1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/mm_inline.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 #include <linux/swap.h> 18 #include <linux/capability.h> 19 #include <linux/fs.h> 20 #include <linux/swapops.h> 21 #include <linux/highmem.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/uaccess.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 #include <asm/pgalloc.h> 32 33 #include "internal.h" 34 35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 36 { 37 pgd_t *pgd; 38 p4d_t *p4d; 39 pud_t *pud; 40 41 pgd = pgd_offset(mm, addr); 42 if (pgd_none_or_clear_bad(pgd)) 43 return NULL; 44 45 p4d = p4d_offset(pgd, addr); 46 if (p4d_none_or_clear_bad(p4d)) 47 return NULL; 48 49 pud = pud_offset(p4d, addr); 50 if (pud_none_or_clear_bad(pud)) 51 return NULL; 52 53 return pud; 54 } 55 56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 57 { 58 pud_t *pud; 59 pmd_t *pmd; 60 61 pud = get_old_pud(mm, addr); 62 if (!pud) 63 return NULL; 64 65 pmd = pmd_offset(pud, addr); 66 if (pmd_none(*pmd)) 67 return NULL; 68 69 return pmd; 70 } 71 72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 73 unsigned long addr) 74 { 75 pgd_t *pgd; 76 p4d_t *p4d; 77 78 pgd = pgd_offset(mm, addr); 79 p4d = p4d_alloc(mm, pgd, addr); 80 if (!p4d) 81 return NULL; 82 83 return pud_alloc(mm, p4d, addr); 84 } 85 86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 87 unsigned long addr) 88 { 89 pud_t *pud; 90 pmd_t *pmd; 91 92 pud = alloc_new_pud(mm, vma, addr); 93 if (!pud) 94 return NULL; 95 96 pmd = pmd_alloc(mm, pud, addr); 97 if (!pmd) 98 return NULL; 99 100 VM_BUG_ON(pmd_trans_huge(*pmd)); 101 102 return pmd; 103 } 104 105 static void take_rmap_locks(struct vm_area_struct *vma) 106 { 107 if (vma->vm_file) 108 i_mmap_lock_write(vma->vm_file->f_mapping); 109 if (vma->anon_vma) 110 anon_vma_lock_write(vma->anon_vma); 111 } 112 113 static void drop_rmap_locks(struct vm_area_struct *vma) 114 { 115 if (vma->anon_vma) 116 anon_vma_unlock_write(vma->anon_vma); 117 if (vma->vm_file) 118 i_mmap_unlock_write(vma->vm_file->f_mapping); 119 } 120 121 static pte_t move_soft_dirty_pte(pte_t pte) 122 { 123 /* 124 * Set soft dirty bit so we can notice 125 * in userspace the ptes were moved. 126 */ 127 #ifdef CONFIG_MEM_SOFT_DIRTY 128 if (pte_present(pte)) 129 pte = pte_mksoft_dirty(pte); 130 else if (is_swap_pte(pte)) 131 pte = pte_swp_mksoft_dirty(pte); 132 #endif 133 return pte; 134 } 135 136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 137 unsigned long old_addr, unsigned long old_end, 138 struct vm_area_struct *new_vma, pmd_t *new_pmd, 139 unsigned long new_addr, bool need_rmap_locks) 140 { 141 struct mm_struct *mm = vma->vm_mm; 142 pte_t *old_pte, *new_pte, pte; 143 spinlock_t *old_ptl, *new_ptl; 144 bool force_flush = false; 145 unsigned long len = old_end - old_addr; 146 int err = 0; 147 148 /* 149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 150 * locks to ensure that rmap will always observe either the old or the 151 * new ptes. This is the easiest way to avoid races with 152 * truncate_pagecache(), page migration, etc... 153 * 154 * When need_rmap_locks is false, we use other ways to avoid 155 * such races: 156 * 157 * - During exec() shift_arg_pages(), we use a specially tagged vma 158 * which rmap call sites look for using vma_is_temporary_stack(). 159 * 160 * - During mremap(), new_vma is often known to be placed after vma 161 * in rmap traversal order. This ensures rmap will always observe 162 * either the old pte, or the new pte, or both (the page table locks 163 * serialize access to individual ptes, but only rmap traversal 164 * order guarantees that we won't miss both the old and new ptes). 165 */ 166 if (need_rmap_locks) 167 take_rmap_locks(vma); 168 169 /* 170 * We don't have to worry about the ordering of src and dst 171 * pte locks because exclusive mmap_lock prevents deadlock. 