1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/mm_inline.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 #include <linux/swap.h> 18 #include <linux/capability.h> 19 #include <linux/fs.h> 20 #include <linux/swapops.h> 21 #include <linux/highmem.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/uaccess.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 #include <asm/pgalloc.h> 32 33 #include "internal.h" 34 35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 36 { 37 pgd_t *pgd; 38 p4d_t *p4d; 39 pud_t *pud; 40 41 pgd = pgd_offset(mm, addr); 42 if (pgd_none_or_clear_bad(pgd)) 43 return NULL; 44 45 p4d = p4d_offset(pgd, addr); 46 if (p4d_none_or_clear_bad(p4d)) 47 return NULL; 48 49 pud = pud_offset(p4d, addr); 50 if (pud_none_or_clear_bad(pud)) 51 return NULL; 52 53 return pud; 54 } 55 56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 57 { 58 pud_t *pud; 59 pmd_t *pmd; 60 61 pud = get_old_pud(mm, addr); 62 if (!pud) 63 return NULL; 64 65 pmd = pmd_offset(pud, addr); 66 if (pmd_none(*pmd)) 67 return NULL; 68 69 return pmd; 70 } 71 72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 73 unsigned long addr) 74 { 75 pgd_t *pgd; 76 p4d_t *p4d; 77 78 pgd = pgd_offset(mm, addr); 79 p4d = p4d_alloc(mm, pgd, addr); 80 if (!p4d) 81 return NULL; 82 83 return pud_alloc(mm, p4d, addr); 84 } 85 86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 87 unsigned long addr) 88 { 89 pud_t *pud; 90 pmd_t *pmd; 91 92 pud = alloc_new_pud(mm, vma, addr); 93 if (!pud) 94 return NULL; 95 96 pmd = pmd_alloc(mm, pud, addr); 97 if (!pmd) 98 return NULL; 99 100 VM_BUG_ON(pmd_trans_huge(*pmd)); 101 102 return pmd; 103 } 104 105 static void take_rmap_locks(struct vm_area_struct *vma) 106 { 107 if (vma->vm_file) 108 i_mmap_lock_write(vma->vm_file->f_mapping); 109 if (vma->anon_vma) 110 anon_vma_lock_write(vma->anon_vma); 111 } 112 113 static void drop_rmap_locks(struct vm_area_struct *vma) 114 { 115 if (vma->anon_vma) 116 anon_vma_unlock_write(vma->anon_vma); 117 if (vma->vm_file) 118 i_mmap_unlock_write(vma->vm_file->f_mapping); 119 } 120 121 static pte_t move_soft_dirty_pte(pte_t pte) 122 { 123 /* 124 * Set soft dirty bit so we can notice 125 * in userspace the ptes were moved. 126 */ 127 #ifdef CONFIG_MEM_SOFT_DIRTY 128 if (pte_present(pte)) 129 pte = pte_mksoft_dirty(pte); 130 else if (is_swap_pte(pte)) 131 pte = pte_swp_mksoft_dirty(pte); 132 #endif 133 return pte; 134 } 135 136 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 137 unsigned long old_addr, unsigned long old_end, 138 struct vm_area_struct *new_vma, pmd_t *new_pmd, 139 unsigned long new_addr, bool need_rmap_locks) 140 { 141 struct mm_struct *mm = vma->vm_mm; 142 pte_t *old_pte, *new_pte, pte; 143 spinlock_t *old_ptl, *new_ptl; 144 bool force_flush = false; 145 unsigned long len = old_end - old_addr; 146 147 /* 148 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 149 * locks to ensure that rmap will always observe either the old or the 150 * new ptes. This is the easiest way to avoid races with 151 * truncate_pagecache(), page migration, etc... 152 * 153 * When need_rmap_locks is false, we use other ways to avoid 154 * such races: 155 * 156 * - During exec() shift_arg_pages(), we use a specially tagged vma 157 * which rmap call sites look for using vma_is_temporary_stack(). 158 * 159 * - During mremap(), new_vma is often known to be placed after vma 160 * in rmap traversal order. This ensures rmap will always observe 161 * either the old pte, or the new pte, or both (the page table locks 162 * serialize access to individual ptes, but only rmap traversal 163 * order guarantees that we won't miss both the old and new ptes). 164 */ 165 if (need_rmap_locks) 166 take_rmap_locks(vma); 167 168 /* 169 * We don't have to worry about the ordering of src and dst 170 * pte locks because exclusive mmap_lock prevents deadlock. 