xref: /openbmc/linux/mm/mprotect.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/mprotect.c
4  *
5  *  (C) Copyright 1994 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  *
8  *  Address space accounting code	<alan@lxorguk.ukuu.org.uk>
9  *  (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10  */
11 
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/memory-tiers.h>
35 #include <asm/cacheflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/tlb.h>
39 
40 #include "internal.h"
41 
42 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
43 			     pte_t pte)
44 {
45 	struct page *page;
46 
47 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
48 		return false;
49 
50 	/* Don't touch entries that are not even readable. */
51 	if (pte_protnone(pte))
52 		return false;
53 
54 	/* Do we need write faults for softdirty tracking? */
55 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
56 		return false;
57 
58 	/* Do we need write faults for uffd-wp tracking? */
59 	if (userfaultfd_pte_wp(vma, pte))
60 		return false;
61 
62 	if (!(vma->vm_flags & VM_SHARED)) {
63 		/*
64 		 * Writable MAP_PRIVATE mapping: We can only special-case on
65 		 * exclusive anonymous pages, because we know that our
66 		 * write-fault handler similarly would map them writable without
67 		 * any additional checks while holding the PT lock.
68 		 */
69 		page = vm_normal_page(vma, addr, pte);
70 		return page && PageAnon(page) && PageAnonExclusive(page);
71 	}
72 
73 	/*
74 	 * Writable MAP_SHARED mapping: "clean" might indicate that the FS still
75 	 * needs a real write-fault for writenotify
76 	 * (see vma_wants_writenotify()). If "dirty", the assumption is that the
77 	 * FS was already notified and we can simply mark the PTE writable
78 	 * just like the write-fault handler would do.
79 	 */
80 	return pte_dirty(pte);
81 }
82 
83 static unsigned long change_pte_range(struct mmu_gather *tlb,
84 		struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
85 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
86 {
87 	pte_t *pte, oldpte;
88 	spinlock_t *ptl;
89 	unsigned long pages = 0;
90 	int target_node = NUMA_NO_NODE;
91 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
92 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
93 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
94 
95 	tlb_change_page_size(tlb, PAGE_SIZE);
96 
97 	/*
98 	 * Can be called with only the mmap_lock for reading by
99 	 * prot_numa so we must check the pmd isn't constantly
100 	 * changing from under us from pmd_none to pmd_trans_huge
101 	 * and/or the other way around.
102 	 */
103 	if (pmd_trans_unstable(pmd))
104 		return 0;
105 
106 	/*
107 	 * The pmd points to a regular pte so the pmd can't change
108 	 * from under us even if the mmap_lock is only hold for
109 	 * reading.
110 	 */
111 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
112 
113 	/* Get target node for single threaded private VMAs */
114 	if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
115 	    atomic_read(&vma->vm_mm->mm_users) == 1)
116 		target_node = numa_node_id();
117 
118 	flush_tlb_batched_pending(vma->vm_mm);
119 	arch_enter_lazy_mmu_mode();
120 	do {
121 		oldpte = *pte;
122 		if (pte_present(oldpte)) {
123 			pte_t ptent;
124 
125 			/*
126 			 * Avoid trapping faults against the zero or KSM
127 			 * pages. See similar comment in change_huge_pmd.
128 			 */
129 			if (prot_numa) {
130 				struct page *page;
131 				int nid;
132 				bool toptier;
133 
134 				/* Avoid TLB flush if possible */
135 				if (pte_protnone(oldpte))
136 					continue;
137 
138 				page = vm_normal_page(vma, addr, oldpte);
139 				if (!page || is_zone_device_page(page) || PageKsm(page))
140 					continue;
141 
142 				/* Also skip shared copy-on-write pages */
143 				if (is_cow_mapping(vma->vm_flags) &&
144 				    page_count(page) != 1)
145 					continue;
146 
147 				/*
148 				 * While migration can move some dirty pages,
149 				 * it cannot move them all from MIGRATE_ASYNC
150 				 * context.
151 				 */
152 				if (page_is_file_lru(page) && PageDirty(page))
153 					continue;
154 
155 				/*
156 				 * Don't mess with PTEs if page is already on the node
157 				 * a single-threaded process is running on.
158 				 */
159 				nid = page_to_nid(page);
160 				if (target_node == nid)
161 					continue;
162 				toptier = node_is_toptier(nid);
163 
164 				/*
165 				 * Skip scanning top tier node if normal numa
166 				 * balancing is disabled
167 				 */
168 				if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
169 				    toptier)
170 					continue;
171 				if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
172 				    !toptier)
173 					xchg_page_access_time(page,
174 						jiffies_to_msecs(jiffies));
175 			}
176 
177 			oldpte = ptep_modify_prot_start(vma, addr, pte);
178 			ptent = pte_modify(oldpte, newprot);
179 
180 			if (uffd_wp) {
181 				ptent = pte_wrprotect(ptent);
182 				ptent = pte_mkuffd_wp(ptent);
183 			} else if (uffd_wp_resolve) {
184 				ptent = pte_clear_uffd_wp(ptent);
185 			}
186 
187 			/*
188 			 * In some writable, shared mappings, we might want
189 			 * to catch actual write access -- see
190 			 * vma_wants_writenotify().