172 */ 173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 174 if (!old_pte) { 175 err = -EAGAIN; 176 goto out; 177 } 178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl); 179 if (!new_pte) { 180 pte_unmap_unlock(old_pte, old_ptl); 181 err = -EAGAIN; 182 goto out; 183 } 184 if (new_ptl != old_ptl) 185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 186 flush_tlb_batched_pending(vma->vm_mm); 187 arch_enter_lazy_mmu_mode(); 188 189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 190 new_pte++, new_addr += PAGE_SIZE) { 191 if (pte_none(ptep_get(old_pte))) 192 continue; 193 194 pte = ptep_get_and_clear(mm, old_addr, old_pte); 195 /* 196 * If we are remapping a valid PTE, make sure 197 * to flush TLB before we drop the PTL for the 198 * PTE. 199 * 200 * NOTE! Both old and new PTL matter: the old one 201 * for racing with page_mkclean(), the new one to 202 * make sure the physical page stays valid until 203 * the TLB entry for the old mapping has been 204 * flushed. 205 */ 206 if (pte_present(pte)) 207 force_flush = true; 208 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 209 pte = move_soft_dirty_pte(pte); 210 set_pte_at(mm, new_addr, new_pte, pte); 211 } 212 213 arch_leave_lazy_mmu_mode(); 214 if (force_flush) 215 flush_tlb_range(vma, old_end - len, old_end); 216 if (new_ptl != old_ptl) 217 spin_unlock(new_ptl); 218 pte_unmap(new_pte - 1); 219 pte_unmap_unlock(old_pte - 1, old_ptl); 220 out: 221 if (need_rmap_locks) 222 drop_rmap_locks(vma); 223 return err; 224 } 225 226 #ifndef arch_supports_page_table_move 227 #define arch_supports_page_table_move arch_supports_page_table_move 228 static inline bool arch_supports_page_table_move(void) 229 { 230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 232 } 233 #endif 234 235 #ifdef CONFIG_HAVE_MOVE_PMD 236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 238 { 239 spinlock_t *old_ptl, *new_ptl; 240 struct mm_struct *mm = vma->vm_mm; 241 bool res = false; 242 pmd_t pmd; 243 244 if (!arch_supports_page_table_move()) 245 return false; 246 /* 247 * The destination pmd shouldn't be established, free_pgtables() 248 * should have released it. 249 * 250 * However, there's a case during execve() where we use mremap 251 * to move the initial stack, and in that case the target area 252 * may overlap the source area (always moving down). 253 * 254 * If everything is PMD-aligned, that works fine, as moving 255 * each pmd down will clear the source pmd. But if we first 256 * have a few 4kB-only pages that get moved down, and then 257 * hit the "now the rest is PMD-aligned, let's do everything 258 * one pmd at a time", we will still have the old (now empty 259 * of any 4kB pages, but still there) PMD in the page table 260 * tree. 261 * 262 * Warn on it once - because we really should try to figure 263 * out how to do this better - but then say "I won't move 264 * this pmd". 265 * 266 * One alternative might be to just unmap the target pmd at 267 * this point, and verify that it really is empty. We'll see. 268 */ 269 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 270 return false; 271 272 /* 273 * We don't have to worry about the ordering of src and dst 274 * ptlocks because exclusive mmap_lock prevents deadlock. 275 */ 276 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 277 new_ptl = pmd_lockptr(mm, new_pmd); 278 if (new_ptl != old_ptl) 279 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 280 281 pmd = *old_pmd; 282 283 /* Racing with collapse? */ 284 if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) 285 goto out_unlock; 286 /* Clear the pmd */ 287 pmd_clear(old_pmd); 288 res = true; 289 290 VM_BUG_ON(!pmd_none(*new_pmd)); 291 292 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 293 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 294 out_unlock: 295 if (new_ptl != old_ptl) 296 spin_unlock(new_ptl); 297 spin_unlock(old_ptl); 298 299 return res; 300 } 301 #else 302 static inline bool move_normal_pmd(struct vm_area_struct *vma, 303 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 304 pmd_t *new_pmd) 305 { 306 return false; 307 } 308 #endif 309 310 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 311 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 312 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 313 { 314 spinlock_t *old_ptl, *new_ptl; 315 struct mm_struct *mm = vma->vm_mm; 316 pud_t pud; 317 318 if (!arch_supports_page_table_move()) 319 return false; 320 /* 321 * The destination pud shouldn't be established, free_pgtables() 322 * should have released it. 323 */ 324 if (WARN_ON_ONCE(!pud_none(*new_pud))) 325 return false; 326 327 /* 328 * We don't have to worry about the ordering of src and dst 329 * ptlocks because exclusive mmap_lock prevents deadlock. 330 */ 331 old_ptl = pud_lock(vma->vm_mm, old_pud); 332 new_ptl = pud_lockptr(mm, new_pud); 333 if (new_ptl != old_ptl) 334 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 335 336 /* Clear the pud */ 337 pud = *old_pud; 338 pud_clear(old_pud); 339 340 VM_BUG_ON(!pud_none(*new_pud)); 341 342 pud_populate(mm, new_pud, pud_pgtable(pud)); 343 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 344 if (new_ptl != old_ptl) 345 spin_unlock(new_ptl); 346 spin_unlock(old_ptl); 347 348 return true; 349 } 350 #else 351 static inline bool move_normal_pud(struct vm_area_struct *vma, 352 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 353 pud_t *new_pud) 354 { 355 return false; 356 } 357 #endif 358 359 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 360 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 361 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 362 { 363 spinlock_t *old_ptl, *new_ptl; 364 struct mm_struct *mm = vma->vm_mm; 365 pud_t pud; 366 367 /* 368 * The destination pud shouldn't be established, free_pgtables() 369 * should have released it. 370 */ 371 if (WARN_ON_ONCE(!pud_none(*new_pud))) 372 return false; 373 374 /* 375 * We don't have to worry about the ordering of src and dst 376 * ptlocks because exclusive mmap_lock prevents deadlock. 377 */ 378 old_ptl = pud_lock(vma->vm_mm, old_pud); 379 new_ptl = pud_lockptr(mm, new_pud); 380 if (new_ptl != old_ptl) 381 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 382 383 /* Clear the pud */ 384 pud = *old_pud; 385 pud_clear(old_pud); 386 387 VM_BUG_ON(!pud_none(*new_pud)); 388 389 /* Set the new pud */ 390 /* mark soft_ditry when we add pud level soft dirty support */ 391 set_pud_at(mm, new_addr, new_pud, pud); 392 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 393 if (new_ptl != old_ptl) 394 spin_unlock(new_ptl); 395 spin_unlock(old_ptl); 396 397 return true; 398 } 399 #else 400 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 401 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 402 { 403 WARN_ON_ONCE(1); 404 return false; 405 406 } 407 #endif 408 409 enum pgt_entry { 410 NORMAL_PMD, 411 HPAGE_PMD, 412 NORMAL_PUD, 413 HPAGE_PUD, 414 }; 415 416 /* 417 * Returns an extent of the corresponding size for the pgt_entry specified if 418 * valid. Else returns a smaller extent bounded by the end of the source and 419 * destination pgt_entry. 420 */ 421 static __always_inline unsigned long get_extent(enum pgt_entry entry, 422 unsigned long old_addr, unsigned long old_end, 423 unsigned long new_addr) 424 { 425 unsigned long next, extent, mask, size; 426 427 switch (entry) { 428 case HPAGE_PMD: 429 case NORMAL_PMD: 430 mask = PMD_MASK; 431 size = PMD_SIZE; 432 break; 433 case HPAGE_PUD: 434 case NORMAL_PUD: 435 mask = PUD_MASK; 436 size = PUD_SIZE; 437 break; 438 default: 439 BUILD_BUG(); 440 break; 441 } 442 443 next = (old_addr + size) & mask; 444 /* even if next overflowed, extent below will be ok */ 445 extent = next - old_addr; 446 if (extent > old_end - old_addr) 447 extent = old_end - old_addr; 448 next = (new_addr + size) & mask; 449 if (extent > next - new_addr) 450 extent = next - new_addr; 451 return extent; 452 } 453 454 /* 455 * Attempts to speedup the move by moving entry at the level corresponding to 456 * pgt_entry. Returns true if the move was successful, else false. 