171 */ 172 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 173 new_pte = pte_offset_map(new_pmd, new_addr); 174 new_ptl = pte_lockptr(mm, new_pmd); 175 if (new_ptl != old_ptl) 176 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 177 flush_tlb_batched_pending(vma->vm_mm); 178 arch_enter_lazy_mmu_mode(); 179 180 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 181 new_pte++, new_addr += PAGE_SIZE) { 182 if (pte_none(*old_pte)) 183 continue; 184 185 pte = ptep_get_and_clear(mm, old_addr, old_pte); 186 /* 187 * If we are remapping a valid PTE, make sure 188 * to flush TLB before we drop the PTL for the 189 * PTE. 190 * 191 * NOTE! Both old and new PTL matter: the old one 192 * for racing with page_mkclean(), the new one to 193 * make sure the physical page stays valid until 194 * the TLB entry for the old mapping has been 195 * flushed. 196 */ 197 if (pte_present(pte)) 198 force_flush = true; 199 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 200 pte = move_soft_dirty_pte(pte); 201 set_pte_at(mm, new_addr, new_pte, pte); 202 } 203 204 arch_leave_lazy_mmu_mode(); 205 if (force_flush) 206 flush_tlb_range(vma, old_end - len, old_end); 207 if (new_ptl != old_ptl) 208 spin_unlock(new_ptl); 209 pte_unmap(new_pte - 1); 210 pte_unmap_unlock(old_pte - 1, old_ptl); 211 if (need_rmap_locks) 212 drop_rmap_locks(vma); 213 } 214 215 #ifndef arch_supports_page_table_move 216 #define arch_supports_page_table_move arch_supports_page_table_move 217 static inline bool arch_supports_page_table_move(void) 218 { 219 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 220 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 221 } 222 #endif 223 224 #ifdef CONFIG_HAVE_MOVE_PMD 225 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 226 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 227 { 228 spinlock_t *old_ptl, *new_ptl; 229 struct mm_struct *mm = vma->vm_mm; 230 pmd_t pmd; 231 232 if (!arch_supports_page_table_move()) 233 return false; 234 /* 235 * The destination pmd shouldn't be established, free_pgtables() 236 * should have released it. 237 * 238 * However, there's a case during execve() where we use mremap 239 * to move the initial stack, and in that case the target area 240 * may overlap the source area (always moving down). 241 * 242 * If everything is PMD-aligned, that works fine, as moving 243 * each pmd down will clear the source pmd. But if we first 244 * have a few 4kB-only pages that get moved down, and then 245 * hit the "now the rest is PMD-aligned, let's do everything 246 * one pmd at a time", we will still have the old (now empty 247 * of any 4kB pages, but still there) PMD in the page table 248 * tree. 249 * 250 * Warn on it once - because we really should try to figure 251 * out how to do this better - but then say "I won't move 252 * this pmd". 253 * 254 * One alternative might be to just unmap the target pmd at 255 * this point, and verify that it really is empty. We'll see. 256 */ 257 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 258 return false; 259 260 /* 261 * We don't have to worry about the ordering of src and dst 262 * ptlocks because exclusive mmap_lock prevents deadlock. 263 */ 264 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 265 new_ptl = pmd_lockptr(mm, new_pmd); 266 if (new_ptl != old_ptl) 267 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 268 269 /* Clear the pmd */ 270 pmd = *old_pmd; 271 pmd_clear(old_pmd); 272 273 VM_BUG_ON(!pmd_none(*new_pmd)); 274 275 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 276 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 277 if (new_ptl != old_ptl) 278 spin_unlock(new_ptl); 279 spin_unlock(old_ptl); 280 281 return true; 282 } 283 #else 284 static inline bool move_normal_pmd(struct vm_area_struct *vma, 285 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 286 pmd_t *new_pmd) 287 { 288 return false; 289 } 290 #endif 291 292 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 293 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 294 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 295 { 296 spinlock_t *old_ptl, *new_ptl; 297 struct mm_struct *mm = vma->vm_mm; 298 pud_t pud; 299 300 if (!arch_supports_page_table_move()) 301 return false; 302 /* 303 * The destination pud shouldn't be established, free_pgtables() 304 * should have released it. 305 */ 306 if (WARN_ON_ONCE(!pud_none(*new_pud))) 307 return false; 308 309 /* 310 * We don't have to worry about the ordering of src and dst 311 * ptlocks because exclusive mmap_lock prevents deadlock. 