1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/hugetlb.h> 13 #include <linux/shm.h> 14 #include <linux/ksm.h> 15 #include <linux/mman.h> 16 #include <linux/swap.h> 17 #include <linux/capability.h> 18 #include <linux/fs.h> 19 #include <linux/swapops.h> 20 #include <linux/highmem.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/mmu_notifier.h> 24 #include <linux/uaccess.h> 25 #include <linux/mm-arch-hooks.h> 26 #include <linux/userfaultfd_k.h> 27 28 #include <asm/cacheflush.h> 29 #include <asm/tlbflush.h> 30 31 #include "internal.h" 32 33 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 p4d_t *p4d; 37 pud_t *pud; 38 39 pgd = pgd_offset(mm, addr); 40 if (pgd_none_or_clear_bad(pgd)) 41 return NULL; 42 43 p4d = p4d_offset(pgd, addr); 44 if (p4d_none_or_clear_bad(p4d)) 45 return NULL; 46 47 pud = pud_offset(p4d, addr); 48 if (pud_none_or_clear_bad(pud)) 49 return NULL; 50 51 return pud; 52 } 53 54 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 55 { 56 pud_t *pud; 57 pmd_t *pmd; 58 59 pud = get_old_pud(mm, addr); 60 if (!pud) 61 return NULL; 62 63 pmd = pmd_offset(pud, addr); 64 if (pmd_none(*pmd)) 65 return NULL; 66 67 return pmd; 68 } 69 70 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 71 unsigned long addr) 72 { 73 pgd_t *pgd; 74 p4d_t *p4d; 75 76 pgd = pgd_offset(mm, addr); 77 p4d = p4d_alloc(mm, pgd, addr); 78 if (!p4d) 79 return NULL; 80 81 return pud_alloc(mm, p4d, addr); 82 } 83 84 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 85 unsigned long addr) 86 { 87 pud_t *pud; 88 pmd_t *pmd; 89 90 pud = alloc_new_pud(mm, vma, addr); 91 if (!pud) 92 return NULL; 93 94 pmd = pmd_alloc(mm, pud, addr); 95 if (!pmd) 96 return NULL; 97 98 VM_BUG_ON(pmd_trans_huge(*pmd)); 99 100 return pmd; 101 } 102 103 static void take_rmap_locks(struct vm_area_struct *vma) 104 { 105 if (vma->vm_file) 106 i_mmap_lock_write(vma->vm_file->f_mapping); 107 if (vma->anon_vma) 108 anon_vma_lock_write(vma->anon_vma); 109 } 110 111 static void drop_rmap_locks(struct vm_area_struct *vma) 112 { 113 if (vma->anon_vma) 114 anon_vma_unlock_write(vma->anon_vma); 115 if (vma->vm_file) 116 i_mmap_unlock_write(vma->vm_file->f_mapping); 117 } 118 119 static pte_t move_soft_dirty_pte(pte_t pte) 120 { 121 /* 122 * Set soft dirty bit so we can notice 123 * in userspace the ptes were moved. 124 */ 125 #ifdef CONFIG_MEM_SOFT_DIRTY 126 if (pte_present(pte)) 127 pte = pte_mksoft_dirty(pte); 128 else if (is_swap_pte(pte)) 129 pte = pte_swp_mksoft_dirty(pte); 130 #endif 131 return pte; 132 } 133 134 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 135 unsigned long old_addr, unsigned long old_end, 136 struct vm_area_struct *new_vma, pmd_t *new_pmd, 137 unsigned long new_addr, bool need_rmap_locks) 138 { 139 struct mm_struct *mm = vma->vm_mm; 140 pte_t *old_pte, *new_pte, pte; 141 spinlock_t *old_ptl, *new_ptl; 142 bool force_flush = false; 143 unsigned long len = old_end - old_addr; 144 145 /* 146 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 147 * locks to ensure that rmap will always observe either the old or the 148 * new ptes. This is the easiest way to avoid races with 149 * truncate_pagecache(), page migration, etc... 150 * 151 * When need_rmap_locks is false, we use other ways to avoid 152 * such races: 153 * 154 * - During exec() shift_arg_pages(), we use a specially tagged vma 155 * which rmap call sites look for using vma_is_temporary_stack(). 156 * 157 * - During mremap(), new_vma is often known to be placed after vma 158 * in rmap traversal order. This ensures rmap will always observe 159 * either the old pte, or the new pte, or both (the page table locks 160 * serialize access to individual ptes, but only rmap traversal 161 * order guarantees that we won't miss both the old and new ptes). 162 */ 163 if (need_rmap_locks) 164 take_rmap_locks(vma); 165 166 /* 167 * We don't have to worry about the ordering of src and dst 168 * pte locks because exclusive mmap_lock prevents deadlock. 