1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <asm/pgtable.h> 31 #include <asm/cacheflush.h> 32 #include <asm/mmu_context.h> 33 #include <asm/tlbflush.h> 34 35 #include "internal.h" 36 37 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 38 unsigned long addr, unsigned long end, pgprot_t newprot, 39 int dirty_accountable, int prot_numa) 40 { 41 struct mm_struct *mm = vma->vm_mm; 42 pte_t *pte, oldpte; 43 spinlock_t *ptl; 44 unsigned long pages = 0; 45 int target_node = NUMA_NO_NODE; 46 47 /* 48 * Can be called with only the mmap_sem for reading by 49 * prot_numa so we must check the pmd isn't constantly 50 * changing from under us from pmd_none to pmd_trans_huge 51 * and/or the other way around. 52 */ 53 if (pmd_trans_unstable(pmd)) 54 return 0; 55 56 /* 57 * The pmd points to a regular pte so the pmd can't change 58 * from under us even if the mmap_sem is only hold for 59 * reading. 60 */ 61 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 62 63 /* Get target node for single threaded private VMAs */ 64 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 65 atomic_read(&vma->vm_mm->mm_users) == 1) 66 target_node = numa_node_id(); 67 68 flush_tlb_batched_pending(vma->vm_mm); 69 arch_enter_lazy_mmu_mode(); 70 do { 71 oldpte = *pte; 72 if (pte_present(oldpte)) { 73 pte_t ptent; 74 bool preserve_write = prot_numa && pte_write(oldpte); 75 76 /* 77 * Avoid trapping faults against the zero or KSM 78 * pages. See similar comment in change_huge_pmd. 79 */ 80 if (prot_numa) { 81 struct page *page; 82 83 page = vm_normal_page(vma, addr, oldpte); 84 if (!page || PageKsm(page)) 85 continue; 86 87 /* Also skip shared copy-on-write pages */ 88 if (is_cow_mapping(vma->vm_flags) && 89 page_mapcount(page) != 1) 90 continue; 91 92 /* Avoid TLB flush if possible */ 93 if (pte_protnone(oldpte)) 94 continue; 95 96 /* 97 * Don't mess with PTEs if page is already on the node 98 * a single-threaded process is running on. 99 */ 100 if (target_node == page_to_nid(page)) 101 continue; 102 } 103 104 ptent = ptep_modify_prot_start(mm, addr, pte); 105 ptent = pte_modify(ptent, newprot); 106 if (preserve_write) 107 ptent = pte_mk_savedwrite(ptent); 108 109 /* Avoid taking write faults for known dirty pages */ 110 if (dirty_accountable && pte_dirty(ptent) && 111 (pte_soft_dirty(ptent) || 112 !(vma->vm_flags & VM_SOFTDIRTY))) { 113 ptent = pte_mkwrite(ptent); 114 } 115 ptep_modify_prot_commit(mm, addr, pte, ptent); 116 pages++; 117 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 118 swp_entry_t entry = pte_to_swp_entry(oldpte); 119 120 if (is_write_migration_entry(entry)) { 121 pte_t newpte; 122 /* 123 * A protection check is difficult so 124 * just be safe and disable write 125 */ 126 make_migration_entry_read(&entry); 127 newpte = swp_entry_to_pte(entry); 128 if (pte_swp_soft_dirty(oldpte)) 129 newpte = pte_swp_mksoft_dirty(newpte); 130 set_pte_at(mm, addr, pte, newpte); 131 132 pages++; 133 } 134 135 if (is_write_device_private_entry(entry)) { 136 pte_t newpte; 137 138 /* 139 * We do not preserve soft-dirtiness. See 140 * copy_one_pte() for explanation. 