1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/hugetlb.h> 13 #include <linux/shm.h> 14 #include <linux/ksm.h> 15 #include <linux/mman.h> 16 #include <linux/swap.h> 17 #include <linux/capability.h> 18 #include <linux/fs.h> 19 #include <linux/swapops.h> 20 #include <linux/highmem.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/mmu_notifier.h> 24 #include <linux/uaccess.h> 25 #include <linux/mm-arch-hooks.h> 26 #include <linux/userfaultfd_k.h> 27 28 #include <asm/cacheflush.h> 29 #include <asm/tlbflush.h> 30 31 #include "internal.h" 32 33 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 p4d_t *p4d; 37 pud_t *pud; 38 pmd_t *pmd; 39 40 pgd = pgd_offset(mm, addr); 41 if (pgd_none_or_clear_bad(pgd)) 42 return NULL; 43 44 p4d = p4d_offset(pgd, addr); 45 if (p4d_none_or_clear_bad(p4d)) 46 return NULL; 47 48 pud = pud_offset(p4d, addr); 49 if (pud_none_or_clear_bad(pud)) 50 return NULL; 51 52 pmd = pmd_offset(pud, addr); 53 if (pmd_none(*pmd)) 54 return NULL; 55 56 return pmd; 57 } 58 59 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 60 unsigned long addr) 61 { 62 pgd_t *pgd; 63 p4d_t *p4d; 64 pud_t *pud; 65 pmd_t *pmd; 66 67 pgd = pgd_offset(mm, addr); 68 p4d = p4d_alloc(mm, pgd, addr); 69 if (!p4d) 70 return NULL; 71 pud = pud_alloc(mm, p4d, addr); 72 if (!pud) 73 return NULL; 74 75 pmd = pmd_alloc(mm, pud, addr); 76 if (!pmd) 77 return NULL; 78 79 VM_BUG_ON(pmd_trans_huge(*pmd)); 80 81 return pmd; 82 } 83 84 static void take_rmap_locks(struct vm_area_struct *vma) 85 { 86 if (vma->vm_file) 87 i_mmap_lock_write(vma->vm_file->f_mapping); 88 if (vma->anon_vma) 89 anon_vma_lock_write(vma->anon_vma); 90 } 91 92 static void drop_rmap_locks(struct vm_area_struct *vma) 93 { 94 if (vma->anon_vma) 95 anon_vma_unlock_write(vma->anon_vma); 96 if (vma->vm_file) 97 i_mmap_unlock_write(vma->vm_file->f_mapping); 98 } 99 100 static pte_t move_soft_dirty_pte(pte_t pte) 101 { 102 /* 103 * Set soft dirty bit so we can notice 104 * in userspace the ptes were moved. 105 */ 106 #ifdef CONFIG_MEM_SOFT_DIRTY 107 if (pte_present(pte)) 108 pte = pte_mksoft_dirty(pte); 109 else if (is_swap_pte(pte)) 110 pte = pte_swp_mksoft_dirty(pte); 111 #endif 112 return pte; 113 } 114 115 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 116 unsigned long old_addr, unsigned long old_end, 117 struct vm_area_struct *new_vma, pmd_t *new_pmd, 118 unsigned long new_addr, bool need_rmap_locks) 119 { 120 struct mm_struct *mm = vma->vm_mm; 121 pte_t *old_pte, *new_pte, pte; 122 spinlock_t *old_ptl, *new_ptl; 123 bool force_flush = false; 124 unsigned long len = old_end - old_addr; 125 126 /* 127 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 128 * locks to ensure that rmap will always observe either the old or the 129 * new ptes. This is the easiest way to avoid races with 130 * truncate_pagecache(), page migration, etc... 131 * 132 * When need_rmap_locks is false, we use other ways to avoid 133 * such races: 134 * 135 * - During exec() shift_arg_pages(), we use a specially tagged vma 136 * which rmap call sites look for using vma_is_temporary_stack(). 137 * 138 * - During mremap(), new_vma is often known to be placed after vma 139 * in rmap traversal order. This ensures rmap will always observe 140 * either the old pte, or the new pte, or both (the page table locks 141 * serialize access to individual ptes, but only rmap traversal 142 * order guarantees that we won't miss both the old and new ptes). 143 */ 144 if (need_rmap_locks) 145 take_rmap_locks(vma); 146 147 /* 148 * We don't have to worry about the ordering of src and dst 149 * pte locks because exclusive mmap_lock prevents deadlock. 