169 */ 170 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 171 new_pte = pte_offset_map(new_pmd, new_addr); 172 new_ptl = pte_lockptr(mm, new_pmd); 173 if (new_ptl != old_ptl) 174 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 175 flush_tlb_batched_pending(vma->vm_mm); 176 arch_enter_lazy_mmu_mode(); 177 178 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 179 new_pte++, new_addr += PAGE_SIZE) { 180 if (pte_none(*old_pte)) 181 continue; 182 183 pte = ptep_get_and_clear(mm, old_addr, old_pte); 184 /* 185 * If we are remapping a valid PTE, make sure 186 * to flush TLB before we drop the PTL for the 187 * PTE. 188 * 189 * NOTE! Both old and new PTL matter: the old one 190 * for racing with page_mkclean(), the new one to 191 * make sure the physical page stays valid until 192 * the TLB entry for the old mapping has been 193 * flushed. 194 */ 195 if (pte_present(pte)) 196 force_flush = true; 197 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 198 pte = move_soft_dirty_pte(pte); 199 set_pte_at(mm, new_addr, new_pte, pte); 200 } 201 202 arch_leave_lazy_mmu_mode(); 203 if (force_flush) 204 flush_tlb_range(vma, old_end - len, old_end); 205 if (new_ptl != old_ptl) 206 spin_unlock(new_ptl); 207 pte_unmap(new_pte - 1); 208 pte_unmap_unlock(old_pte - 1, old_ptl); 209 if (need_rmap_locks) 210 drop_rmap_locks(vma); 211 } 212 213 #ifdef CONFIG_HAVE_MOVE_PMD 214 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 215 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 216 { 217 spinlock_t *old_ptl, *new_ptl; 218 struct mm_struct *mm = vma->vm_mm; 219 pmd_t pmd; 220 221 /* 222 * The destination pmd shouldn't be established, free_pgtables() 223 * should have released it. 224 * 225 * However, there's a case during execve() where we use mremap 226 * to move the initial stack, and in that case the target area 227 * may overlap the source area (always moving down). 228 * 229 * If everything is PMD-aligned, that works fine, as moving 230 * each pmd down will clear the source pmd. But if we first 231 * have a few 4kB-only pages that get moved down, and then 232 * hit the "now the rest is PMD-aligned, let's do everything 233 * one pmd at a time", we will still have the old (now empty 234 * of any 4kB pages, but still there) PMD in the page table 235 * tree. 236 * 237 * Warn on it once - because we really should try to figure 238 * out how to do this better - but then say "I won't move 239 * this pmd". 240 * 241 * One alternative might be to just unmap the target pmd at 242 * this point, and verify that it really is empty. We'll see. 243 */ 244 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 245 return false; 246 247 /* 248 * We don't have to worry about the ordering of src and dst 249 * ptlocks because exclusive mmap_lock prevents deadlock. 250 */ 251 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 252 new_ptl = pmd_lockptr(mm, new_pmd); 253 if (new_ptl != old_ptl) 254 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 255 256 /* Clear the pmd */ 257 pmd = *old_pmd; 258 pmd_clear(old_pmd); 259 260 VM_BUG_ON(!pmd_none(*new_pmd)); 261 262 /* Set the new pmd */ 263 set_pmd_at(mm, new_addr, new_pmd, pmd); 264 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 265 if (new_ptl != old_ptl) 266 spin_unlock(new_ptl); 267 spin_unlock(old_ptl); 268 269 return true; 270 } 271 #else 272 static inline bool move_normal_pmd(struct vm_area_struct *vma, 273 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 274 pmd_t *new_pmd) 275 { 276 return false; 277 } 278 #endif 279 280 #ifdef CONFIG_HAVE_MOVE_PUD 281 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 282 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 283 { 284 spinlock_t *old_ptl, *new_ptl; 285 struct mm_struct *mm = vma->vm_mm; 286 pud_t pud; 287 288 /* 289 * The destination pud shouldn't be established, free_pgtables() 290 * should have released it. 291 */ 292 if (WARN_ON_ONCE(!pud_none(*new_pud))) 293 return false; 294 295 /* 296 * We don't have to worry about the ordering of src and dst 297 * ptlocks because exclusive mmap_lock prevents deadlock. 