312 */ 313 old_ptl = pud_lock(vma->vm_mm, old_pud); 314 new_ptl = pud_lockptr(mm, new_pud); 315 if (new_ptl != old_ptl) 316 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 317 318 /* Clear the pud */ 319 pud = *old_pud; 320 pud_clear(old_pud); 321 322 VM_BUG_ON(!pud_none(*new_pud)); 323 324 pud_populate(mm, new_pud, pud_pgtable(pud)); 325 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 326 if (new_ptl != old_ptl) 327 spin_unlock(new_ptl); 328 spin_unlock(old_ptl); 329 330 return true; 331 } 332 #else 333 static inline bool move_normal_pud(struct vm_area_struct *vma, 334 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 335 pud_t *new_pud) 336 { 337 return false; 338 } 339 #endif 340 341 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 342 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 343 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 344 { 345 spinlock_t *old_ptl, *new_ptl; 346 struct mm_struct *mm = vma->vm_mm; 347 pud_t pud; 348 349 /* 350 * The destination pud shouldn't be established, free_pgtables() 351 * should have released it. 352 */ 353 if (WARN_ON_ONCE(!pud_none(*new_pud))) 354 return false; 355 356 /* 357 * We don't have to worry about the ordering of src and dst 358 * ptlocks because exclusive mmap_lock prevents deadlock. 359 */ 360 old_ptl = pud_lock(vma->vm_mm, old_pud); 361 new_ptl = pud_lockptr(mm, new_pud); 362 if (new_ptl != old_ptl) 363 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 364 365 /* Clear the pud */ 366 pud = *old_pud; 367 pud_clear(old_pud); 368 369 VM_BUG_ON(!pud_none(*new_pud)); 370 371 /* Set the new pud */ 372 /* mark soft_ditry when we add pud level soft dirty support */ 373 set_pud_at(mm, new_addr, new_pud, pud); 374 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 375 if (new_ptl != old_ptl) 376 spin_unlock(new_ptl); 377 spin_unlock(old_ptl); 378 379 return true; 380 } 381 #else 382 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 383 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 384 { 385 WARN_ON_ONCE(1); 386 return false; 387 388 } 389 #endif 390 391 enum pgt_entry { 392 NORMAL_PMD, 393 HPAGE_PMD, 394 NORMAL_PUD, 395 HPAGE_PUD, 396 }; 397 398 /* 399 * Returns an extent of the corresponding size for the pgt_entry specified if 400 * valid. Else returns a smaller extent bounded by the end of the source and 401 * destination pgt_entry. 402 */ 403 static __always_inline unsigned long get_extent(enum pgt_entry entry, 404 unsigned long old_addr, unsigned long old_end, 405 unsigned long new_addr) 406 { 407 unsigned long next, extent, mask, size; 408 409 switch (entry) { 410 case HPAGE_PMD: 411 case NORMAL_PMD: 412 mask = PMD_MASK; 413 size = PMD_SIZE; 414 break; 415 case HPAGE_PUD: 416 case NORMAL_PUD: 417 mask = PUD_MASK; 418 size = PUD_SIZE; 419 break; 420 default: 421 BUILD_BUG(); 422 break; 423 } 424 425 next = (old_addr + size) & mask; 426 /* even if next overflowed, extent below will be ok */ 427 extent = next - old_addr; 428 if (extent > old_end - old_addr) 429 extent = old_end - old_addr; 430 next = (new_addr + size) & mask; 431 if (extent > next - new_addr) 432 extent = next - new_addr; 433 return extent; 434 } 435 436 /* 437 * Attempts to speedup the move by moving entry at the level corresponding to 438 * pgt_entry. Returns true if the move was successful, else false. 