150 */ 151 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 152 new_pte = pte_offset_map(new_pmd, new_addr); 153 new_ptl = pte_lockptr(mm, new_pmd); 154 if (new_ptl != old_ptl) 155 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 156 flush_tlb_batched_pending(vma->vm_mm); 157 arch_enter_lazy_mmu_mode(); 158 159 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 160 new_pte++, new_addr += PAGE_SIZE) { 161 if (pte_none(*old_pte)) 162 continue; 163 164 pte = ptep_get_and_clear(mm, old_addr, old_pte); 165 /* 166 * If we are remapping a valid PTE, make sure 167 * to flush TLB before we drop the PTL for the 168 * PTE. 169 * 170 * NOTE! Both old and new PTL matter: the old one 171 * for racing with page_mkclean(), the new one to 172 * make sure the physical page stays valid until 173 * the TLB entry for the old mapping has been 174 * flushed. 175 */ 176 if (pte_present(pte)) 177 force_flush = true; 178 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); 179 pte = move_soft_dirty_pte(pte); 180 set_pte_at(mm, new_addr, new_pte, pte); 181 } 182 183 arch_leave_lazy_mmu_mode(); 184 if (force_flush) 185 flush_tlb_range(vma, old_end - len, old_end); 186 if (new_ptl != old_ptl) 187 spin_unlock(new_ptl); 188 pte_unmap(new_pte - 1); 189 pte_unmap_unlock(old_pte - 1, old_ptl); 190 if (need_rmap_locks) 191 drop_rmap_locks(vma); 192 } 193 194 #ifdef CONFIG_HAVE_MOVE_PMD 195 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 196 unsigned long new_addr, unsigned long old_end, 197 pmd_t *old_pmd, pmd_t *new_pmd) 198 { 199 spinlock_t *old_ptl, *new_ptl; 200 struct mm_struct *mm = vma->vm_mm; 201 pmd_t pmd; 202 203 if ((old_addr & ~PMD_MASK) || (new_addr & ~PMD_MASK) 204 || old_end - old_addr < PMD_SIZE) 205 return false; 206 207 /* 208 * The destination pmd shouldn't be established, free_pgtables() 209 * should have released it. 210 * 211 * However, there's a case during execve() where we use mremap 212 * to move the initial stack, and in that case the target area 213 * may overlap the source area (always moving down). 214 * 215 * If everything is PMD-aligned, that works fine, as moving 216 * each pmd down will clear the source pmd. But if we first 217 * have a few 4kB-only pages that get moved down, and then 218 * hit the "now the rest is PMD-aligned, let's do everything 219 * one pmd at a time", we will still have the old (now empty 220 * of any 4kB pages, but still there) PMD in the page table 221 * tree. 222 * 223 * Warn on it once - because we really should try to figure 224 * out how to do this better - but then say "I won't move 225 * this pmd". 226 * 227 * One alternative might be to just unmap the target pmd at 228 * this point, and verify that it really is empty. We'll see. 229 */ 230 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 231 return false; 232 233 /* 234 * We don't have to worry about the ordering of src and dst 235 * ptlocks because exclusive mmap_lock prevents deadlock. 236 */ 237 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 238 new_ptl = pmd_lockptr(mm, new_pmd); 239 if (new_ptl != old_ptl) 240 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 241 242 /* Clear the pmd */ 243 pmd = *old_pmd; 244 pmd_clear(old_pmd); 245 246 VM_BUG_ON(!pmd_none(*new_pmd)); 247 248 /* Set the new pmd */ 249 set_pmd_at(mm, new_addr, new_pmd, pmd); 250 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 251 if (new_ptl != old_ptl) 252 spin_unlock(new_ptl); 253 spin_unlock(old_ptl); 254 255 return true; 256 } 257 #endif 258 259 unsigned long move_page_tables(struct vm_area_struct *vma, 260 unsigned long old_addr, struct vm_area_struct *new_vma, 261 unsigned long new_addr, unsigned long len, 262 bool need_rmap_locks) 263 { 264 unsigned long extent, next, old_end; 265 struct mmu_notifier_range range; 266 pmd_t *old_pmd, *new_pmd; 267 268 old_end = old_addr + len; 269 flush_cache_range(vma, old_addr, old_end); 270 271 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 272 old_addr, old_end); 273 mmu_notifier_invalidate_range_start(&range); 274 275 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 276 cond_resched(); 277 next = (old_addr + PMD_SIZE) & PMD_MASK; 278 /* even if next overflowed, extent below will be ok */ 279 extent = next - old_addr; 280 if (extent > old_end - old_addr) 281 extent = old_end - old_addr; 