1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/hugetlb.h> 13 #include <linux/shm.h> 14 #include <linux/ksm.h> 15 #include <linux/mman.h> 16 #include <linux/swap.h> 17 #include <linux/capability.h> 18 #include <linux/fs.h> 19 #include <linux/swapops.h> 20 #include <linux/highmem.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/mmu_notifier.h> 24 #include <linux/uaccess.h> 25 #include <linux/userfaultfd_k.h> 26 27 #include <asm/cacheflush.h> 28 #include <asm/tlbflush.h> 29 30 #include "internal.h" 31 32 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 33 { 34 pgd_t *pgd; 35 p4d_t *p4d; 36 pud_t *pud; 37 38 pgd = pgd_offset(mm, addr); 39 if (pgd_none_or_clear_bad(pgd)) 40 return NULL; 41 42 p4d = p4d_offset(pgd, addr); 43 if (p4d_none_or_clear_bad(p4d)) 44 return NULL; 45 46 pud = pud_offset(p4d, addr); 47 if (pud_none_or_clear_bad(pud)) 48 return NULL; 49 50 return pud; 51 } 52 53 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 54 { 55 pud_t *pud; 56 pmd_t *pmd; 57 58 pud = get_old_pud(mm, addr); 59 if (!pud) 60 return NULL; 61 62 pmd = pmd_offset(pud, addr); 63 if (pmd_none(*pmd)) 64 return NULL; 65 66 return pmd; 67 } 68 69 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 70 unsigned long addr) 71 { 72 pgd_t *pgd; 73 p4d_t *p4d; 74 75 pgd = pgd_offset(mm, addr); 76 p4d = p4d_alloc(mm, pgd, addr); 77 if (!p4d) 78 return NULL; 79 80 return pud_alloc(mm, p4d, addr); 81 } 82 83 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 84 unsigned long addr) 85 { 86 pud_t *pud; 87 pmd_t *pmd; 88 89 pud = alloc_new_pud(mm, vma, addr); 90 if (!pud) 91 return NULL; 92 93 pmd = pmd_alloc(mm, pud, addr); 94 if (!pmd) 95 return NULL; 96 97 VM_BUG_ON(pmd_trans_huge(*pmd)); 98 99 return pmd; 100 } 101 102 static void take_rmap_locks(struct vm_area_struct *vma) 103 { 104 if (vma->vm_file) 105 i_mmap_lock_write(vma->vm_file->f_mapping); 106 if (vma->anon_vma) 107 anon_vma_lock_write(vma->anon_vma); 108 } 109 110 static void drop_rmap_locks(struct vm_area_struct *vma) 111 { 112 if (vma->anon_vma) 113 anon_vma_unlock_write(vma->anon_vma); 114 if (vma->vm_file) 115 i_mmap_unlock_write(vma->vm_file->f_mapping); 116 } 117 118 static pte_t move_soft_dirty_pte(pte_t pte) 119 { 120 /* 121 * Set soft dirty bit so we can notice 122 * in userspace the ptes were moved. 123 */ 124 #ifdef CONFIG_MEM_SOFT_DIRTY 125 if (pte_present(pte)) 126 pte = pte_mksoft_dirty(pte); 127 else if (is_swap_pte(pte)) 128 pte = pte_swp_mksoft_dirty(pte); 129 #endif 130 return pte; 131 } 132 133 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 134 unsigned long old_addr, unsigned long old_end, 135 struct vm_area_struct *new_vma, pmd_t *new_pmd, 136 unsigned long new_addr, bool need_rmap_locks) 137 { 138 struct mm_struct *mm = vma->vm_mm; 139 pte_t *old_pte, *new_pte, pte; 140 spinlock_t *old_ptl, *new_ptl; 141 bool force_flush = false; 142 unsigned long len = old_end - old_addr; 143 144 /* 145 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 146 * locks to ensure that rmap will always observe either the old or the 147 * new ptes. This is the easiest way to avoid races with 148 * truncate_pagecache(), page migration, etc... 149 * 150 * When need_rmap_locks is false, we use other ways to avoid 151 * such races: 152 * 153 * - During exec() shift_arg_pages(), we use a specially tagged vma 154 * which rmap call sites look for using vma_is_temporary_stack(). 155 * 156 * - During mremap(), new_vma is often known to be placed after vma 157 * in rmap traversal order. This ensures rmap will always observe 158 * either the old pte, or the new pte, or both (the page table locks 159 * serialize access to individual ptes, but only rmap traversal 160 * order guarantees that we won't miss both the old and new ptes). 161 */ 162 if (need_rmap_locks) 163 take_rmap_locks(vma); 164 165 /* 166 * We don't have to worry about the ordering of src and dst 167 * pte locks because exclusive mmap_lock prevents deadlock. 