area instead of old. 645 */ 646 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 647 true); 648 vma = new_vma; 649 old_len = new_len; 650 old_addr = new_addr; 651 new_addr = err; 652 } else { 653 mremap_userfaultfd_prep(new_vma, uf); 654 } 655 656 if (is_vm_hugetlb_page(vma)) { 657 clear_vma_resv_huge_pages(vma); 658 } 659 660 /* Conceal VM_ACCOUNT so old reservation is not undone */ 661 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 662 vma->vm_flags &= ~VM_ACCOUNT; 663 excess = vma->vm_end - vma->vm_start - old_len; 664 if (old_addr > vma->vm_start && 665 old_addr + old_len < vma->vm_end) 666 split = 1; 667 } 668 669 /* 670 * If we failed to move page tables we still do total_vm increment 671 * since do_munmap() will decrement it by old_len == new_len. 672 * 673 * Since total_vm is about to be raised artificially high for a 674 * moment, we need to restore high watermark afterwards: if stats 675 * are taken meanwhile, total_vm and hiwater_vm appear too high. 676 * If this were a serious issue, we'd add a flag to do_munmap(). 677 */ 678 hiwater_vm = mm->hiwater_vm; 679 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 680 681 /* Tell pfnmap has moved from this vma */ 682 if (unlikely(vma->vm_flags & VM_PFNMAP)) 683 untrack_pfn_moved(vma); 684 685 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 686 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 687 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 688 689 /* 690 * anon_vma links of the old vma is no longer needed after its page 691 * table has been moved. 692 */ 693 if (new_vma != vma && vma->vm_start == old_addr && 694 vma->vm_end == (old_addr + old_len)) 695 unlink_anon_vmas(vma); 696 697 /* Because we won't unmap we don't need to touch locked_vm */ 698 return new_addr; 699 } 700 701 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 702 /* OOM: unable to split vma, just get accounts right */ 703 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 704 vm_acct_memory(old_len >> PAGE_SHIFT); 705 excess = 0; 706 } 707 708 if (vm_flags & VM_LOCKED) { 709 mm->locked_vm += new_len >> PAGE_SHIFT; 710 *locked = true; 711 } 712 713 mm->hiwater_vm = hiwater_vm; 714 715 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 716 if (excess) { 717 vma->vm_flags |= VM_ACCOUNT; 718 if (split) 719 vma->vm_next->vm_flags |= VM_ACCOUNT; 720 } 721 722 return new_addr; 723 } 724 725 static struct vm_area_struct *vma_to_resize(unsigned long addr, 726 unsigned long old_len, unsigned long new_len, unsigned long flags) 727 { 728 struct mm_struct *mm = current->mm; 729 struct vm_area_struct *vma; 730 unsigned long pgoff; 731 732 vma = vma_lookup(mm, addr); 733 if (!vma) 734 return ERR_PTR(-EFAULT); 735 736 /* 737 * !old_len is a special case where an attempt is made to 'duplicate' 738 * a mapping. This makes no sense for private mappings as it will 739 * instead create a fresh/new mapping unrelated to the original. This 740 * is contrary to the basic idea of mremap which creates new mappings 741 * based on the original. There are no known use cases for this 742 * behavior. As a result, fail such attempts. 743 */ 744 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 745 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 746 return ERR_PTR(-EINVAL); 747 } 748 749 if ((flags & MREMAP_DONTUNMAP) && 750 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 751 return ERR_PTR(-EINVAL); 752 753 /* We can't remap across vm area boundaries */ 754 if (old_len > vma->vm_end - addr) 755 return ERR_PTR(-EFAULT); 756 757 if (new_len == old_len) 758 return vma; 759 760 /* Need to be careful about a growing mapping */ 761 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 762 pgoff += vma->vm_pgoff; 763 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 764 return ERR_PTR(-EINVAL); 765 766 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 767 return ERR_PTR(-EFAULT); 768 769 if (mlock_future_check(mm, vma->vm_flags, new_len - old_len)) 770 return ERR_PTR(-EAGAIN); 771 772 if (!may_expand_vm(mm, vma->vm_flags, 773 (new_len - old_len) >> PAGE_SHIFT)) 774 return ERR_PTR(-ENOMEM); 775 776 return vma; 777 } 778 779 