282 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 283 if (!old_pmd) 284 continue; 285 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 286 if (!new_pmd) 287 break; 288 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || pmd_devmap(*old_pmd)) { 289 if (extent == HPAGE_PMD_SIZE) { 290 bool moved; 291 /* See comment in move_ptes() */ 292 if (need_rmap_locks) 293 take_rmap_locks(vma); 294 moved = move_huge_pmd(vma, old_addr, new_addr, 295 old_end, old_pmd, new_pmd); 296 if (need_rmap_locks) 297 drop_rmap_locks(vma); 298 if (moved) 299 continue; 300 } 301 split_huge_pmd(vma, old_pmd, old_addr); 302 if (pmd_trans_unstable(old_pmd)) 303 continue; 304 } else if (extent == PMD_SIZE) { 305 #ifdef CONFIG_HAVE_MOVE_PMD 306 /* 307 * If the extent is PMD-sized, try to speed the move by 308 * moving at the PMD level if possible. 309 */ 310 bool moved; 311 312 if (need_rmap_locks) 313 take_rmap_locks(vma); 314 moved = move_normal_pmd(vma, old_addr, new_addr, 315 old_end, old_pmd, new_pmd); 316 if (need_rmap_locks) 317 drop_rmap_locks(vma); 318 if (moved) 319 continue; 320 #endif 321 } 322 323 if (pte_alloc(new_vma->vm_mm, new_pmd)) 324 break; 325 next = (new_addr + PMD_SIZE) & PMD_MASK; 326 if (extent > next - new_addr) 327 extent = next - new_addr; 328 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, 329 new_pmd, new_addr, need_rmap_locks); 330 } 331 332 mmu_notifier_invalidate_range_end(&range); 333 334 return len + old_addr - old_end; /* how much done */ 335 } 336 337 static unsigned long move_vma(struct vm_area_struct *vma, 338 unsigned long old_addr, unsigned long old_len, 339 unsigned long new_len, unsigned long new_addr, 340 bool *locked, unsigned long flags, 341 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 342 { 343 struct mm_struct *mm = vma->vm_mm; 344 struct vm_area_struct *new_vma; 345 unsigned long vm_flags = vma->vm_flags; 346 unsigned long new_pgoff; 347 unsigned long moved_len; 348 unsigned long excess = 0; 349 unsigned long hiwater_vm; 350 int split = 0; 351 int err; 352 bool need_rmap_locks; 353 354 /* 355 * We'd prefer to avoid failure later on in do_munmap: 356 * which may split one vma into three before unmapping. 357 */ 358 if (mm->map_count >= sysctl_max_map_count - 3) 359 return -ENOMEM; 360 361 /* 362 * Advise KSM to break any KSM pages in the area to be moved: 363 * it would be confusing if they were to turn up at the new 364 * location, where they happen to coincide with different KSM 365 * pages recently unmapped. But leave vma->vm_flags as it was, 366 * so KSM can come around to merge on vma and new_vma afterwards. 367 */ 368 err = ksm_madvise(vma, old_addr, old_addr + old_len, 369 MADV_UNMERGEABLE, &vm_flags); 370 if (err) 371 return err; 372 373 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 374 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 375 &need_rmap_locks); 376 if (!new_vma) 377 return -ENOMEM; 378 379 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 380 need_rmap_locks); 381 if (moved_len < old_len) { 382 err = -ENOMEM; 383 } else if (vma->vm_ops && vma->vm_ops->mremap) { 384 err = vma->vm_ops->mremap(new_vma); 385 } 386 387 if (unlikely(err)) { 388 /* 389 * On error, move entries back from new area to old, 390 * which will succeed since page tables still there, 391 * and then proceed to unmap new area instead of old. 392 */ 393 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 394 true); 395 vma = new_vma; 396 old_len = new_len; 397 old_addr = new_addr; 398 new_addr = err; 399 } else { 400 mremap_userfaultfd_prep(new_vma, uf); 401 arch_remap(mm, old_addr, old_addr + old_len, 402 new_addr, new_addr + new_len); 403 } 404 405 /* Conceal VM_ACCOUNT so old reservation is not undone */ 406 if (vm_flags & VM_ACCOUNT) { 407 vma->vm_flags &= ~VM_ACCOUNT; 408 excess = vma->vm_end - vma->vm_start - old_len; 409 if (old_addr > vma->vm_start && 410 old_addr + old_len < vma->vm_end) 411 split = 1; 412 } 413 414 /* 415 * If we failed to move page tables we still do total_vm increment 416 * since do_munmap() will decrement it by old_len == new_len. 417 * 418 * Since total_vm is about to be raised artificially high for a 419 * moment, we need to restore high watermark afterwards: if stats 420 * are taken meanwhile, total_vm and hiwater_vm appear too high. 421 * If this were a serious issue, we'd add a flag to do_munmap(). 