168 */ 169 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 170 new_pte = pte_offset_map(new_pmd, new_addr); 171 new_ptl = pte_lockptr(mm, new_pmd); 172 if (new_ptl != old_ptl) 173 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 174 flush_tlb_batched_pending(vma->vm_mm); 175 arch_enter_lazy_mmu_mode(); 176 177 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 178 new_pte++, new_addr += PAGE_SIZE) { 179 if (pte_none(*old_pte)) 180 continue; 181 182 pte = ptep_get_and_clear(mm, old_addr, old_pte); 183 /* 184 * If we are remapping a valid PTE, make sure 185 * to flush TLB before we drop the PTL for the 186 * PTE. 187 * 188 * NOTE! Both old and new PTL matter: the old one 189 * for racing with page_mkclean(), the new one to 190 * make sure the physical page stays valid until 191 * the TLB entry for the old mapping has been 192 * flushed. 193 */ 194 if (pte_present(pte)) 195 force_flush = true; 196 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 197 pte = move_soft_dirty_pte(pte); 198 set_pte_at(mm, new_addr, new_pte, pte); 199 } 200 201 arch_leave_lazy_mmu_mode(); 202 if (force_flush) 203 flush_tlb_range(vma, old_end - len, old_end); 204 if (new_ptl != old_ptl) 205 spin_unlock(new_ptl); 206 pte_unmap(new_pte - 1); 207 pte_unmap_unlock(old_pte - 1, old_ptl); 208 if (need_rmap_locks) 209 drop_rmap_locks(vma); 210 } 211 212 #ifdef CONFIG_HAVE_MOVE_PMD 213 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 214 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 215 { 216 spinlock_t *old_ptl, *new_ptl; 217 struct mm_struct *mm = vma->vm_mm; 218 pmd_t pmd; 219 220 /* 221 * The destination pmd shouldn't be established, free_pgtables() 222 * should have released it. 223 * 224 * However, there's a case during execve() where we use mremap 225 * to move the initial stack, and in that case the target area 226 * may overlap the source area (always moving down). 227 * 228 * If everything is PMD-aligned, that works fine, as moving 229 * each pmd down will clear the source pmd. But if we first 230 * have a few 4kB-only pages that get moved down, and then 231 * hit the "now the rest is PMD-aligned, let's do everything 232 * one pmd at a time", we will still have the old (now empty 233 * of any 4kB pages, but still there) PMD in the page table 234 * tree. 235 * 236 * Warn on it once - because we really should try to figure 237 * out how to do this better - but then say "I won't move 238 * this pmd". 239 * 240 * One alternative might be to just unmap the target pmd at 241 * this point, and verify that it really is empty. We'll see. 242 */ 243 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 244 return false; 245 246 /* 247 * We don't have to worry about the ordering of src and dst 248 * ptlocks because exclusive mmap_lock prevents deadlock. 249 */ 250 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 251 new_ptl = pmd_lockptr(mm, new_pmd); 252 if (new_ptl != old_ptl) 253 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 254 255 /* Clear the pmd */ 256 pmd = *old_pmd; 257 pmd_clear(old_pmd); 258 259 VM_BUG_ON(!pmd_none(*new_pmd)); 260 261 /* Set the new pmd */ 262 set_pmd_at(mm, new_addr, new_pmd, pmd); 263 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 264 if (new_ptl != old_ptl) 265 spin_unlock(new_ptl); 266 spin_unlock(old_ptl); 267 268 return true; 269 } 270 #else 271 static inline bool move_normal_pmd(struct vm_area_struct *vma, 272 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 273 pmd_t *new_pmd) 274 { 275 return false; 276 } 277 #endif 278 279 #ifdef CONFIG_HAVE_MOVE_PUD 280 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 281 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 282 { 283 spinlock_t *old_ptl, *new_ptl; 284 struct mm_struct *mm = vma->vm_mm; 285 pud_t pud; 286 287 /* 288 * The destination pud shouldn't be established, free_pgtables() 289 * should have released it. 290 */ 291 if (WARN_ON_ONCE(!pud_none(*new_pud))) 292 return false; 293 294 /* 295 * We don't have to worry about the ordering of src and dst 296 * ptlocks because exclusive mmap_lock prevents deadlock. 