141 */ 142 make_device_private_entry_read(&entry); 143 newpte = swp_entry_to_pte(entry); 144 set_pte_at(mm, addr, pte, newpte); 145 146 pages++; 147 } 148 } 149 } while (pte++, addr += PAGE_SIZE, addr != end); 150 arch_leave_lazy_mmu_mode(); 151 pte_unmap_unlock(pte - 1, ptl); 152 153 return pages; 154 } 155 156 static inline unsigned long change_pmd_range(struct vm_area_struct *vma, 157 pud_t *pud, unsigned long addr, unsigned long end, 158 pgprot_t newprot, int dirty_accountable, int prot_numa) 159 { 160 pmd_t *pmd; 161 struct mm_struct *mm = vma->vm_mm; 162 unsigned long next; 163 unsigned long pages = 0; 164 unsigned long nr_huge_updates = 0; 165 unsigned long mni_start = 0; 166 167 pmd = pmd_offset(pud, addr); 168 do { 169 unsigned long this_pages; 170 171 next = pmd_addr_end(addr, end); 172 if (!is_swap_pmd(*pmd) && !pmd_trans_huge(*pmd) && !pmd_devmap(*pmd) 173 && pmd_none_or_clear_bad(pmd)) 174 goto next; 175 176 /* invoke the mmu notifier if the pmd is populated */ 177 if (!mni_start) { 178 mni_start = addr; 179 mmu_notifier_invalidate_range_start(mm, mni_start, end); 180 } 181 182 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 183 if (next - addr != HPAGE_PMD_SIZE) { 184 __split_huge_pmd(vma, pmd, addr, false, NULL); 185 } else { 186 int nr_ptes = change_huge_pmd(vma, pmd, addr, 187 newprot, prot_numa); 188 189 if (nr_ptes) { 190 if (nr_ptes == HPAGE_PMD_NR) { 191 pages += HPAGE_PMD_NR; 192 nr_huge_updates++; 193 } 194 195 /* huge pmd was handled */ 196 goto next; 197 } 198 } 199 /* fall through, the trans huge pmd just split */ 200 } 201 this_pages = change_pte_range(vma, pmd, addr, next, newprot, 202 dirty_accountable, prot_numa); 203 pages += this_pages; 204 next: 205 cond_resched(); 206 } while (pmd++, addr = next, addr != end); 207 208 if (mni_start) 209 mmu_notifier_invalidate_range_end(mm, mni_start, end); 210 211 if (nr_huge_updates) 212 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 213 return pages; 214 } 215 216 static inline unsigned long change_pud_range(struct vm_area_struct *vma, 217 p4d_t *p4d, unsigned long addr, unsigned long end, 218 pgprot_t newprot, int dirty_accountable, int prot_numa) 219 { 220 pud_t *pud; 221 unsigned long next; 222 unsigned long pages = 0; 223 224 pud = pud_offset(p4d, addr); 225 do { 226 next = pud_addr_end(addr, end); 227 if (pud_none_or_clear_bad(pud)) 228 continue; 229 pages += change_pmd_range(vma, pud, addr, next, newprot, 230 dirty_accountable, prot_numa); 231 } while (pud++, addr = next, addr != end); 232 233 return pages; 234 } 235 236 static inline unsigned long change_p4d_range(struct vm_area_struct *vma, 237 pgd_t *pgd, unsigned long addr, unsigned long end, 238 pgprot_t newprot, int dirty_accountable, int prot_numa) 239 { 240 p4d_t *p4d; 241 unsigned long next; 242 unsigned long pages = 0; 243 244 p4d = p4d_offset(pgd, addr); 245 do { 246 next = p4d_addr_end(addr, end); 247 if (p4d_none_or_clear_bad(p4d)) 248 continue; 249 pages += change_pud_range(vma, p4d, addr, next, newprot, 250 dirty_accountable, prot_numa); 251 } while (p4d++, addr = next, addr != end); 252 253 return pages; 254 } 255 256 static unsigned long change_protection_range(struct vm_area_struct *vma, 257 unsigned long addr, unsigned long end, pgprot_t newprot, 258 int dirty_accountable, int prot_numa) 259 { 260 struct mm_struct *mm = vma->vm_mm; 261 pgd_t *pgd; 262 unsigned long next; 263 unsigned long start = addr; 264 unsigned long pages = 0; 265 266 BUG_ON(addr >= end); 267 pgd = pgd_offset(mm, addr); 268 flush_cache_range(vma, addr, end); 269 inc_tlb_flush_pending(mm); 270 do { 271 next = pgd_addr_end(addr, end); 272 if (pgd_none_or_clear_bad(pgd)) 273 continue; 274 pages += change_p4d_range(vma, pgd, addr, next, newprot, 275 dirty_accountable, prot_numa); 276 } while (pgd++, addr = next, addr != end); 277 278 /* Only flush the TLB if we actually modified any entries: */ 279 if (pages) 280 flush_tlb_range(vma, start, end); 281 dec_tlb_flush_pending(mm); 282 283 return pages; 284 } 285 286 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 287 unsigned long end, pgprot_t newprot, 288 int dirty_accountable, int prot_numa) 