457 */ 458 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 459 unsigned long old_addr, unsigned long new_addr, 460 void *old_entry, void *new_entry, bool need_rmap_locks) 461 { 462 bool moved = false; 463 464 /* See comment in move_ptes() */ 465 if (need_rmap_locks) 466 take_rmap_locks(vma); 467 468 switch (entry) { 469 case NORMAL_PMD: 470 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 471 new_entry); 472 break; 473 case NORMAL_PUD: 474 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 475 new_entry); 476 break; 477 case HPAGE_PMD: 478 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 479 move_huge_pmd(vma, old_addr, new_addr, old_entry, 480 new_entry); 481 break; 482 case HPAGE_PUD: 483 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 484 move_huge_pud(vma, old_addr, new_addr, old_entry, 485 new_entry); 486 break; 487 488 default: 489 WARN_ON_ONCE(1); 490 break; 491 } 492 493 if (need_rmap_locks) 494 drop_rmap_locks(vma); 495 496 return moved; 497 } 498 499 unsigned long move_page_tables(struct vm_area_struct *vma, 500 unsigned long old_addr, struct vm_area_struct *new_vma, 501 unsigned long new_addr, unsigned long len, 502 bool need_rmap_locks) 503 { 504 unsigned long extent, old_end; 505 struct mmu_notifier_range range; 506 pmd_t *old_pmd, *new_pmd; 507 pud_t *old_pud, *new_pud; 508 509 if (!len) 510 return 0; 511 512 old_end = old_addr + len; 513 514 if (is_vm_hugetlb_page(vma)) 515 return move_hugetlb_page_tables(vma, new_vma, old_addr, 516 new_addr, len); 517 518 flush_cache_range(vma, old_addr, old_end); 519 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 520 old_addr, old_end); 521 mmu_notifier_invalidate_range_start(&range); 522 523 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 524 cond_resched(); 525 /* 526 * If extent is PUD-sized try to speed up the move by moving at the 527 * PUD level if possible. 528 */ 529 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 530 531 old_pud = get_old_pud(vma->vm_mm, old_addr); 532 if (!old_pud) 533 continue; 534 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 535 if (!new_pud) 536 break; 537 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 538 if (extent == HPAGE_PUD_SIZE) { 539 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 540 old_pud, new_pud, need_rmap_locks); 541 /* We ignore and continue on error? */ 542 continue; 543 } 544 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 545 546 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 547 old_pud, new_pud, true)) 548 continue; 549 } 550 551 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 552 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 553 if (!old_pmd) 554 continue; 555 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 556 if (!new_pmd) 557 break; 558 again: 559 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 560 pmd_devmap(*old_pmd)) { 561 if (extent == HPAGE_PMD_SIZE && 562 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 563 old_pmd, new_pmd, need_rmap_locks)) 564 continue; 565 split_huge_pmd(vma, old_pmd, old_addr); 566 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 567 extent == PMD_SIZE) { 568 /* 569 * If the extent is PMD-sized, try to speed the move by 570 * moving at the PMD level if possible. 