297 */ 298 old_ptl = pud_lock(vma->vm_mm, old_pud); 299 new_ptl = pud_lockptr(mm, new_pud); 300 if (new_ptl != old_ptl) 301 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 302 303 /* Clear the pud */ 304 pud = *old_pud; 305 pud_clear(old_pud); 306 307 VM_BUG_ON(!pud_none(*new_pud)); 308 309 /* Set the new pud */ 310 set_pud_at(mm, new_addr, new_pud, pud); 311 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 312 if (new_ptl != old_ptl) 313 spin_unlock(new_ptl); 314 spin_unlock(old_ptl); 315 316 return true; 317 } 318 #else 319 static inline bool move_normal_pud(struct vm_area_struct *vma, 320 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 321 pud_t *new_pud) 322 { 323 return false; 324 } 325 #endif 326 327 enum pgt_entry { 328 NORMAL_PMD, 329 HPAGE_PMD, 330 NORMAL_PUD, 331 }; 332 333 /* 334 * Returns an extent of the corresponding size for the pgt_entry specified if 335 * valid. Else returns a smaller extent bounded by the end of the source and 336 * destination pgt_entry. 337 */ 338 static __always_inline unsigned long get_extent(enum pgt_entry entry, 339 unsigned long old_addr, unsigned long old_end, 340 unsigned long new_addr) 341 { 342 unsigned long next, extent, mask, size; 343 344 switch (entry) { 345 case HPAGE_PMD: 346 case NORMAL_PMD: 347 mask = PMD_MASK; 348 size = PMD_SIZE; 349 break; 350 case NORMAL_PUD: 351 mask = PUD_MASK; 352 size = PUD_SIZE; 353 break; 354 default: 355 BUILD_BUG(); 356 break; 357 } 358 359 next = (old_addr + size) & mask; 360 /* even if next overflowed, extent below will be ok */ 361 extent = next - old_addr; 362 if (extent > old_end - old_addr) 363 extent = old_end - old_addr; 364 next = (new_addr + size) & mask; 365 if (extent > next - new_addr) 366 extent = next - new_addr; 367 return extent; 368 } 369 370 /* 371 * Attempts to speedup the move by moving entry at the level corresponding to 372 * pgt_entry. Returns true if the move was successful, else false. 373 */ 374 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 375 unsigned long old_addr, unsigned long new_addr, 376 void *old_entry, void *new_entry, bool need_rmap_locks) 377 { 378 bool moved = false; 379 380 /* See comment in move_ptes() */ 381 if (need_rmap_locks) 382 take_rmap_locks(vma); 383 384 switch (entry) { 385 case NORMAL_PMD: 386 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 387 new_entry); 388 break; 389 case NORMAL_PUD: 390 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 391 new_entry); 392 break; 393 case HPAGE_PMD: 394 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 395 move_huge_pmd(vma, old_addr, new_addr, old_entry, 396 new_entry); 397 break; 398 default: 399 WARN_ON_ONCE(1); 400 break; 401 } 402 403 if (need_rmap_locks) 404 drop_rmap_locks(vma); 405 406 return moved; 407 } 408 409 unsigned long move_page_tables(struct vm_area_struct *vma, 410 unsigned long old_addr, struct vm_area_struct *new_vma, 411 unsigned long new_addr, unsigned long len, 412 bool need_rmap_locks) 413 { 414 unsigned long extent, old_end; 415 struct mmu_notifier_range range; 416 pmd_t *old_pmd, *new_pmd; 417 418 old_end = old_addr + len; 419 flush_cache_range(vma, old_addr, old_end); 420 421 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 422 old_addr, old_end); 423 mmu_notifier_invalidate_range_start(&range); 424 425 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 426 cond_resched(); 427 /* 428 * If extent is PUD-sized try to speed up the move by moving at the 429 * PUD level if possible. 