439 */ 440 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 441 unsigned long old_addr, unsigned long new_addr, 442 void *old_entry, void *new_entry, bool need_rmap_locks) 443 { 444 bool moved = false; 445 446 /* See comment in move_ptes() */ 447 if (need_rmap_locks) 448 take_rmap_locks(vma); 449 450 switch (entry) { 451 case NORMAL_PMD: 452 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 453 new_entry); 454 break; 455 case NORMAL_PUD: 456 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 457 new_entry); 458 break; 459 case HPAGE_PMD: 460 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 461 move_huge_pmd(vma, old_addr, new_addr, old_entry, 462 new_entry); 463 break; 464 case HPAGE_PUD: 465 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 466 move_huge_pud(vma, old_addr, new_addr, old_entry, 467 new_entry); 468 break; 469 470 default: 471 WARN_ON_ONCE(1); 472 break; 473 } 474 475 if (need_rmap_locks) 476 drop_rmap_locks(vma); 477 478 return moved; 479 } 480 481 unsigned long move_page_tables(struct vm_area_struct *vma, 482 unsigned long old_addr, struct vm_area_struct *new_vma, 483 unsigned long new_addr, unsigned long len, 484 bool need_rmap_locks) 485 { 486 unsigned long extent, old_end; 487 struct mmu_notifier_range range; 488 pmd_t *old_pmd, *new_pmd; 489 pud_t *old_pud, *new_pud; 490 491 if (!len) 492 return 0; 493 494 old_end = old_addr + len; 495 496 if (is_vm_hugetlb_page(vma)) 497 return move_hugetlb_page_tables(vma, new_vma, old_addr, 498 new_addr, len); 499 500 flush_cache_range(vma, old_addr, old_end); 501 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 502 old_addr, old_end); 503 mmu_notifier_invalidate_range_start(&range); 504 505 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 506 cond_resched(); 507 /* 508 * If extent is PUD-sized try to speed up the move by moving at the 509 * PUD level if possible. 510 */ 511 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 512 513 old_pud = get_old_pud(vma->vm_mm, old_addr); 514 if (!old_pud) 515 continue; 516 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 517 if (!new_pud) 518 break; 519 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 520 if (extent == HPAGE_PUD_SIZE) { 521 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 522 old_pud, new_pud, need_rmap_locks); 523 /* We ignore and continue on error? */ 524 continue; 525 } 526 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 527 528 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 529 old_pud, new_pud, true)) 530 continue; 531 } 532 533 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 534 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 535 if (!old_pmd) 536 continue; 537 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 538 if (!new_pmd) 539 break; 540 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 541 pmd_devmap(*old_pmd)) { 542 if (extent == HPAGE_PMD_SIZE && 543 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 544 old_pmd, new_pmd, need_rmap_locks)) 545 continue; 546 split_huge_pmd(vma, old_pmd, old_addr); 547 if (pmd_trans_unstable(old_pmd)) 548 continue; 549 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 550 extent == PMD_SIZE) { 551 /* 552 * If the extent is PMD-sized, try to speed the move by 553 * moving at the PMD level if possible. 554 */ 555 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 556 old_pmd, new_pmd, true)) 557 continue; 558 } 559 560 if (pte_alloc(new_vma->vm_mm, new_pmd)) 561 break; 562 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 563 new_pmd, new_addr, need_rmap_locks); 564 } 565 566 mmu_notifier_invalidate_range_end(&range); 567 568 return len + old_addr - old_end; /* how much done */ 569 } 570 571 static unsigned long move_vma(struct vm_area_struct *vma, 572 unsigned long old_addr, unsigned long old_len, 573 unsigned long new_len, unsigned long new_addr, 574 bool *locked, unsigned long flags, 575 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 576 { 577 long to_account = new_len - old_len; 578 struct mm_struct *mm = vma->vm_mm; 579 struct vm_area_struct *new_vma; 580 unsigned long vm_flags = vma->vm_flags; 581 unsigned long new_pgoff; 582 unsigned long moved_len; 583 unsigned long excess = 0; 584 unsigned long hiwater_vm; 585 int split = 0; 586 int err = 0; 587 bool need_rmap_locks; 588 589 /* 590 * We'd prefer to avoid failure later on in do_munmap: 591 * which may split one vma into three before unmapping. 