571 */ 572 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 573 old_pmd, new_pmd, true)) 574 continue; 575 } 576 if (pmd_none(*old_pmd)) 577 continue; 578 if (pte_alloc(new_vma->vm_mm, new_pmd)) 579 break; 580 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, 581 new_vma, new_pmd, new_addr, need_rmap_locks) < 0) 582 goto again; 583 } 584 585 mmu_notifier_invalidate_range_end(&range); 586 587 return len + old_addr - old_end; /* how much done */ 588 } 589 590 static unsigned long move_vma(struct vm_area_struct *vma, 591 unsigned long old_addr, unsigned long old_len, 592 unsigned long new_len, unsigned long new_addr, 593 bool *locked, unsigned long flags, 594 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 595 { 596 long to_account = new_len - old_len; 597 struct mm_struct *mm = vma->vm_mm; 598 struct vm_area_struct *new_vma; 599 unsigned long vm_flags = vma->vm_flags; 600 unsigned long new_pgoff; 601 unsigned long moved_len; 602 unsigned long account_start = 0; 603 unsigned long account_end = 0; 604 unsigned long hiwater_vm; 605 int err = 0; 606 bool need_rmap_locks; 607 struct vma_iterator vmi; 608 609 /* 610 * We'd prefer to avoid failure later on in do_munmap: 611 * which may split one vma into three before unmapping. 612 */ 613 if (mm->map_count >= sysctl_max_map_count - 3) 614 return -ENOMEM; 615 616 if (unlikely(flags & MREMAP_DONTUNMAP)) 617 to_account = new_len; 618 619 if (vma->vm_ops && vma->vm_ops->may_split) { 620 if (vma->vm_start != old_addr) 621 err = vma->vm_ops->may_split(vma, old_addr); 622 if (!err && vma->vm_end != old_addr + old_len) 623 err = vma->vm_ops->may_split(vma, old_addr + old_len); 624 if (err) 625 return err; 626 } 627 628 /* 629 * Advise KSM to break any KSM pages in the area to be moved: 630 * it would be confusing if they were to turn up at the new 631 * location, where they happen to coincide with different KSM 632 * pages recently unmapped. But leave vma->vm_flags as it was, 633 * so KSM can come around to merge on vma and new_vma afterwards. 634 */ 635 err = ksm_madvise(vma, old_addr, old_addr + old_len, 636 MADV_UNMERGEABLE, &vm_flags); 637 if (err) 638 return err; 639 640 if (vm_flags & VM_ACCOUNT) { 641 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 642 return -ENOMEM; 643 } 644 645 vma_start_write(vma); 646 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 647 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 648 &need_rmap_locks); 649 if (!new_vma) { 650 if (vm_flags & VM_ACCOUNT) 651 vm_unacct_memory(to_account >> PAGE_SHIFT); 652 return -ENOMEM; 653 } 654 655 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 656 need_rmap_locks); 657 if (moved_len < old_len) { 658 err = -ENOMEM; 659 } else if (vma->vm_ops && vma->vm_ops->mremap) { 660 err = vma->vm_ops->mremap(new_vma); 661 } 662 663 if (unlikely(err)) { 664 /* 665 * On error, move entries back from new area to old, 666 * which will succeed since page tables still there, 667 * and then proceed to unmap new area instead of old. 668 */ 669 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 670 true); 671 vma = new_vma; 672 old_len = new_len; 673 old_addr = new_addr; 674 new_addr = err; 675 } else { 676 mremap_userfaultfd_prep(new_vma, uf); 677 } 678 679 if (is_vm_hugetlb_page(vma)) { 680 clear_vma_resv_huge_pages(vma); 681 } 682 683 /* Conceal VM_ACCOUNT so old reservation is not undone */ 684 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 685 vm_flags_clear(vma, VM_ACCOUNT); 686 if (vma->vm_start < old_addr) 687 account_start = vma->vm_start; 688 if (vma->vm_end > old_addr + old_len) 689 account_end = vma->vm_end; 690 } 691 692 /* 693 * If we failed to move page tables we still do total_vm increment 694 * since do_munmap() will decrement it by old_len == new_len. 695 * 696 * Since total_vm is about to be raised artificially high for a 697 * moment, we need to restore high watermark afterwards: if stats 698 * are taken meanwhile, total_vm and hiwater_vm appear too high. 699 * If this were a serious issue, we'd add a flag to do_munmap(). 700 */ 701 hiwater_vm = mm->hiwater_vm; 702 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 703 704 /* Tell pfnmap has moved from this vma */ 705 if (unlikely(vma->vm_flags & VM_PFNMAP)) 706 untrack_pfn_clear(vma); 707 708 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 709 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 710 vm_flags_clear(vma, VM_LOCKED_MASK); 711 712 /* 713 * anon_vma links of the old vma is no longer needed after its page 714 * table has been moved. 