289 { 290 unsigned long pages; 291 292 if (is_vm_hugetlb_page(vma)) 293 pages = hugetlb_change_protection(vma, start, end, newprot); 294 else 295 pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa); 296 297 return pages; 298 } 299 300 int 301 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, 302 unsigned long start, unsigned long end, unsigned long newflags) 303 { 304 struct mm_struct *mm = vma->vm_mm; 305 unsigned long oldflags = vma->vm_flags; 306 long nrpages = (end - start) >> PAGE_SHIFT; 307 unsigned long charged = 0; 308 pgoff_t pgoff; 309 int error; 310 int dirty_accountable = 0; 311 312 if (newflags == oldflags) { 313 *pprev = vma; 314 return 0; 315 } 316 317 /* 318 * If we make a private mapping writable we increase our commit; 319 * but (without finer accounting) cannot reduce our commit if we 320 * make it unwritable again. hugetlb mapping were accounted for 321 * even if read-only so there is no need to account for them here 322 */ 323 if (newflags & VM_WRITE) { 324 /* Check space limits when area turns into data. */ 325 if (!may_expand_vm(mm, newflags, nrpages) && 326 may_expand_vm(mm, oldflags, nrpages)) 327 return -ENOMEM; 328 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 329 VM_SHARED|VM_NORESERVE))) { 330 charged = nrpages; 331 if (security_vm_enough_memory_mm(mm, charged)) 332 return -ENOMEM; 333 newflags |= VM_ACCOUNT; 334 } 335 } 336 337 /* 338 * First try to merge with previous and/or next vma. 339 */ 340 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 341 *pprev = vma_merge(mm, *pprev, start, end, newflags, 342 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 343 vma->vm_userfaultfd_ctx); 344 if (*pprev) { 345 vma = *pprev; 346 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 347 goto success; 348 } 349 350 *pprev = vma; 351 352 if (start != vma->vm_start) { 353 error = split_vma(mm, vma, start, 1); 354 if (error) 355 goto fail; 356 } 357 358 if (end != vma->vm_end) { 359 error = split_vma(mm, vma, end, 0); 360 if (error) 361 goto fail; 362 } 363 364 success: 365 /* 366 * vm_flags and vm_page_prot are protected by the mmap_sem 367 * held in write mode. 368 */ 369 vma->vm_flags = newflags; 370 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); 371 vma_set_page_prot(vma); 372 373 change_protection(vma, start, end, vma->vm_page_prot, 374 dirty_accountable, 0); 375 376 /* 377 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 378 * fault on access. 379 */ 380 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 381 (newflags & VM_WRITE)) { 382 populate_vma_page_range(vma, start, end, NULL); 383 } 384 385 vm_stat_account(mm, oldflags, -nrpages); 386 vm_stat_account(mm, newflags, nrpages); 387 perf_event_mmap(vma); 388 return 0; 389 390 fail: 391 vm_unacct_memory(charged); 392 return error; 393 } 394 395 /* 396 * pkey==-1 when doing a legacy mprotect() 397 */ 398 static int do_mprotect_pkey(unsigned long start, size_t len, 399 unsigned long prot, int pkey) 400 { 401 unsigned long nstart, end, tmp, reqprot; 402 struct vm_area_struct *vma, *prev; 403 int error = -EINVAL; 404 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 405 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 406 (prot & PROT_READ); 407 408 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 409 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 410 return -EINVAL; 411 412 if (start & ~PAGE_MASK) 413 return -EINVAL; 414 if (!len) 415 return 0; 416 len = PAGE_ALIGN(len); 417 end = start + len; 418 if (end <= start) 419 return -ENOMEM; 420 if (!arch_validate_prot(prot)) 421 return -EINVAL; 422 423 reqprot = prot; 424 425 if (down_write_killable(¤t->mm->mmap_sem)) 426 return -EINTR; 427 428 /* 429 * If userspace did not allocate the pkey, do not let 430 * them use it here. 431 */ 432 error = -EINVAL; 433 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 434 goto out; 435 436 vma = find_vma(current->mm, start); 437 error = -ENOMEM; 438 if (!vma) 439 goto out; 440 prev = vma->vm_prev; 441 if (unlikely(grows & PROT_GROWSDOWN)) { 442 if (vma->vm_start >= end) 443 goto out; 444 start = vma->vm_start; 445 error = -EINVAL; 446 if (!