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 780 unsigned long new_addr, unsigned long new_len, bool *locked, 781 unsigned long flags, struct vm_userfaultfd_ctx *uf, 782 struct list_head *uf_unmap_early, 783 struct list_head *uf_unmap) 784 { 785 struct mm_struct *mm = current->mm; 786 struct vm_area_struct *vma; 787 unsigned long ret = -EINVAL; 788 unsigned long map_flags = 0; 789 790 if (offset_in_page(new_addr)) 791 goto out; 792 793 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 794 goto out; 795 796 /* Ensure the old/new locations do not overlap */ 797 if (addr + old_len > new_addr && new_addr + new_len > addr) 798 goto out; 799 800 /* 801 * move_vma() need us to stay 4 maps below the threshold, otherwise 802 * it will bail out at the very beginning. 803 * That is a problem if we have already unmaped the regions here 804 * (new_addr, and old_addr), because userspace will not know the 805 * state of the vma's after it gets -ENOMEM. 806 * So, to avoid such scenario we can pre-compute if the whole 807 * operation has high chances to success map-wise. 808 * Worst-scenario case is when both vma's (new_addr and old_addr) get 809 * split in 3 before unmapping it. 810 * That means 2 more maps (1 for each) to the ones we already hold. 811 * Check whether current map count plus 2 still leads us to 4 maps below 812 * the threshold, otherwise return -ENOMEM here to be more safe. 813 */ 814 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 815 return -ENOMEM; 816 817 if (flags & MREMAP_FIXED) { 818 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 819 if (ret) 820 goto out; 821 } 822 823 if (old_len > new_len) { 824 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 825 if (ret) 826 goto out; 827 old_len = new_len; 828 } 829 830 vma = vma_to_resize(addr, old_len, new_len, flags); 831 if (IS_ERR(vma)) { 832 ret = PTR_ERR(vma); 833 goto out; 834 } 835 836 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 837 if (flags & MREMAP_DONTUNMAP && 838 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 839 ret = -ENOMEM; 840 goto out; 841 } 842 843 if (flags & MREMAP_FIXED) 844 map_flags |= MAP_FIXED; 845 846 if (vma->vm_flags & VM_MAYSHARE) 847 map_flags |= MAP_SHARED; 848 849 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 850 ((addr - vma->vm_start) >> PAGE_SHIFT), 851 map_flags); 852 if (IS_ERR_VALUE(ret)) 853 goto out; 854 855 /* We got a new mapping */ 856 if (!(flags & MREMAP_FIXED)) 857 new_addr = ret; 858 859 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 860 uf_unmap); 861 862 out: 863 return ret; 864 } 865 866 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 867 { 868 unsigned long end = vma->vm_end + delta; 869 if (end < vma->vm_end) /* overflow */ 870 return 0; 871 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */ 872 return 0; 873 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 874 0, MAP_FIXED) & ~PAGE_MASK) 875 return 0; 876 return 1; 877 } 878 879 /* 880 * Expand (or shrink) an existing mapping, potentially moving it at the 881 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 882 * 883 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 884 * This option implies MREMAP_MAYMOVE. 885 */ 886 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 887 unsigned long, new_len, unsigned long, flags, 888 unsigned long, new_addr) 889 { 890 struct mm_struct *mm = current->mm; 891 struct vm_area_struct *vma; 892 unsigned long ret = -EINVAL; 893 bool locked = false; 894 bool downgraded = false; 895 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 896 LIST_HEAD(uf_unmap_early); 897 LIST_HEAD(uf_unmap); 898 899 /* 900 * There is a deliberate asymmetry here: we strip the pointer tag 901 * from the old address but leave the new address alone. This is 902 * for consistency with mmap(), where we prevent the creation of 903 * aliasing mappings in userspace by leaving the tag bits of the 904 * mapping address intact. A non-zero tag will cause the subsequent 905 * range checks to reject the address as invalid. 906 * 907 * See Documentation/arm64/tagged-address-abi.rst for more information. 