715 */ 716 if (new_vma != vma && vma->vm_start == old_addr && 717 vma->vm_end == (old_addr + old_len)) 718 unlink_anon_vmas(vma); 719 720 /* Because we won't unmap we don't need to touch locked_vm */ 721 return new_addr; 722 } 723 724 vma_iter_init(&vmi, mm, old_addr); 725 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { 726 /* OOM: unable to split vma, just get accounts right */ 727 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 728 vm_acct_memory(old_len >> PAGE_SHIFT); 729 account_start = account_end = 0; 730 } 731 732 if (vm_flags & VM_LOCKED) { 733 mm->locked_vm += new_len >> PAGE_SHIFT; 734 *locked = true; 735 } 736 737 mm->hiwater_vm = hiwater_vm; 738 739 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 740 if (account_start) { 741 vma = vma_prev(&vmi); 742 vm_flags_set(vma, VM_ACCOUNT); 743 } 744 745 if (account_end) { 746 vma = vma_next(&vmi); 747 vm_flags_set(vma, VM_ACCOUNT); 748 } 749 750 return new_addr; 751 } 752 753 static struct vm_area_struct *vma_to_resize(unsigned long addr, 754 unsigned long old_len, unsigned long new_len, unsigned long flags) 755 { 756 struct mm_struct *mm = current->mm; 757 struct vm_area_struct *vma; 758 unsigned long pgoff; 759 760 vma = vma_lookup(mm, addr); 761 if (!vma) 762 return ERR_PTR(-EFAULT); 763 764 /* 765 * !old_len is a special case where an attempt is made to 'duplicate' 766 * a mapping. This makes no sense for private mappings as it will 767 * instead create a fresh/new mapping unrelated to the original. This 768 * is contrary to the basic idea of mremap which creates new mappings 769 * based on the original. There are no known use cases for this 770 * behavior. As a result, fail such attempts. 771 */ 772 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 773 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 774 return ERR_PTR(-EINVAL); 775 } 776 777 if ((flags & MREMAP_DONTUNMAP) && 778 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 779 return ERR_PTR(-EINVAL); 780 781 /* We can't remap across vm area boundaries */ 782 if (old_len > vma->vm_end - addr) 783 return ERR_PTR(-EFAULT); 784 785 if (new_len == old_len) 786 return vma; 787 788 /* Need to be careful about a growing mapping */ 789 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 790 pgoff += vma->vm_pgoff; 791 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 792 return ERR_PTR(-EINVAL); 793 794 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 795 return ERR_PTR(-EFAULT); 796 797 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) 798 return ERR_PTR(-EAGAIN); 799 800 if (!may_expand_vm(mm, vma->vm_flags, 801 (new_len - old_len) >> PAGE_SHIFT)) 802 return ERR_PTR(-ENOMEM); 803 804 return vma; 805 } 806 807 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 808 unsigned long new_addr, unsigned long new_len, bool *locked, 809 unsigned long flags, struct vm_userfaultfd_ctx *uf, 810 struct list_head *uf_unmap_early, 811 struct list_head *uf_unmap) 812 { 813 struct mm_struct *mm = current->mm; 814 struct vm_area_struct *vma; 815 unsigned long ret = -EINVAL; 816 unsigned long map_flags = 0; 817 818 if (offset_in_page(new_addr)) 819 goto out; 820 821 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 822 goto out; 823 824 /* Ensure the old/new locations do not overlap */ 825 if (addr + old_len > new_addr && new_addr + new_len > addr) 826 goto out; 827 828 /* 829 * move_vma() need us to stay 4 maps below the threshold, otherwise 830 * it will bail out at the very beginning. 831 * That is a problem if we have already unmaped the regions here 832 * (new_addr, and old_addr), because userspace will not know the 833 * state of the vma's after it gets -ENOMEM. 