(vma->vm_flags & VM_GROWSDOWN)) 447 goto out; 448 } else { 449 if (vma->vm_start > start) 450 goto out; 451 if (unlikely(grows & PROT_GROWSUP)) { 452 end = vma->vm_end; 453 error = -EINVAL; 454 if (!(vma->vm_flags & VM_GROWSUP)) 455 goto out; 456 } 457 } 458 if (start > vma->vm_start) 459 prev = vma; 460 461 for (nstart = start ; ; ) { 462 unsigned long mask_off_old_flags; 463 unsigned long newflags; 464 int new_vma_pkey; 465 466 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 467 468 /* Does the application expect PROT_READ to imply PROT_EXEC */ 469 if (rier && (vma->vm_flags & VM_MAYEXEC)) 470 prot |= PROT_EXEC; 471 472 /* 473 * Each mprotect() call explicitly passes r/w/x permissions. 474 * If a permission is not passed to mprotect(), it must be 475 * cleared from the VMA. 476 */ 477 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 478 ARCH_VM_PKEY_FLAGS; 479 480 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 481 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 482 newflags |= (vma->vm_flags & ~mask_off_old_flags); 483 484 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 485 if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) { 486 error = -EACCES; 487 goto out; 488 } 489 490 error = security_file_mprotect(vma, reqprot, prot); 491 if (error) 492 goto out; 493 494 tmp = vma->vm_end; 495 if (tmp > end) 496 tmp = end; 497 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); 498 if (error) 499 goto out; 500 nstart = tmp; 501 502 if (nstart < prev->vm_end) 503 nstart = prev->vm_end; 504 if (nstart >= end) 505 goto out; 506 507 vma = prev->vm_next; 508 if (!vma || vma->vm_start != nstart) { 509 error = -ENOMEM; 510 goto out; 511 } 512 prot = reqprot; 513 } 514 out: 515 up_write(¤t->mm->mmap_sem); 516 return error; 517 } 518 519 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 520 unsigned long, prot) 521 { 522 return do_mprotect_pkey(start, len, prot, -1); 523 } 524 525 #ifdef CONFIG_ARCH_HAS_PKEYS 526 527 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 528 unsigned long, prot, int, pkey) 529 { 530 return do_mprotect_pkey(start, len, prot, pkey); 531 } 532 533 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 534 { 535 int pkey; 536 int ret; 537 538 /* No flags supported yet. */ 539 if (flags) 540 return -EINVAL; 541 /* check for unsupported init values */ 542 if (init_val & ~PKEY_ACCESS_MASK) 543 return -EINVAL; 544 545 down_write(¤t->mm->mmap_sem); 546 pkey = mm_pkey_alloc(current->mm); 547 548 ret = -ENOSPC; 549 if (pkey == -1) 550 goto out; 551 552 ret = arch_set_user_pkey_access(current, pkey, init_val); 553 if (ret) { 554 mm_pkey_free(current->mm, pkey); 555 goto out; 556 } 557 ret = pkey; 558 out: 559 up_write(¤t->mm->mmap_sem); 560 return ret; 561 } 562 563 SYSCALL_DEFINE1(pkey_free, int, pkey) 564 { 565 int ret; 566 567 down_write(¤t->mm->mmap_sem); 568 ret = mm_pkey_free(current->mm, pkey); 569 up_write(¤t->mm->mmap_sem); 570 571 /* 572 * We could provie warnings or errors if any VMA still 573 * has the pkey set here. 574 */ 575 return ret; 576 } 577 578 #endif /* CONFIG_ARCH_HAS_PKEYS */ 579