422 */ 423 hiwater_vm = mm->hiwater_vm; 424 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 425 426 /* Tell pfnmap has moved from this vma */ 427 if (unlikely(vma->vm_flags & VM_PFNMAP)) 428 untrack_pfn_moved(vma); 429 430 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 431 if (vm_flags & VM_ACCOUNT) { 432 /* Always put back VM_ACCOUNT since we won't unmap */ 433 vma->vm_flags |= VM_ACCOUNT; 434 435 vm_acct_memory(new_len >> PAGE_SHIFT); 436 } 437 438 /* 439 * VMAs can actually be merged back together in copy_vma 440 * calling merge_vma. This can happen with anonymous vmas 441 * which have not yet been faulted, so if we were to consider 442 * this VMA split we'll end up adding VM_ACCOUNT on the 443 * next VMA, which is completely unrelated if this VMA 444 * was re-merged. 445 */ 446 if (split && new_vma == vma) 447 split = 0; 448 449 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 450 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 451 452 /* Because we won't unmap we don't need to touch locked_vm */ 453 goto out; 454 } 455 456 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) { 457 /* OOM: unable to split vma, just get accounts right */ 458 vm_unacct_memory(excess >> PAGE_SHIFT); 459 excess = 0; 460 } 461 462 if (vm_flags & VM_LOCKED) { 463 mm->locked_vm += new_len >> PAGE_SHIFT; 464 *locked = true; 465 } 466 out: 467 mm->hiwater_vm = hiwater_vm; 468 469 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 470 if (excess) { 471 vma->vm_flags |= VM_ACCOUNT; 472 if (split) 473 vma->vm_next->vm_flags |= VM_ACCOUNT; 474 } 475 476 return new_addr; 477 } 478 479 static struct vm_area_struct *vma_to_resize(unsigned long addr, 480 unsigned long old_len, unsigned long new_len, unsigned long flags, 481 unsigned long *p) 482 { 483 struct mm_struct *mm = current->mm; 484 struct vm_area_struct *vma = find_vma(mm, addr); 485 unsigned long pgoff; 486 487 if (!vma || vma->vm_start > addr) 488 return ERR_PTR(-EFAULT); 489 490 /* 491 * !old_len is a special case where an attempt is made to 'duplicate' 492 * a mapping. This makes no sense for private mappings as it will 493 * instead create a fresh/new mapping unrelated to the original. This 494 * is contrary to the basic idea of mremap which creates new mappings 495 * based on the original. There are no known use cases for this 496 * behavior. As a result, fail such attempts. 497 */ 498 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 499 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 500 return ERR_PTR(-EINVAL); 501 } 502 503 if (flags & MREMAP_DONTUNMAP && (!vma_is_anonymous(vma) || 504 vma->vm_flags & VM_SHARED)) 505 return ERR_PTR(-EINVAL); 506 507 if (is_vm_hugetlb_page(vma)) 508 return ERR_PTR(-EINVAL); 509 510 /* We can't remap across vm area boundaries */ 511 if (old_len > vma->vm_end - addr) 512 return ERR_PTR(-EFAULT); 513 514 if (new_len == old_len) 515 return vma; 516 517 /* Need to be careful about a growing mapping */ 518 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 519 pgoff += vma->vm_pgoff; 520 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 521 return ERR_PTR(-EINVAL); 522 523 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 524 return ERR_PTR(-EFAULT); 525 526 if (vma->vm_flags & VM_LOCKED) { 527 unsigned long locked, lock_limit; 528 locked = mm->locked_vm << PAGE_SHIFT; 529 lock_limit = rlimit(RLIMIT_MEMLOCK); 530 locked += new_len - old_len; 531 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 532 return ERR_PTR(-EAGAIN); 533 } 534 535 if (!may_expand_vm(mm, vma->vm_flags, 536 (new_len - old_len) >> PAGE_SHIFT)) 