298 */ 299 old_ptl = pud_lock(vma->vm_mm, old_pud); 300 new_ptl = pud_lockptr(mm, new_pud); 301 if (new_ptl != old_ptl) 302 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 303 304 /* Clear the pud */ 305 pud = *old_pud; 306 pud_clear(old_pud); 307 308 VM_BUG_ON(!pud_none(*new_pud)); 309 310 /* Set the new pud */ 311 set_pud_at(mm, new_addr, new_pud, pud); 312 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 313 if (new_ptl != old_ptl) 314 spin_unlock(new_ptl); 315 spin_unlock(old_ptl); 316 317 return true; 318 } 319 #else 320 static inline bool move_normal_pud(struct vm_area_struct *vma, 321 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 322 pud_t *new_pud) 323 { 324 return false; 325 } 326 #endif 327 328 enum pgt_entry { 329 NORMAL_PMD, 330 HPAGE_PMD, 331 NORMAL_PUD, 332 }; 333 334 /* 335 * Returns an extent of the corresponding size for the pgt_entry specified if 336 * valid. Else returns a smaller extent bounded by the end of the source and 337 * destination pgt_entry. 338 */ 339 static unsigned long get_extent(enum pgt_entry entry, unsigned long old_addr, 340 unsigned long old_end, unsigned long new_addr) 341 { 342 unsigned long next, extent, mask, size; 343 344 switch (entry) { 345 case HPAGE_PMD: 346 case NORMAL_PMD: 347 mask = PMD_MASK; 348 size = PMD_SIZE; 349 break; 350 case NORMAL_PUD: 351 mask = PUD_MASK; 352 size = PUD_SIZE; 353 break; 354 default: 355 BUILD_BUG(); 356 break; 357 } 358 359 next = (old_addr + size) & mask; 360 /* even if next overflowed, extent below will be ok */ 361 extent = (next > old_end) ? old_end - old_addr : next - old_addr; 362 next = (new_addr + size) & mask; 363 if (extent > next - new_addr) 364 extent = next - new_addr; 365 return extent; 366 } 367 368 /* 369 * Attempts to speedup the move by moving entry at the level corresponding to 370 * pgt_entry. Returns true if the move was successful, else false. 371 */ 372 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 373 unsigned long old_addr, unsigned long new_addr, 374 void *old_entry, void *new_entry, bool need_rmap_locks) 375 { 376 bool moved = false; 377 378 /* See comment in move_ptes() */ 379 if (need_rmap_locks) 380 take_rmap_locks(vma); 381 382 switch (entry) { 383 case NORMAL_PMD: 384 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 385 new_entry); 386 break; 387 case NORMAL_PUD: 388 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 389 new_entry); 390 break; 391 case HPAGE_PMD: 392 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 393 move_huge_pmd(vma, old_addr, new_addr, old_entry, 394 new_entry); 395 break; 396 default: 397 WARN_ON_ONCE(1); 398 break; 399 } 400 401 if (need_rmap_locks) 402 drop_rmap_locks(vma); 403 404 return moved; 405 } 406 407 unsigned long move_page_tables(struct vm_area_struct *vma, 408 unsigned long old_addr, struct vm_area_struct *new_vma, 409 unsigned long new_addr, unsigned long len, 410 bool need_rmap_locks) 411 { 412 unsigned long extent, old_end; 413 struct mmu_notifier_range range; 414 pmd_t *old_pmd, *new_pmd; 415 416 old_end = old_addr + len; 417 flush_cache_range(vma, old_addr, old_end); 418 419 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 420 old_addr, old_end); 421 mmu_notifier_invalidate_range_start(&range); 422 423 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 424 cond_resched(); 425 /* 426 * If extent is PUD-sized try to speed up the move by moving at the 427 * PUD level if possible. 