834 * So, to avoid such scenario we can pre-compute if the whole 835 * operation has high chances to success map-wise. 836 * Worst-scenario case is when both vma's (new_addr and old_addr) get 837 * split in 3 before unmapping it. 838 * That means 2 more maps (1 for each) to the ones we already hold. 839 * Check whether current map count plus 2 still leads us to 4 maps below 840 * the threshold, otherwise return -ENOMEM here to be more safe. 841 */ 842 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 843 return -ENOMEM; 844 845 if (flags & MREMAP_FIXED) { 846 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 847 if (ret) 848 goto out; 849 } 850 851 if (old_len > new_len) { 852 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 853 if (ret) 854 goto out; 855 old_len = new_len; 856 } 857 858 vma = vma_to_resize(addr, old_len, new_len, flags); 859 if (IS_ERR(vma)) { 860 ret = PTR_ERR(vma); 861 goto out; 862 } 863 864 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 865 if (flags & MREMAP_DONTUNMAP && 866 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 867 ret = -ENOMEM; 868 goto out; 869 } 870 871 if (flags & MREMAP_FIXED) 872 map_flags |= MAP_FIXED; 873 874 if (vma->vm_flags & VM_MAYSHARE) 875 map_flags |= MAP_SHARED; 876 877 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 878 ((addr - vma->vm_start) >> PAGE_SHIFT), 879 map_flags); 880 if (IS_ERR_VALUE(ret)) 881 goto out; 882 883 /* We got a new mapping */ 884 if (!(flags & MREMAP_FIXED)) 885 new_addr = ret; 886 887 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 888 uf_unmap); 889 890 out: 891 return ret; 892 } 893 894 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 895 { 896 unsigned long end = vma->vm_end + delta; 897 898 if (end < vma->vm_end) /* overflow */ 899 return 0; 900 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) 901 return 0; 902 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 903 0, MAP_FIXED) & ~PAGE_MASK) 904 return 0; 905 return 1; 906 } 907 908 /* 909 * Expand (or shrink) an existing mapping, potentially moving it at the 910 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 911 * 912 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 913 * This option implies MREMAP_MAYMOVE. 914 */ 915 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 916 unsigned long, new_len, unsigned long, flags, 917 unsigned long, new_addr) 918 { 919 struct mm_struct *mm = current->mm; 920 struct vm_area_struct *vma; 921 unsigned long ret = -EINVAL; 922 bool locked = false; 923 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 924 LIST_HEAD(uf_unmap_early); 925 LIST_HEAD(uf_unmap); 926 927 /* 928 * There is a deliberate asymmetry here: we strip the pointer tag 929 * from the old address but leave the new address alone. This is 930 * for consistency with mmap(), where we prevent the creation of 931 * aliasing mappings in userspace by leaving the tag bits of the 932 * mapping address intact. A non-zero tag will cause the subsequent 933 * range checks to reject the address as invalid. 934 * 935 * See Documentation/arch/arm64/tagged-address-abi.rst for more 936 * information. 937 */ 938 addr = untagged_addr(addr); 939 940 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 941 return ret; 942 943 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 944 return ret; 945 946 /* 947 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 948 * in the process. 949 */ 950 if (flags & MREMAP_DONTUNMAP && 951 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 952 return ret; 953 954 955 if (offset_in_page(addr)) 956 return ret; 957 958 old_len = PAGE_ALIGN(old_len); 959 new_len = PAGE_ALIGN(new_len); 960 961 /* 962 * We allow a zero old-len as a special case 963 * for DOS-emu "duplicate shm area" thing. But 964 * a zero new-len is nonsensical. 