592 */ 593 if (mm->map_count >= sysctl_max_map_count - 3) 594 return -ENOMEM; 595 596 if (unlikely(flags & MREMAP_DONTUNMAP)) 597 to_account = new_len; 598 599 if (vma->vm_ops && vma->vm_ops->may_split) { 600 if (vma->vm_start != old_addr) 601 err = vma->vm_ops->may_split(vma, old_addr); 602 if (!err && vma->vm_end != old_addr + old_len) 603 err = vma->vm_ops->may_split(vma, old_addr + old_len); 604 if (err) 605 return err; 606 } 607 608 /* 609 * Advise KSM to break any KSM pages in the area to be moved: 610 * it would be confusing if they were to turn up at the new 611 * location, where they happen to coincide with different KSM 612 * pages recently unmapped. But leave vma->vm_flags as it was, 613 * so KSM can come around to merge on vma and new_vma afterwards. 614 */ 615 err = ksm_madvise(vma, old_addr, old_addr + old_len, 616 MADV_UNMERGEABLE, &vm_flags); 617 if (err) 618 return err; 619 620 if (vm_flags & VM_ACCOUNT) { 621 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 622 return -ENOMEM; 623 } 624 625 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 626 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 627 &need_rmap_locks); 628 if (!new_vma) { 629 if (vm_flags & VM_ACCOUNT) 630 vm_unacct_memory(to_account >> PAGE_SHIFT); 631 return -ENOMEM; 632 } 633 634 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 635 need_rmap_locks); 636 if (moved_len < old_len) { 637 err = -ENOMEM; 638 } else if (vma->vm_ops && vma->vm_ops->mremap) { 639 err = vma->vm_ops->mremap(new_vma); 640 } 641 642 if (unlikely(err)) { 643 /* 644 * On error, move entries back from new area to old, 645 * which will succeed since page tables still there, 646 * and then proceed to unmap new area instead of old. 647 */ 648 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 649 true); 650 vma = new_vma; 651 old_len = new_len; 652 old_addr = new_addr; 653 new_addr = err; 654 } else { 655 mremap_userfaultfd_prep(new_vma, uf); 656 } 657 658 if (is_vm_hugetlb_page(vma)) { 659 clear_vma_resv_huge_pages(vma); 660 } 661 662 /* Conceal VM_ACCOUNT so old reservation is not undone */ 663 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 664 vma->vm_flags &= ~VM_ACCOUNT; 665 excess = vma->vm_end - vma->vm_start - old_len; 666 if (old_addr > vma->vm_start && 667 old_addr + old_len < vma->vm_end) 668 split = 1; 669 } 670 671 /* 672 * If we failed to move page tables we still do total_vm increment 673 * since do_munmap() will decrement it by old_len == new_len. 674 * 675 * Since total_vm is about to be raised artificially high for a 676 * moment, we need to restore high watermark afterwards: if stats 677 * are taken meanwhile, total_vm and hiwater_vm appear too high. 678 * If this were a serious issue, we'd add a flag to do_munmap(). 679 */ 680 hiwater_vm = mm->hiwater_vm; 681 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 682 683 /* Tell pfnmap has moved from this vma */ 684 if (unlikely(vma->vm_flags & VM_PFNMAP)) 685 untrack_pfn_moved(vma); 686 687 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 688 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 689 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 690 691 /* 692 * anon_vma links of the old vma is no longer needed after its page 693 * table has been moved. 