428 */ 429 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 430 if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 431 pud_t *old_pud, *new_pud; 432 433 old_pud = get_old_pud(vma->vm_mm, old_addr); 434 if (!old_pud) 435 continue; 436 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 437 if (!new_pud) 438 break; 439 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 440 old_pud, new_pud, need_rmap_locks)) 441 continue; 442 } 443 444 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 445 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 446 if (!old_pmd) 447 continue; 448 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 449 if (!new_pmd) 450 break; 451 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 452 pmd_devmap(*old_pmd)) { 453 if (extent == HPAGE_PMD_SIZE && 454 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 455 old_pmd, new_pmd, need_rmap_locks)) 456 continue; 457 split_huge_pmd(vma, old_pmd, old_addr); 458 if (pmd_trans_unstable(old_pmd)) 459 continue; 460 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 461 extent == PMD_SIZE) { 462 /* 463 * If the extent is PMD-sized, try to speed the move by 464 * moving at the PMD level if possible. 465 */ 466 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 467 old_pmd, new_pmd, need_rmap_locks)) 468 continue; 469 } 470 471 if (pte_alloc(new_vma->vm_mm, new_pmd)) 472 break; 473 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 474 new_pmd, new_addr, need_rmap_locks); 475 } 476 477 mmu_notifier_invalidate_range_end(&range); 478 479 return len + old_addr - old_end; /* how much done */ 480 } 481 482 static unsigned long move_vma(struct vm_area_struct *vma, 483 unsigned long old_addr, unsigned long old_len, 484 unsigned long new_len, unsigned long new_addr, 485 bool *locked, unsigned long flags, 486 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 487 { 488 struct mm_struct *mm = vma->vm_mm; 489 struct vm_area_struct *new_vma; 490 unsigned long vm_flags = vma->vm_flags; 491 unsigned long new_pgoff; 492 unsigned long moved_len; 493 unsigned long excess = 0; 494 unsigned long hiwater_vm; 495 int split = 0; 496 int err = 0; 497 bool need_rmap_locks; 498 499 /* 500 * We'd prefer to avoid failure later on in do_munmap: 501 * which may split one vma into three before unmapping. 502 */ 503 if (mm->map_count >= sysctl_max_map_count - 3) 504 return -ENOMEM; 505 506 if (vma->vm_ops && vma->vm_ops->may_split) { 507 if (vma->vm_start != old_addr) 508 err = vma->vm_ops->may_split(vma, old_addr); 509 if (!err && vma->vm_end != old_addr + old_len) 510 err = vma->vm_ops->may_split(vma, old_addr + old_len); 511 if (err) 512 return err; 513 } 514 515 /* 516 * Advise KSM to break any KSM pages in the area to be moved: 517 * it would be confusing if they were to turn up at the new 518 * location, where they happen to coincide with different KSM 519 * pages recently unmapped. But leave vma->vm_flags as it was, 520 * so KSM can come around to merge on vma and new_vma afterwards. 521 */ 522 err = ksm_madvise(vma, old_addr, old_addr + old_len, 523 MADV_UNMERGEABLE, &vm_flags); 524 if (err) 525 return err; 526 527 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) { 528 if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT)) 529 return -ENOMEM; 530 } 531 532 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 533 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 534 &need_rmap_locks); 535 if (!new_vma) { 536 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) 537 vm_unacct_memory(new_len >> PAGE_SHIFT); 538 return -ENOMEM; 539 } 540 541 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 542 need_rmap_locks); 543 if (moved_len < old_len) { 544 err = -ENOMEM; 545 } else if (vma->vm_ops && vma->vm_ops->mremap) { 546 err = vma->vm_ops->mremap(new_vma, flags); 547 } 548 549 if (unlikely(err)) { 550 /* 551 * On error, move entries back from new area to old, 552 * which will succeed since page tables still there, 553 * and then proceed to unmap new area instead of old. 554 */ 555 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 556 true); 557 vma = new_vma; 558 old_len = new_len; 559 old_addr = new_addr; 560 new_addr = err; 561 } else { 562 mremap_userfaultfd_prep(new_vma, uf); 563 arch_remap(mm, old_addr, old_addr + old_len, 564 new_addr, new_addr + new_len); 565 } 566 567 /* Conceal VM_ACCOUNT so old reservation is not undone */ 568 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 569 vma->vm_flags &= ~VM_ACCOUNT; 570 excess = vma->vm_end - vma->vm_start - old_len; 571 if (old_addr > vma->vm_start && 572 old_addr + old_len < vma->vm_end) 573 split = 1; 574 } 575 576 /* 577 * If we failed to move page tables we still do total_vm increment 578 * since do_munmap() will decrement it by old_len == new_len. 579 * 580 * Since total_vm is about to be raised artificially high for a 581 * moment, we need to restore high watermark afterwards: if stats 582 * are taken meanwhile, total_vm and hiwater_vm appear too high. 583 * If this were a serious issue, we'd add a flag to do_munmap(). 584 */ 585 hiwater_vm = mm->hiwater_vm; 586 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 587 588 /* Tell pfnmap has moved from this vma */ 589 if (unlikely(vma->vm_flags & VM_PFNMAP)) 590 untrack_pfn_moved(vma); 591 592 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 593 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 594 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 595 596 /* Because we won't unmap we don't need to touch locked_vm */ 597 return new_addr; 598 } 599 600 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 601 /* OOM: unable to split vma, just get accounts right */ 602 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 603 vm_acct_memory(new_len >> PAGE_SHIFT); 604 excess = 0; 605 } 606 607 if (vm_flags & VM_LOCKED) { 608 mm->locked_vm += new_len >> PAGE_SHIFT; 609 *locked = true; 610 } 611 612 mm->hiwater_vm = hiwater_vm; 613 614 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 615 if (excess) { 616 vma->vm_flags |= VM_ACCOUNT; 617 if (split) 618 vma->vm_next->vm_flags |= VM_ACCOUNT; 619 } 620 621 return new_addr; 622 } 623 624 static struct vm_area_struct *vma_to_resize(unsigned long addr, 625 unsigned long old_len, unsigned long new_len, unsigned long flags, 626 unsigned long *p) 627 { 628 struct mm_struct *mm = current->mm; 629 struct vm_area_struct *vma = find_vma(mm, addr); 630 unsigned long pgoff; 631 632 if (!vma || vma->vm_start > addr) 633 return ERR_PTR(-EFAULT); 634 635 /* 636 * !old_len is a special case where an attempt is made to 'duplicate' 637 * a mapping. This makes no sense for private mappings as it will 638 * instead create a fresh/new mapping unrelated to the original. This 639 * is contrary to the basic idea of mremap which creates new mappings 640 * based on the original. There are no known use cases for this 641 * behavior. As a result, fail such attempts. 642 */ 643 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 644 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 645 return ERR_PTR(-EINVAL); 646 } 647 648 if (flags & MREMAP_DONTUNMAP && (!vma_is_anonymous(vma) || 649 vma->vm_flags & VM_SHARED)) 650 return ERR_PTR(-EINVAL); 651 652 if (is_vm_hugetlb_page(vma)) 653 return ERR_PTR(-EINVAL); 654 655 /* We can't remap across vm area boundaries */ 656 if (old_len > vma->vm_end - addr) 657 return ERR_PTR(-EFAULT); 658 659 if (new_len == old_len) 660 return vma; 661 662 /* Need to be careful about a growing mapping */ 663 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 664 pgoff += vma->vm_pgoff; 665 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 666 return ERR_PTR(-EINVAL); 667 668 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 669 return ERR_PTR(-EFAULT); 670 671 if (vma->vm_flags & VM_LOCKED) { 672 unsigned long locked, lock_limit; 673 locked = mm->locked_vm << PAGE_SHIFT; 674 lock_limit = rlimit(RLIMIT_MEMLOCK); 675 locked += new_len - old_len; 676 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 677 return ERR_PTR(-EAGAIN); 678 } 679 680 if (!may_expand_vm(mm, vma->vm_flags, 681 (new_len - old_len) >> PAGE_SHIFT)) 682 return ERR_PTR(-ENOMEM); 683 684 if (vma->vm_flags & VM_ACCOUNT) { 685 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT; 686 if (security_vm_enough_memory_mm(mm, charged)) 687 return ERR_PTR(-ENOMEM); 688 *p = charged; 689 } 690 691 return vma; 692 } 693 694 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 695 unsigned long new_addr, unsigned long new_len, bool *locked, 696 unsigned long flags, struct vm_userfaultfd_ctx *uf, 697 struct list_head *uf_unmap_early, 698 struct list_head *uf_unmap) 699 { 700 struct mm_struct *mm = current->mm; 701 struct vm_area_struct *vma; 702 unsigned long ret = -EINVAL; 703 unsigned long charged = 0; 704 unsigned long map_flags = 0; 705 706 if (offset_in_page(new_addr)) 707 goto out; 708 709 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 710 goto out; 711 712 /* Ensure the old/new locations do not overlap */ 713 if (addr + old_len > new_addr && new_addr + new_len > addr) 714 goto out; 715 716 /* 717 * move_vma() need us to stay 4 maps below the threshold, otherwise 718 * it will bail out at the very beginning. 719 * That is a problem if we have already unmaped the regions here 720 * (new_addr, and old_addr), because userspace will not know the 721 * state of the vma's after it gets -ENOMEM. 722 * So, to avoid such scenario we can pre-compute if the whole 723 * operation has high chances to success map-wise. 724 * Worst-scenario case is when both vma's (new_addr and old_addr) get 725 * split in 3 before unmaping it. 726 * That means 2 more maps (1 for each) to the ones we already hold. 727 * Check whether current map count plus 2 still leads us to 4 maps below 728 * the threshold, otherwise return -ENOMEM here to be more safe. 729 */ 730 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 731 return -ENOMEM; 732 733 if (flags & MREMAP_FIXED) { 734 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 735 if (ret) 736 goto out; 737 } 738 739 if (old_len >= new_len) { 740 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 741 if (ret && old_len != new_len) 742 goto out; 743 old_len = new_len; 744 } 745 746 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 747 if (IS_ERR(vma)) { 748 ret = PTR_ERR(vma); 749 goto out; 750 } 751 752 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 753 if (flags & MREMAP_DONTUNMAP && 754 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 755 ret = -ENOMEM; 756 goto out; 757 } 758 759 if (flags & MREMAP_FIXED) 760 map_flags |= MAP_FIXED; 761 762 if (vma->vm_flags & VM_MAYSHARE) 763 map_flags |= MAP_SHARED; 764 765 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 766 ((addr - vma->vm_start) >> PAGE_SHIFT), 767 map_flags); 768 if (IS_ERR_VALUE(ret)) 769 goto out1; 770 771 /* We got a new mapping */ 772 if (!(flags & MREMAP_FIXED)) 773 new_addr = ret; 774 775 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 776 uf_unmap); 777 778 if (!(offset_in_page(ret))) 779 goto out; 780 781 out1: 782 vm_unacct_memory(charged); 783 784 out: 785 return ret; 786 } 787 788 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 789 { 790 unsigned long end = vma->vm_end + delta; 791 if (end < vma->vm_end) /* overflow */ 792 return 0; 793 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */ 794 return 0; 795 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 796 0, MAP_FIXED) & ~PAGE_MASK) 797 return 0; 798 return 1; 799 } 800 801 /* 802 * Expand (or shrink) an existing mapping, potentially moving it at the 803 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 804 * 805 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 806 * This option implies MREMAP_MAYMOVE. 