965 */ 966 if (!new_len) 967 return ret; 968 969 if (mmap_write_lock_killable(current->mm)) 970 return -EINTR; 971 vma = vma_lookup(mm, addr); 972 if (!vma) { 973 ret = -EFAULT; 974 goto out; 975 } 976 977 if (is_vm_hugetlb_page(vma)) { 978 struct hstate *h __maybe_unused = hstate_vma(vma); 979 980 old_len = ALIGN(old_len, huge_page_size(h)); 981 new_len = ALIGN(new_len, huge_page_size(h)); 982 983 /* addrs must be huge page aligned */ 984 if (addr & ~huge_page_mask(h)) 985 goto out; 986 if (new_addr & ~huge_page_mask(h)) 987 goto out; 988 989 /* 990 * Don't allow remap expansion, because the underlying hugetlb 991 * reservation is not yet capable to handle split reservation. 992 */ 993 if (new_len > old_len) 994 goto out; 995 } 996 997 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 998 ret = mremap_to(addr, old_len, new_addr, new_len, 999 &locked, flags, &uf, &uf_unmap_early, 1000 &uf_unmap); 1001 goto out; 1002 } 1003 1004 /* 1005 * Always allow a shrinking remap: that just unmaps 1006 * the unnecessary pages.. 1007 * do_vmi_munmap does all the needed commit accounting, and 1008 * unlocks the mmap_lock if so directed. 1009 */ 1010 if (old_len >= new_len) { 1011 VMA_ITERATOR(vmi, mm, addr + new_len); 1012 1013 if (old_len == new_len) { 1014 ret = addr; 1015 goto out; 1016 } 1017 1018 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, 1019 &uf_unmap, true); 1020 if (ret) 1021 goto out; 1022 1023 ret = addr; 1024 goto out_unlocked; 1025 } 1026 1027 /* 1028 * Ok, we need to grow.. 1029 */ 1030 vma = vma_to_resize(addr, old_len, new_len, flags); 1031 if (IS_ERR(vma)) { 1032 ret = PTR_ERR(vma); 1033 goto out; 1034 } 1035 1036 /* old_len exactly to the end of the area.. 1037 */ 1038 if (old_len == vma->vm_end - addr) { 1039 /* can we just expand the current mapping? */ 1040 if (vma_expandable(vma, new_len - old_len)) { 1041 long pages = (new_len - old_len) >> PAGE_SHIFT; 1042 unsigned long extension_start = addr + old_len; 1043 unsigned long extension_end = addr + new_len; 1044 pgoff_t extension_pgoff = vma->vm_pgoff + 1045 ((extension_start - vma->vm_start) >> PAGE_SHIFT); 1046 VMA_ITERATOR(vmi, mm, extension_start); 1047 1048 if (vma->vm_flags & VM_ACCOUNT) { 1049 if (security_vm_enough_memory_mm(mm, pages)) { 1050 ret = -ENOMEM; 1051 goto out; 1052 } 1053 } 1054 1055 /* 1056 * Function vma_merge() is called on the extension we 1057 * are adding to the already existing vma, vma_merge() 1058 * will merge this extension with the already existing 1059 * vma (expand operation itself) and possibly also with 1060 * the next vma if it becomes adjacent to the expanded 1061 * vma and otherwise compatible. 1062 */ 1063 vma = vma_merge(&vmi, mm, vma, extension_start, 1064 extension_end, vma->vm_flags, vma->anon_vma, 1065 vma->vm_file, extension_pgoff, vma_policy(vma), 1066 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 1067 if (!vma) { 1068 vm_unacct_memory(pages); 1069 ret = -ENOMEM; 1070 goto out; 1071 } 1072 1073 vm_stat_account(mm, vma->vm_flags, pages); 1074 if (vma->vm_flags & VM_LOCKED) { 1075 mm->locked_vm += pages; 1076 locked = true; 1077 new_addr = addr; 1078 } 1079 ret = addr; 1080 goto out; 1081 } 1082 } 1083 1084 /* 1085 * We weren't able to just expand or shrink the area, 1086 * we need to create a new one and move it.. 1087 */ 1088 ret = -ENOMEM; 1089 if (flags & MREMAP_MAYMOVE) { 1090 unsigned long map_flags = 0; 1091 if (vma->vm_flags & VM_MAYSHARE) 1092 map_flags |= MAP_SHARED; 1093 1094 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1095 vma->vm_pgoff + 1096 ((addr - vma->vm_start) >> PAGE_SHIFT), 1097 map_flags); 1098 if (IS_ERR_VALUE(new_addr)) { 1099 ret = new_addr; 1100 goto out; 1101 } 1102 1103 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1104 &locked, flags, &uf, &uf_unmap); 1105 } 1106 out: 1107 if (offset_in_page(ret)) 1108 locked = false; 1109 mmap_write_unlock(current->mm); 1110 if (locked && new_len > old_len) 1111 mm_populate(new_addr + old_len, new_len - old_len); 1112 out_unlocked: 1113 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1114 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1115 userfaultfd_unmap_complete(mm, &uf_unmap); 1116 return ret; 1117 } 1118