694 */ 695 if (new_vma != vma && vma->vm_start == old_addr && 696 vma->vm_end == (old_addr + old_len)) 697 unlink_anon_vmas(vma); 698 699 /* Because we won't unmap we don't need to touch locked_vm */ 700 return new_addr; 701 } 702 703 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 704 /* OOM: unable to split vma, just get accounts right */ 705 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 706 vm_acct_memory(old_len >> PAGE_SHIFT); 707 excess = 0; 708 } 709 710 if (vm_flags & VM_LOCKED) { 711 mm->locked_vm += new_len >> PAGE_SHIFT; 712 *locked = true; 713 } 714 715 mm->hiwater_vm = hiwater_vm; 716 717 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 718 if (excess) { 719 vma->vm_flags |= VM_ACCOUNT; 720 if (split) 721 find_vma(mm, vma->vm_end)->vm_flags |= VM_ACCOUNT; 722 } 723 724 return new_addr; 725 } 726 727 static struct vm_area_struct *vma_to_resize(unsigned long addr, 728 unsigned long old_len, unsigned long new_len, unsigned long flags) 729 { 730 struct mm_struct *mm = current->mm; 731 struct vm_area_struct *vma; 732 unsigned long pgoff; 733 734 vma = vma_lookup(mm, addr); 735 if (!vma) 736 return ERR_PTR(-EFAULT); 737 738 /* 739 * !old_len is a special case where an attempt is made to 'duplicate' 740 * a mapping. This makes no sense for private mappings as it will 741 * instead create a fresh/new mapping unrelated to the original. This 742 * is contrary to the basic idea of mremap which creates new mappings 743 * based on the original. There are no known use cases for this 744 * behavior. As a result, fail such attempts. 745 */ 746 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 747 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 748 return ERR_PTR(-EINVAL); 749 } 750 751 if ((flags & MREMAP_DONTUNMAP) && 752 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 753 return ERR_PTR(-EINVAL); 754 755 /* We can't remap across vm area boundaries */ 756 if (old_len > vma->vm_end - addr) 757 return ERR_PTR(-EFAULT); 758 759 if (new_len == old_len) 760 return vma; 761 762 /* Need to be careful about a growing mapping */ 763 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 764 pgoff += vma->vm_pgoff; 765 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 766 return ERR_PTR(-EINVAL); 767 768 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 769 return ERR_PTR(-EFAULT); 770 771 if (mlock_future_check(mm, vma->vm_flags, new_len - old_len)) 772 return ERR_PTR(-EAGAIN); 773 774 if (!may_expand_vm(mm, vma->vm_flags, 775 (new_len - old_len) >> PAGE_SHIFT)) 776 return ERR_PTR(-ENOMEM); 777 778 return vma; 779 } 780 781 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 782 unsigned long new_addr, unsigned long new_len, bool *locked, 783 unsigned long flags, struct vm_userfaultfd_ctx *uf, 784 struct list_head *uf_unmap_early, 785 struct list_head *uf_unmap) 786 { 787 struct mm_struct *mm = current->mm; 788 struct vm_area_struct *vma; 789 unsigned long ret = -EINVAL; 790 unsigned long map_flags = 0; 791 792 if (offset_in_page(new_addr)) 793 goto out; 794 795 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 796 goto out; 797 798 /* Ensure the old/new locations do not overlap */ 799 if (addr + old_len > new_addr && new_addr + new_len > addr) 800 goto out; 801 802 /* 803 * move_vma() need us to stay 4 maps below the threshold, otherwise 804 * it will bail out at the very beginning. 805 * That is a problem if we have already unmaped the regions here 806 * (new_addr, and old_addr), because userspace will not know the 807 * state of the vma's after it gets -ENOMEM. 808 * So, to avoid such scenario we can pre-compute if the whole 809 * operation has high chances to success map-wise. 810 * Worst-scenario case is when both vma's (new_addr and old_addr) get 811 * split in 3 before unmapping it. 812 * That means 2 more maps (1 for each) to the ones we already hold. 813 * Check whether current map count plus 2 still leads us to 4 maps below 814 * the threshold, otherwise return -ENOMEM here to be more safe. 815 */ 816 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 817 return -ENOMEM; 818 819 if (flags & MREMAP_FIXED) { 820 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 821 if (ret) 822 goto out; 823 } 824 825 if (old_len > new_len) { 826 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 