807 */ 808 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 809 unsigned long, new_len, unsigned long, flags, 810 unsigned long, new_addr) 811 { 812 struct mm_struct *mm = current->mm; 813 struct vm_area_struct *vma; 814 unsigned long ret = -EINVAL; 815 unsigned long charged = 0; 816 bool locked = false; 817 bool downgraded = false; 818 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 819 LIST_HEAD(uf_unmap_early); 820 LIST_HEAD(uf_unmap); 821 822 /* 823 * There is a deliberate asymmetry here: we strip the pointer tag 824 * from the old address but leave the new address alone. This is 825 * for consistency with mmap(), where we prevent the creation of 826 * aliasing mappings in userspace by leaving the tag bits of the 827 * mapping address intact. A non-zero tag will cause the subsequent 828 * range checks to reject the address as invalid. 829 * 830 * See Documentation/arm64/tagged-address-abi.rst for more information. 831 */ 832 addr = untagged_addr(addr); 833 834 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 835 return ret; 836 837 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 838 return ret; 839 840 /* 841 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 842 * in the process. 843 */ 844 if (flags & MREMAP_DONTUNMAP && 845 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 846 return ret; 847 848 849 if (offset_in_page(addr)) 850 return ret; 851 852 old_len = PAGE_ALIGN(old_len); 853 new_len = PAGE_ALIGN(new_len); 854 855 /* 856 * We allow a zero old-len as a special case 857 * for DOS-emu "duplicate shm area" thing. But 858 * a zero new-len is nonsensical. 859 */ 860 if (!new_len) 861 return ret; 862 863 if (mmap_write_lock_killable(current->mm)) 864 return -EINTR; 865 866 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 867 ret = mremap_to(addr, old_len, new_addr, new_len, 868 &locked, flags, &uf, &uf_unmap_early, 869 &uf_unmap); 870 goto out; 871 } 872 873 /* 874 * Always allow a shrinking remap: that just unmaps 875 * the unnecessary pages.. 876 * __do_munmap does all the needed commit accounting, and 877 * downgrades mmap_lock to read if so directed. 878 */ 879 if (old_len >= new_len) { 880 int retval; 881 882 retval = __do_munmap(mm, addr+new_len, old_len - new_len, 883 &uf_unmap, true); 884 if (retval < 0 && old_len != new_len) { 885 ret = retval; 886 goto out; 887 /* Returning 1 indicates mmap_lock is downgraded to read. */ 888 } else if (retval == 1) 889 downgraded = true; 890 ret = addr; 891 goto out; 892 } 893 894 /* 895 * Ok, we need to grow.. 896 */ 897 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 898 if (IS_ERR(vma)) { 899 ret = PTR_ERR(vma); 900 goto out; 901 } 902 903 /* old_len exactly to the end of the area.. 904 */ 905 if (old_len == vma->vm_end - addr) { 906 /* can we just expand the current mapping? */ 907 if (vma_expandable(vma, new_len - old_len)) { 908 int pages = (new_len - old_len) >> PAGE_SHIFT; 909 910 if (vma_adjust(vma, vma->vm_start, addr + new_len, 911 vma->vm_pgoff, NULL)) { 912 ret = -ENOMEM; 913 goto out; 914 } 915 916 vm_stat_account(mm, vma->vm_flags, pages); 917 if (vma->vm_flags & VM_LOCKED) { 918 mm->locked_vm += pages; 919 locked = true; 920 new_addr = addr; 921 } 922 ret = addr; 923 goto out; 924 } 925 } 926 927 /* 928 * We weren't able to just expand or shrink the area, 929 * we need to create a new one and move it.. 930 */ 931 ret = -ENOMEM; 932 if (flags & MREMAP_MAYMOVE) { 933 unsigned long map_flags = 0; 934 if (vma->vm_flags & VM_MAYSHARE) 935 map_flags |= MAP_SHARED; 936 937 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 938 vma->vm_pgoff + 939 ((addr - vma->vm_start) >> PAGE_SHIFT), 940 map_flags); 941 if (IS_ERR_VALUE(new_addr)) { 942 ret = new_addr; 943 goto out; 944 } 945 946 ret = move_vma(vma, addr, old_len, new_len, new_addr, 947 &locked, flags, &uf, &uf_unmap); 948 } 949 out: 950 if (offset_in_page(ret)) { 951 vm_unacct_memory(charged); 952 locked = false; 953 } 954 if (downgraded) 955 mmap_read_unlock(current->mm); 956 else 957 mmap_write_unlock(current->mm); 958 if (locked && new_len > old_len) 959 mm_populate(new_addr + old_len, new_len - old_len); 960 userfaultfd_unmap_complete(mm, &uf_unmap_early); 961 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 962 userfaultfd_unmap_complete(mm, &uf_unmap); 963 return ret; 964 } 965