537 return ERR_PTR(-ENOMEM); 538 539 if (vma->vm_flags & VM_ACCOUNT) { 540 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT; 541 if (security_vm_enough_memory_mm(mm, charged)) 542 return ERR_PTR(-ENOMEM); 543 *p = charged; 544 } 545 546 return vma; 547 } 548 549 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 550 unsigned long new_addr, unsigned long new_len, bool *locked, 551 unsigned long flags, struct vm_userfaultfd_ctx *uf, 552 struct list_head *uf_unmap_early, 553 struct list_head *uf_unmap) 554 { 555 struct mm_struct *mm = current->mm; 556 struct vm_area_struct *vma; 557 unsigned long ret = -EINVAL; 558 unsigned long charged = 0; 559 unsigned long map_flags = 0; 560 561 if (offset_in_page(new_addr)) 562 goto out; 563 564 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 565 goto out; 566 567 /* Ensure the old/new locations do not overlap */ 568 if (addr + old_len > new_addr && new_addr + new_len > addr) 569 goto out; 570 571 /* 572 * move_vma() need us to stay 4 maps below the threshold, otherwise 573 * it will bail out at the very beginning. 574 * That is a problem if we have already unmaped the regions here 575 * (new_addr, and old_addr), because userspace will not know the 576 * state of the vma's after it gets -ENOMEM. 577 * So, to avoid such scenario we can pre-compute if the whole 578 * operation has high chances to success map-wise. 579 * Worst-scenario case is when both vma's (new_addr and old_addr) get 580 * split in 3 before unmaping it. 581 * That means 2 more maps (1 for each) to the ones we already hold. 582 * Check whether current map count plus 2 still leads us to 4 maps below 583 * the threshold, otherwise return -ENOMEM here to be more safe. 584 */ 585 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 586 return -ENOMEM; 587 588 if (flags & MREMAP_FIXED) { 589 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 590 if (ret) 591 goto out; 592 } 593 594 if (old_len >= new_len) { 595 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 596 if (ret && old_len != new_len) 597 goto out; 598 old_len = new_len; 599 } 600 601 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 602 if (IS_ERR(vma)) { 603 ret = PTR_ERR(vma); 604 goto out; 605 } 606 607 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 608 if (flags & MREMAP_DONTUNMAP && 609 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 610 ret = -ENOMEM; 611 goto out; 612 } 613 614 if (flags & MREMAP_FIXED) 615 map_flags |= MAP_FIXED; 616 617 if (vma->vm_flags & VM_MAYSHARE) 618 map_flags |= MAP_SHARED; 619 620 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 621 ((addr - vma->vm_start) >> PAGE_SHIFT), 622 map_flags); 623 if (IS_ERR_VALUE(ret)) 624 goto out1; 625 626 /* We got a new mapping */ 627 if (!(flags & MREMAP_FIXED)) 628 new_addr = ret; 629 630 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 631 uf_unmap); 632 633 if (!(offset_in_page(ret))) 634 goto out; 635 636 out1: 637 vm_unacct_memory(charged); 638 639 out: 640 return ret; 641 } 642 643 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 644 { 645 unsigned long end = vma->vm_end + delta; 646 if (end < vma->vm_end) /* overflow */ 647 return 0; 648 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */ 649 return 0; 650 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 651 0, MAP_FIXED) & ~PAGE_MASK) 652 return 0; 653 return 1; 654 } 655 656 /* 657 * Expand (or shrink) an existing mapping, potentially moving it at the 658 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 659 * 660 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 661 * This option implies MREMAP_MAYMOVE. 