827 if (ret) 828 goto out; 829 old_len = new_len; 830 } 831 832 vma = vma_to_resize(addr, old_len, new_len, flags); 833 if (IS_ERR(vma)) { 834 ret = PTR_ERR(vma); 835 goto out; 836 } 837 838 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 839 if (flags & MREMAP_DONTUNMAP && 840 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 841 ret = -ENOMEM; 842 goto out; 843 } 844 845 if (flags & MREMAP_FIXED) 846 map_flags |= MAP_FIXED; 847 848 if (vma->vm_flags & VM_MAYSHARE) 849 map_flags |= MAP_SHARED; 850 851 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 852 ((addr - vma->vm_start) >> PAGE_SHIFT), 853 map_flags); 854 if (IS_ERR_VALUE(ret)) 855 goto out; 856 857 /* We got a new mapping */ 858 if (!(flags & MREMAP_FIXED)) 859 new_addr = ret; 860 861 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 862 uf_unmap); 863 864 out: 865 return ret; 866 } 867 868 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 869 { 870 unsigned long end = vma->vm_end + delta; 871 872 if (end < vma->vm_end) /* overflow */ 873 return 0; 874 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) 875 return 0; 876 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 877 0, MAP_FIXED) & ~PAGE_MASK) 878 return 0; 879 return 1; 880 } 881 882 /* 883 * Expand (or shrink) an existing mapping, potentially moving it at the 884 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 885 * 886 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 887 * This option implies MREMAP_MAYMOVE. 888 */ 889 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 890 unsigned long, new_len, unsigned long, flags, 891 unsigned long, new_addr) 892 { 893 struct mm_struct *mm = current->mm; 894 struct vm_area_struct *vma; 895 unsigned long ret = -EINVAL; 896 bool locked = false; 897 bool downgraded = false; 898 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 899 LIST_HEAD(uf_unmap_early); 900 LIST_HEAD(uf_unmap); 901 902 /* 903 * There is a deliberate asymmetry here: we strip the pointer tag 904 * from the old address but leave the new address alone. This is 905 * for consistency with mmap(), where we prevent the creation of 906 * aliasing mappings in userspace by leaving the tag bits of the 907 * mapping address intact. A non-zero tag will cause the subsequent 908 * range checks to reject the address as invalid. 909 * 910 * See Documentation/arm64/tagged-address-abi.rst for more information. 911 */ 912 addr = untagged_addr(addr); 913 914 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 915 return ret; 916 917 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 918 return ret; 919 920 /* 921 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 922 * in the process. 923 */ 924 if (flags & MREMAP_DONTUNMAP && 925 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 926 return ret; 927 928 929 if (offset_in_page(addr)) 930 return ret; 931 932 old_len = PAGE_ALIGN(old_len); 933 new_len = PAGE_ALIGN(new_len); 934 935 /* 936 * We allow a zero old-len as a special case 937 * for DOS-emu "duplicate shm area" thing. But 938 * a zero new-len is nonsensical. 939 */ 940 if (!new_len) 941 return ret; 942 943 if (mmap_write_lock_killable(current->mm)) 944 return -EINTR; 945 vma = vma_lookup(mm, addr); 946 if (!vma) { 947 ret = -EFAULT; 948 goto out; 949 } 950 951 if (is_vm_hugetlb_page(vma)) { 952 struct hstate *h __maybe_unused = hstate_vma(vma); 953 954 old_len = ALIGN(old_len, huge_page_size(h)); 955 new_len = ALIGN(new_len, huge_page_size(h)); 956 957 /* addrs must be huge page aligned */ 958 if (addr & ~huge_page_mask(h)) 959 goto out; 960 if (new_addr & ~huge_page_mask(h)) 961 goto out; 962 963 /* 964 * Don't allow remap expansion, because the underlying hugetlb 965 * reservation is not yet capable to handle split reservation. 966 */ 967 if (new_len > old_len) 968 goto out; 969 } 970 971 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 972 ret = mremap_to(addr, old_len, new_addr, new_len, 973 &locked, flags, &uf, &uf_unmap_early, 974 &uf_unmap); 975 goto out; 976 } 977 978 /* 979 * Always allow a shrinking remap: that just unmaps 980 * the unnecessary pages.. 