908 */ 909 addr = untagged_addr(addr); 910 911 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 912 return ret; 913 914 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 915 return ret; 916 917 /* 918 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 919 * in the process. 920 */ 921 if (flags & MREMAP_DONTUNMAP && 922 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 923 return ret; 924 925 926 if (offset_in_page(addr)) 927 return ret; 928 929 old_len = PAGE_ALIGN(old_len); 930 new_len = PAGE_ALIGN(new_len); 931 932 /* 933 * We allow a zero old-len as a special case 934 * for DOS-emu "duplicate shm area" thing. But 935 * a zero new-len is nonsensical. 936 */ 937 if (!new_len) 938 return ret; 939 940 if (mmap_write_lock_killable(current->mm)) 941 return -EINTR; 942 vma = vma_lookup(mm, addr); 943 if (!vma) { 944 ret = -EFAULT; 945 goto out; 946 } 947 948 if (is_vm_hugetlb_page(vma)) { 949 struct hstate *h __maybe_unused = hstate_vma(vma); 950 951 old_len = ALIGN(old_len, huge_page_size(h)); 952 new_len = ALIGN(new_len, huge_page_size(h)); 953 954 /* addrs must be huge page aligned */ 955 if (addr & ~huge_page_mask(h)) 956 goto out; 957 if (new_addr & ~huge_page_mask(h)) 958 goto out; 959 960 /* 961 * Don't allow remap expansion, because the underlying hugetlb 962 * reservation is not yet capable to handle split reservation. 963 */ 964 if (new_len > old_len) 965 goto out; 966 } 967 968 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 969 ret = mremap_to(addr, old_len, new_addr, new_len, 970 &locked, flags, &uf, &uf_unmap_early, 971 &uf_unmap); 972 goto out; 973 } 974 975 /* 976 * Always allow a shrinking remap: that just unmaps 977 * the unnecessary pages.. 978 * __do_munmap does all the needed commit accounting, and 979 * downgrades mmap_lock to read if so directed. 980 */ 981 if (old_len >= new_len) { 982 int retval; 983 984 retval = __do_munmap(mm, addr+new_len, old_len - new_len, 985 &uf_unmap, true); 986 if (retval < 0 && old_len != new_len) { 987 ret = retval; 988 goto out; 989 /* Returning 1 indicates mmap_lock is downgraded to read. */ 990 } else if (retval == 1) 991 downgraded = true; 992 ret = addr; 993 goto out; 994 } 995 996 /* 997 * Ok, we need to grow.. 998 */ 999 vma = vma_to_resize(addr, old_len, new_len, flags); 1000 if (IS_ERR(vma)) { 1001 ret = PTR_ERR(vma); 1002 goto out; 1003 } 1004 1005 /* old_len exactly to the end of the area.. 1006 */ 1007 if (old_len == vma->vm_end - addr) { 1008 /* can we just expand the current mapping? */ 1009 if (vma_expandable(vma, new_len - old_len)) { 1010 long pages = (new_len - old_len) >> PAGE_SHIFT; 1011 1012 if (vma->vm_flags & VM_ACCOUNT) { 1013 if (security_vm_enough_memory_mm(mm, pages)) { 1014 ret = -ENOMEM; 1015 goto out; 1016 } 1017 } 1018 1019 if (vma_adjust(vma, vma->vm_start, addr + new_len, 1020 vma->vm_pgoff, NULL)) { 1021 vm_unacct_memory(pages); 1022 ret = -ENOMEM; 1023 goto out; 1024 } 1025 1026 vm_stat_account(mm, vma->vm_flags, pages); 1027 if (vma->vm_flags & VM_LOCKED) { 1028 mm->locked_vm += pages; 1029 locked = true; 1030 new_addr = addr; 1031 } 1032 ret = addr; 1033 goto out; 1034 } 1035 } 1036 1037 /* 1038 * We weren't able to just expand or shrink the area, 1039 * we need to create a new one and move it.. 1040 */ 1041 ret = -ENOMEM; 1042 if (flags & MREMAP_MAYMOVE) { 1043 unsigned long map_flags = 0; 1044 if (vma->vm_flags & VM_MAYSHARE) 1045 map_flags |= MAP_SHARED; 1046 1047 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1048 vma->vm_pgoff + 1049 ((addr - vma->vm_start) >> PAGE_SHIFT), 1050 map_flags); 1051 if (IS_ERR_VALUE(new_addr)) { 1052 ret = new_addr; 1053 goto out; 1054 } 1055 1056 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1057 &locked, flags, &uf, &uf_unmap); 1058 } 1059 out: 1060 if (offset_in_page(ret)) 1061 locked = false; 1062 if (downgraded) 1063 mmap_read_unlock(current->mm); 1064 else 1065 mmap_write_unlock(current->mm); 1066 if (locked && new_len > old_len) 1067 mm_populate(new_addr + old_len, new_len - old_len); 1068 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1069 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1070 userfaultfd_unmap_complete(mm, &uf_unmap); 1071 return ret; 1072 } 1073