430 */ 431 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 432 if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 433 pud_t *old_pud, *new_pud; 434 435 old_pud = get_old_pud(vma->vm_mm, old_addr); 436 if (!old_pud) 437 continue; 438 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 439 if (!new_pud) 440 break; 441 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 442 old_pud, new_pud, need_rmap_locks)) 443 continue; 444 } 445 446 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 447 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 448 if (!old_pmd) 449 continue; 450 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 451 if (!new_pmd) 452 break; 453 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 454 pmd_devmap(*old_pmd)) { 455 if (extent == HPAGE_PMD_SIZE && 456 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 457 old_pmd, new_pmd, need_rmap_locks)) 458 continue; 459 split_huge_pmd(vma, old_pmd, old_addr); 460 if (pmd_trans_unstable(old_pmd)) 461 continue; 462 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 463 extent == PMD_SIZE) { 464 /* 465 * If the extent is PMD-sized, try to speed the move by 466 * moving at the PMD level if possible. 467 */ 468 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 469 old_pmd, new_pmd, need_rmap_locks)) 470 continue; 471 } 472 473 if (pte_alloc(new_vma->vm_mm, new_pmd)) 474 break; 475 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 476 new_pmd, new_addr, need_rmap_locks); 477 } 478 479 mmu_notifier_invalidate_range_end(&range); 480 481 return len + old_addr - old_end; /* how much done */ 482 } 483 484 static unsigned long move_vma(struct vm_area_struct *vma, 485 unsigned long old_addr, unsigned long old_len, 486 unsigned long new_len, unsigned long new_addr, 487 bool *locked, unsigned long flags, 488 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 489 { 490 struct mm_struct *mm = vma->vm_mm; 491 struct vm_area_struct *new_vma; 492 unsigned long vm_flags = vma->vm_flags; 493 unsigned long new_pgoff; 494 unsigned long moved_len; 495 unsigned long excess = 0; 496 unsigned long hiwater_vm; 497 int split = 0; 498 int err = 0; 499 bool need_rmap_locks; 500 501 /* 502 * We'd prefer to avoid failure later on in do_munmap: 503 * which may split one vma into three before unmapping. 504 */ 505 if (mm->map_count >= sysctl_max_map_count - 3) 506 return -ENOMEM; 507 508 if (vma->vm_ops && vma->vm_ops->may_split) { 509 if (vma->vm_start != old_addr) 510 err = vma->vm_ops->may_split(vma, old_addr); 511 if (!err && vma->vm_end != old_addr + old_len) 512 err = vma->vm_ops->may_split(vma, old_addr + old_len); 513 if (err) 514 return err; 515 } 516 517 /* 518 * Advise KSM to break any KSM pages in the area to be moved: 519 * it would be confusing if they were to turn up at the new 520 * location, where they happen to coincide with different KSM 521 * pages recently unmapped. But leave vma->vm_flags as it was, 522 * so KSM can come around to merge on vma and new_vma afterwards. 523 */ 524 err = ksm_madvise(vma, old_addr, old_addr + old_len, 525 MADV_UNMERGEABLE, &vm_flags); 526 if (err) 527 return err; 528 529 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) { 530 if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT)) 531 return -ENOMEM; 532 } 533 534 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 535 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 536 &need_rmap_locks); 537 if (!new_vma) { 538 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) 539 vm_unacct_memory(new_len >> PAGE_SHIFT); 540 return -ENOMEM; 541 } 542 543 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 544 need_rmap_locks); 545 if (moved_len < old_len) { 546 err = -ENOMEM; 547 } else if (vma->vm_ops && vma->vm_ops->mremap) { 548 err = vma->vm_ops->mremap(new_vma); 549 } 550 551 if (unlikely(err)) { 552 /* 553 * On error, move entries back from new area to old, 554 * which will succeed since page tables still there, 555 * and then proceed to unmap new area instead of old. 556 */ 557 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 558 true); 559 vma = new_vma; 560 old_len = new_len; 561 old_addr = new_addr; 562 new_addr = err; 563 } else { 564 mremap_userfaultfd_prep(new_vma, uf); 565 } 566 567 /* Conceal VM_ACCOUNT so old reservation is not undone */ 568 