981 * do_mas_munmap does all the needed commit accounting, and 982 * downgrades mmap_lock to read if so directed. 983 */ 984 if (old_len >= new_len) { 985 int retval; 986 MA_STATE(mas, &mm->mm_mt, addr + new_len, addr + new_len); 987 988 retval = do_mas_munmap(&mas, mm, addr + new_len, 989 old_len - new_len, &uf_unmap, true); 990 /* Returning 1 indicates mmap_lock is downgraded to read. */ 991 if (retval == 1) { 992 downgraded = true; 993 } else if (retval < 0 && old_len != new_len) { 994 ret = retval; 995 goto out; 996 } 997 998 ret = addr; 999 goto out; 1000 } 1001 1002 /* 1003 * Ok, we need to grow.. 1004 */ 1005 vma = vma_to_resize(addr, old_len, new_len, flags); 1006 if (IS_ERR(vma)) { 1007 ret = PTR_ERR(vma); 1008 goto out; 1009 } 1010 1011 /* old_len exactly to the end of the area.. 1012 */ 1013 if (old_len == vma->vm_end - addr) { 1014 /* can we just expand the current mapping? */ 1015 if (vma_expandable(vma, new_len - old_len)) { 1016 long pages = (new_len - old_len) >> PAGE_SHIFT; 1017 unsigned long extension_start = addr + old_len; 1018 unsigned long extension_end = addr + new_len; 1019 pgoff_t extension_pgoff = vma->vm_pgoff + 1020 ((extension_start - vma->vm_start) >> PAGE_SHIFT); 1021 1022 if (vma->vm_flags & VM_ACCOUNT) { 1023 if (security_vm_enough_memory_mm(mm, pages)) { 1024 ret = -ENOMEM; 1025 goto out; 1026 } 1027 } 1028 1029 /* 1030 * Function vma_merge() is called on the extension we 1031 * are adding to the already existing vma, vma_merge() 1032 * will merge this extension with the already existing 1033 * vma (expand operation itself) and possibly also with 1034 * the next vma if it becomes adjacent to the expanded 1035 * vma and otherwise compatible. 1036 * 1037 * However, vma_merge() can currently fail due to 1038 * is_mergeable_vma() check for vm_ops->close (see the 1039 * comment there). Yet this should not prevent vma 1040 * expanding, so perform a simple expand for such vma. 1041 * Ideally the check for close op should be only done 1042 * when a vma would be actually removed due to a merge. 1043 */ 1044 if (!vma->vm_ops || !vma->vm_ops->close) { 1045 vma = vma_merge(mm, vma, extension_start, extension_end, 1046 vma->vm_flags, vma->anon_vma, vma->vm_file, 1047 extension_pgoff, vma_policy(vma), 1048 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 1049 } else if (vma_adjust(vma, vma->vm_start, addr + new_len, 1050 vma->vm_pgoff, NULL)) { 1051 vma = NULL; 1052 } 1053 if (!vma) { 1054 vm_unacct_memory(pages); 1055 ret = -ENOMEM; 1056 goto out; 1057 } 1058 1059 vm_stat_account(mm, vma->vm_flags, pages); 1060 if (vma->vm_flags & VM_LOCKED) { 1061 mm->locked_vm += pages; 1062 locked = true; 1063 new_addr = addr; 1064 } 1065 ret = addr; 1066 goto out; 1067 } 1068 } 1069 1070 /* 1071 * We weren't able to just expand or shrink the area, 1072 * we need to create a new one and move it.. 1073 */ 1074 ret = -ENOMEM; 1075 if (flags & MREMAP_MAYMOVE) { 1076 unsigned long map_flags = 0; 1077 if (vma->vm_flags & VM_MAYSHARE) 1078 map_flags |= MAP_SHARED; 1079 1080 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1081 vma->vm_pgoff + 1082 ((addr - vma->vm_start) >> PAGE_SHIFT), 1083 map_flags); 1084 if (IS_ERR_VALUE(new_addr)) { 1085 ret = new_addr; 1086 goto out; 1087 } 1088 1089 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1090 &locked, flags, &uf, &uf_unmap); 1091 } 1092 out: 1093 if (offset_in_page(ret)) 1094 locked = false; 1095 if (downgraded) 1096 mmap_read_unlock(current->mm); 1097 else 1098 mmap_write_unlock(current->mm); 1099 if (locked && new_len > old_len) 1100 mm_populate(new_addr + old_len, new_len - old_len); 1101 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1102 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1103 userfaultfd_unmap_complete(mm, &uf_unmap); 1104 return ret; 1105 } 1106