662 */ 663 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 664 unsigned long, new_len, unsigned long, flags, 665 unsigned long, new_addr) 666 { 667 struct mm_struct *mm = current->mm; 668 struct vm_area_struct *vma; 669 unsigned long ret = -EINVAL; 670 unsigned long charged = 0; 671 bool locked = false; 672 bool downgraded = false; 673 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 674 LIST_HEAD(uf_unmap_early); 675 LIST_HEAD(uf_unmap); 676 677 /* 678 * There is a deliberate asymmetry here: we strip the pointer tag 679 * from the old address but leave the new address alone. This is 680 * for consistency with mmap(), where we prevent the creation of 681 * aliasing mappings in userspace by leaving the tag bits of the 682 * mapping address intact. A non-zero tag will cause the subsequent 683 * range checks to reject the address as invalid. 684 * 685 * See Documentation/arm64/tagged-address-abi.rst for more information. 686 */ 687 addr = untagged_addr(addr); 688 689 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 690 return ret; 691 692 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 693 return ret; 694 695 /* 696 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 697 * in the process. 698 */ 699 if (flags & MREMAP_DONTUNMAP && 700 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 701 return ret; 702 703 704 if (offset_in_page(addr)) 705 return ret; 706 707 old_len = PAGE_ALIGN(old_len); 708 new_len = PAGE_ALIGN(new_len); 709 710 /* 711 * We allow a zero old-len as a special case 712 * for DOS-emu "duplicate shm area" thing. But 713 * a zero new-len is nonsensical. 714 */ 715 if (!new_len) 716 return ret; 717 718 if (mmap_write_lock_killable(current->mm)) 719 return -EINTR; 720 721 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 722 ret = mremap_to(addr, old_len, new_addr, new_len, 723 &locked, flags, &uf, &uf_unmap_early, 724 &uf_unmap); 725 goto out; 726 } 727 728 /* 729 * Always allow a shrinking remap: that just unmaps 730 * the unnecessary pages.. 731 * __do_munmap does all the needed commit accounting, and 732 * downgrades mmap_lock to read if so directed. 733 */ 734 if (old_len >= new_len) { 735 int retval; 736 737 retval = __do_munmap(mm, addr+new_len, old_len - new_len, 738 &uf_unmap, true); 739 if (retval < 0 && old_len != new_len) { 740 ret = retval; 741 goto out; 742 /* Returning 1 indicates mmap_lock is downgraded to read. */ 743 } else if (retval == 1) 744 downgraded = true; 745 ret = addr; 746 goto out; 747 } 748 749 /* 750 * Ok, we need to grow.. 751 */ 752 vma = vma_to_resize(addr, old_len, new_len, flags, &charged); 753 if (IS_ERR(vma)) { 754 ret = PTR_ERR(vma); 755 goto out; 756 } 757 758 /* old_len exactly to the end of the area.. 759 */ 760 if (old_len == vma->vm_end - addr) { 761 /* can we just expand the current mapping? */ 762 if (vma_expandable(vma, new_len - old_len)) { 763 int pages = (new_len - old_len) >> PAGE_SHIFT; 764 765 if (vma_adjust(vma, vma->vm_start, addr + new_len, 766 vma->vm_pgoff, NULL)) { 767 ret = -ENOMEM; 768 goto out; 769 } 770 771 vm_stat_account(mm, vma->vm_flags, pages); 772 if (vma->vm_flags & VM_LOCKED) { 773 mm->locked_vm += pages; 774 locked = true; 775 new_addr = addr; 776 } 777 ret = addr; 778 goto out; 779 } 780 } 781 782 /* 783 * We weren't able to just expand or shrink the area, 784 * we need to create a new one and move it.. 785 */ 786 ret = -ENOMEM; 787 if (flags & MREMAP_MAYMOVE) { 788 unsigned long map_flags = 0; 789 if (vma->vm_flags & VM_MAYSHARE) 790 map_flags |= MAP_SHARED; 791 792 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 793 vma->vm_pgoff + 794 ((addr - vma->vm_start) >> PAGE_SHIFT), 795 map_flags); 796 if (IS_ERR_VALUE(new_addr)) { 797 ret = new_addr; 798 goto out; 799 } 800 801 ret = move_vma(vma, addr, old_len, new_len, new_addr, 802 &locked, flags, &uf, &uf_unmap); 803 } 804 out: 805 if (offset_in_page(ret)) { 806 vm_unacct_memory(charged); 807 locked = false; 808 } 809 if (downgraded) 810 mmap_read_unlock(current->mm); 811 else 812 mmap_write_unlock(current->mm); 813 if (locked && new_len > old_len) 814 mm_populate(new_addr + old_len, new_len - old_len); 815 userfaultfd_unmap_complete(mm, &uf_unmap_early); 816 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 817 userfaultfd_unmap_complete(mm, &uf_unmap); 818 return ret; 819 } 820