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 569 vma->vm_flags &= ~VM_ACCOUNT; 570 excess = vma->vm_end - vma->vm_start - old_len; 571 if (old_addr > vma->vm_start && 572 old_addr + old_len < vma->vm_end) 573 split = 1; 574 } 575 576 /* 577 * If we failed to move page tables we still do total_vm increment 578 * since do_munmap() will decrement it by old_len == new_len. 579 * 580 * Since total_vm is about to be raised artificially high for a 581 * moment, we need to restore high watermark afterwards: if stats 582 * are taken meanwhile, total_vm and hiwater_vm appear too high. 583 * If this were a serious issue, we'd add a flag to do_munmap(). 584 */ 585 hiwater_vm = mm->hiwater_vm; 586 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 587 588 /* Tell pfnmap has moved from this vma */ 589 if (unlikely(vma->vm_flags & VM_PFNMAP)) 590 untrack_pfn_moved(vma); 591 592 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 593 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 594 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 595 596 /* 597 * anon_vma links of the old vma is no longer needed after its page 598 * table has been moved. 599 */ 600 if (new_vma != vma && vma->vm_start == old_addr && 601 vma->vm_end == (old_addr + old_len)) 602 unlink_anon_vmas(vma); 603 604 /* Because we won't unmap we don't need to touch locked_vm */ 605 return new_addr; 606 } 607 608 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 609 /* OOM: unable to split vma, just get accounts right */ 610 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 611 vm_acct_memory(new_len >> PAGE_SHIFT); 612 excess = 0; 613 } 614 615 if (vm_flags & VM_LOCKED) { 616 mm->locked_vm += new_len >> PAGE_SHIFT; 617 *locked = true; 618 } 619 620 mm->hiwater_vm = hiwater_vm; 621 622 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 623 if (excess) { 624 vma->vm_flags |= VM_ACCOUNT; 625 if (split) 626 vma->vm_next->vm_flags |= VM_ACCOUNT; 627 } 628 629 return new_addr; 630 } 631 632 static struct vm_area_struct *vma_to_resize(unsigned long addr, 633 unsigned long old_len, unsigned long new_len, unsigned long flags, 634 unsigned long *p) 635 { 636 struct mm_struct *mm = current->mm; 637 struct vm_area_struct *vma = find_vma(mm, addr); 638 unsigned long pgoff; 639 640 if (!vma || vma->vm_start > addr) 641 return ERR_PTR(-EFAULT); 642 643 /* 644 * !old_len is a special case where an attempt is made to 'duplicate' 645 * a mapping. This makes no sense for private mappings as it will 646 * instead create a fresh/new mapping unrelated to the original. This 647 * is contrary to the basic idea of mremap which creates new mappings 648 * based on the original. There are no known use cases for this 649 * behavior. As a result, fail such attempts. 650 */ 651 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 652 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 653 return ERR_PTR(-EINVAL); 654 } 655 656 if ((flags & MREMAP_DONTUNMAP) && 657 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 658 return ERR_PTR(-EINVAL); 659 660 if (is_vm_hugetlb_page(vma)) 661 return ERR_PTR(-EINVAL); 662 663 /* We can't remap across vm area boundaries */ 664 if (old_len > vma->vm_end - addr) 665 return ERR_PTR(-EFAULT); 666 667 if (new_len == old_len) 668 return vma; 669 670 /* Need to be careful about a growing mapping */ 671 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 672 pgoff += vma->vm_pgoff; 673 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 674 return ERR_PTR(-EINVAL); 675 676 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 677 return ERR_PTR(-EFAULT); 678 679 if (vma->vm_flags & VM_LOCKED) { 680 unsigned long locked, lock_limit; 681 locked = mm->locked_vm << PAGE_SHIFT; 682 lock_limit = rlimit(RLIMIT_MEMLOCK); 683 locked += new_len - old_len; 684 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 685 return ERR_PTR(-EAGAIN); 686 } 687 688 if (!may_expand_vm(mm, vma->vm_flags, 689 (new_len - old_len) >> PAGE_SHIFT)) 690 return ERR_PTR(-ENOMEM); 691 692 if (vma->vm_flags & VM_ACCOUNT) { 693 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT; 694 if (security_vm_enough_memory_mm(mm, charged)) 695 return ERR_PTR(-ENOMEM); 696 *p = charged; 697 } 698 699 return vma; 700 } 701 702 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 703 unsigned long new_addr, unsigned long new_len, bool *locked, 704 unsigned long flags, struct vm_userfaultfd_ctx *uf, 705 struct list_head *uf_unmap_early, 706 struct list_head *uf_unmap) 707 { 708 struct mm_struct *mm = current->mm; 709 struct vm_area_struct *vma; 710 unsigned long ret = -EINVAL; 711 unsigned long charged = 0; 712 unsigned long map_flags = 0; 713 714 if (offset_in_page(new_addr)) 715 goto out; 716 717 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 718 goto out; 719 720 /* Ensure the old/new locations do not overlap */ 721 if (addr + old_len > new_addr && new_addr + new_len > addr) 722 goto out; 723 724 /* 725 * move_vma() need us to stay 4 maps below the threshold, otherwise 726 * it will bail out at the very beginning. 727 * That is a problem if we have already unmaped the regions here 728 * (new_addr, and old_addr), because userspace will not know the 729 * state of the vma's after it gets -ENOMEM. 730 * So, to avoid such scenario we can pre-compute if the whole 731 * operation has high chances to success map-wise. 732 * Worst-scenario case is when both vma's (new_addr and old_addr) get 733 * split in 3 before unmaping it. 734 * That means 2 more maps (1 for each) to the ones we already hold. 735 * Check whether current map count plus 2 still leads us to 4 maps below 736 * the threshold, otherwise return -ENOMEM here to be more safe. 737 */ 738 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 739 return -ENOMEM; 740 741 if (flags & MREMAP_FIXED) { 742 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 743 if (ret) 744 goto out; 745 } 746 747 if (old_len >= new_len) { 748 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 749 if (ret && old_len != new_len) 750 goto out; 751 old_len = new_len; 752 } 753 754 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 755 if (IS_ERR(vma)) { 756 ret = PTR_ERR(vma); 757 goto out; 758 } 759 760 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 761 if (flags & MREMAP_DONTUNMAP && 762 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 763 ret = -ENOMEM; 764 goto out; 765 } 766 767 if (flags & MREMAP_FIXED) 768 map_flags |= MAP_FIXED; 769 770 if (vma->vm_flags & VM_MAYSHARE) 771 map_flags |= MAP_SHARED; 772 773 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 774 ((addr - vma->vm_start) >> PAGE_SHIFT), 775 map_flags); 776 if (IS_ERR_VALUE(ret)) 777 goto out1; 778 779 /* We got a new mapping */ 780 if (!(flags & MREMAP_FIXED)) 781 new_addr = ret; 782 783 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 784 uf_unmap); 785 786 if (!(offset_in_page(ret))) 787 goto out; 788 789 out1: 790 vm_unacct_memory(charged); 791 792 out: 793 return ret; 794 } 795 796 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 797 { 798 unsigned long end = vma->vm_end + delta; 799 if (end < vma->vm_end) /* overflow */ 800 return 0; 801 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */ 802 return 0; 803 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 804 0, MAP_FIXED) & ~PAGE_MASK) 805 return 0; 806 return 1; 807 } 808 809 /* 810 * Expand (or shrink) an existing mapping, potentially moving it at the 811 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 812 * 813 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 814 * This option implies MREMAP_MAYMOVE. 815 */ 816 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 817 unsigned long, new_len, unsigned long, flags, 818 unsigned long, new_addr) 819 { 820 struct mm_struct *mm = current->mm; 821 struct vm_area_struct *vma; 822 unsigned long ret = -EINVAL; 823 unsigned long charged = 0; 824 bool locked = false; 825 bool downgraded = false; 826 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 827 LIST_HEAD(uf_unmap_early); 828 LIST_HEAD(uf_unmap); 829 830 /* 831 * There is a deliberate asymmetry here: we strip the pointer tag 832 * from the old address but leave the new address alone. This is 833 * for consistency with mmap(), where we prevent the creation of 834 * aliasing mappings in userspace by leaving the tag bits of the 835 * mapping address intact. A non-zero tag will cause the subsequent 836 * range checks to reject the address as invalid. 837 * 838 * See Documentation/arm64/tagged-address-abi.rst for more information. 839 */ 840 addr = untagged_addr(addr); 841 842 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 843 return ret; 844 845 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 846 return ret; 847 848 /* 849 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 850 * in the process. 851 */ 852 if (flags & MREMAP_DONTUNMAP && 853 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 854 return ret; 855 856 857 if (offset_in_page(addr)) 858 return ret; 859 860 old_len = PAGE_ALIGN(old_len); 861 new_len = PAGE_ALIGN(new_len); 862 863 /* 864 * We allow a zero old-len as a special case 865 * for DOS-emu "duplicate shm area" thing. But 866 * a zero new-len is nonsensical. 867 */ 868 if (!new_len) 869 return ret; 870 871 if (mmap_write_lock_killable(current->mm)) 872 return -EINTR; 873 874 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 875 ret = mremap_to(addr, old_len, new_addr, new_len, 876 &locked, flags, &uf, &uf_unmap_early, 877 &uf_unmap); 878 goto out; 879 } 880 881 /* 882 * Always allow a shrinking remap: that just unmaps 883 * the unnecessary pages.. 884 * __do_munmap does all the needed commit accounting, and 885 * downgrades mmap_lock to read if so directed. 886 */ 887 if (old_len >= new_len) { 888 int retval; 889 890 retval = __do_munmap(mm, addr+new_len, old_len - new_len, 891 &uf_unmap, true); 892 if (retval < 0 && old_len != new_len) { 893 ret = retval; 894 goto out; 895 /* Returning 1 indicates mmap_lock is downgraded to read. */ 896 } else if (retval == 1) 897 downgraded = true; 898 ret = addr; 899 goto out; 900 } 901 902 /* 903 * Ok, we need to grow.. 904 */ 905 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 906 if (IS_ERR(vma)) { 907 ret = PTR_ERR(vma); 908 goto out; 909 } 910 911 /* old_len exactly to the end of the area.. 912 */ 913 if (old_len == vma->vm_end - addr) { 914 /* can we just expand the current mapping? */ 915 if (vma_expandable(vma, new_len - old_len)) { 916 int pages = (new_len - old_len) >> PAGE_SHIFT; 917 918 if (vma_adjust(vma, vma->vm_start, addr + new_len, 919 vma->vm_pgoff, NULL)) { 920 ret = -ENOMEM; 921 goto out; 922 } 923 924 vm_stat_account(mm, vma->vm_flags, pages); 925 if (vma->vm_flags & VM_LOCKED) { 926 mm->locked_vm += pages; 927 locked = true; 928 new_addr = addr; 929 } 930 ret = addr; 931 goto out; 932 } 933 } 934 935 /* 936 * We weren't able to just expand or shrink the area, 937 * we need to create a new one and move it.. 938 */ 939 ret = -ENOMEM; 940 if (flags & MREMAP_MAYMOVE) { 941 unsigned long map_flags = 0; 942 if (vma->vm_flags & VM_MAYSHARE) 943 map_flags |= MAP_SHARED; 944 945 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 946 vma->vm_pgoff + 947 ((addr - vma->vm_start) >> PAGE_SHIFT), 948 map_flags); 949 if (IS_ERR_VALUE(new_addr)) { 950 ret = new_addr; 951 goto out; 952 } 953 954 ret = move_vma(vma, addr, old_len, new_len, new_addr, 955 &locked, flags, &uf, &uf_unmap); 956 } 957 out: 958 if (offset_in_page(ret)) { 959 vm_unacct_memory(charged); 960 locked = false; 961 } 962 if (downgraded) 963 mmap_read_unlock(current->mm); 964 else 965 mmap_write_unlock(current->mm); 966 if (locked && new_len > old_len) 967 mm_populate(new_addr + old_len, new_len - old_len); 968 userfaultfd_unmap_complete(mm, &uf_unmap_early); 969 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 970 userfaultfd_unmap_complete(mm, &uf_unmap); 971 return ret; 972 } 973