191 			 *
192 			 * In all writable, private mappings, we have to
193 			 * properly handle COW.
194 			 *
195 			 * In both cases, we can sometimes still change PTEs
196 			 * writable and avoid the write-fault handler, for
197 			 * example, if a PTE is already dirty and no other
198 			 * COW or special handling is required.
199 			 */
200 			if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
201 			    !pte_write(ptent) &&
202 			    can_change_pte_writable(vma, addr, ptent))
203 				ptent = pte_mkwrite(ptent);
204 
205 			ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
206 			if (pte_needs_flush(oldpte, ptent))
207 				tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
208 			pages++;
209 		} else if (is_swap_pte(oldpte)) {
210 			swp_entry_t entry = pte_to_swp_entry(oldpte);
211 			pte_t newpte;
212 
213 			if (is_writable_migration_entry(entry)) {
214 				struct page *page = pfn_swap_entry_to_page(entry);
215 
216 				/*
217 				 * A protection check is difficult so
218 				 * just be safe and disable write
219 				 */
220 				if (PageAnon(page))
221 					entry = make_readable_exclusive_migration_entry(
222 							     swp_offset(entry));
223 				else
224 					entry = make_readable_migration_entry(swp_offset(entry));
225 				newpte = swp_entry_to_pte(entry);
226 				if (pte_swp_soft_dirty(oldpte))
227 					newpte = pte_swp_mksoft_dirty(newpte);
228 				if (pte_swp_uffd_wp(oldpte))
229 					newpte = pte_swp_mkuffd_wp(newpte);
230 			} else if (is_writable_device_private_entry(entry)) {
231 				/*
232 				 * We do not preserve soft-dirtiness. See
233 				 * copy_one_pte() for explanation.
234 				 */
235 				entry = make_readable_device_private_entry(
236 							swp_offset(entry));
237 				newpte = swp_entry_to_pte(entry);
238 				if (pte_swp_uffd_wp(oldpte))
239 					newpte = pte_swp_mkuffd_wp(newpte);
240 			} else if (is_writable_device_exclusive_entry(entry)) {
241 				entry = make_readable_device_exclusive_entry(
242 							swp_offset(entry));
243 				newpte = swp_entry_to_pte(entry);
244 				if (pte_swp_soft_dirty(oldpte))
245 					newpte = pte_swp_mksoft_dirty(newpte);
246 				if (pte_swp_uffd_wp(oldpte))
247 					newpte = pte_swp_mkuffd_wp(newpte);
248 			} else if (pte_marker_entry_uffd_wp(entry)) {
249 				/*
250 				 * If this is uffd-wp pte marker and we'd like
251 				 * to unprotect it, drop it; the next page
252 				 * fault will trigger without uffd trapping.
253 				 */
254 				if (uffd_wp_resolve) {
255 					pte_clear(vma->vm_mm, addr, pte);
256 					pages++;
257 				}
258 				continue;
259 			} else {
260 				newpte = oldpte;
261 			}
262 
263 			if (uffd_wp)
264 				newpte = pte_swp_mkuffd_wp(newpte);
265 			else if (uffd_wp_resolve)
266 				newpte = pte_swp_clear_uffd_wp(newpte);
267 
268 			if (!pte_same(oldpte, newpte)) {
269 				set_pte_at(vma->vm_mm, addr, pte, newpte);
270 				pages++;
271 			}
272 		} else {
273 			/* It must be an none page, or what else?.. */
274 			WARN_ON_ONCE(!pte_none(oldpte));
275 			if (unlikely(uffd_wp && !vma_is_anonymous(vma))) {
276 				/*
277 				 * For file-backed mem, we need to be able to
278 				 * wr-protect a none pte, because even if the
279 				 * pte is none, the page/swap cache could
280 				 * exist.  Doing that by install a marker.
281 				 */
282 				set_pte_at(vma->vm_mm, addr, pte,
283 					   make_pte_marker(PTE_MARKER_UFFD_WP));
284 				pages++;
285 			}
286 		}
287 	} while (pte++, addr += PAGE_SIZE, addr != end);
288 	arch_leave_lazy_mmu_mode();
289 	pte_unmap_unlock(pte - 1, ptl);
290 
291 	return pages;
292 }
293 
294 /*
295  * Used when setting automatic NUMA hinting protection where it is
296  * critical that a numa hinting PMD is not confused with a bad PMD.
297  */
298 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
299 {
300 	pmd_t pmdval = pmdp_get_lockless(pmd);
301 
302 	/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
304 	barrier();
305 #endif
306 
307 	if (pmd_none(pmdval))
308 		return 1;
309 	if (pmd_trans_huge(pmdval))
310 		return 0;
311 	if (unlikely(pmd_bad(pmdval))) {
312 		pmd_clear_bad(pmd);
313 		return 1;
314 	}
315 
316 	return 0;
317 }
318 
319 /* Return true if we're uffd wr-protecting file-backed memory, or false */
320 static inline bool
321 uffd_wp_protect_file(struct vm_area_struct *vma, unsigned long cp_flags)
322 {
323 	return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
324 }
325 
326 /*
327  * If wr-protecting the range for file-backed, populate pgtable for the case
328  * when pgtable is empty but page cache exists.  When {pte|pmd|...}_alloc()
329  * failed it means no memory, we don't have a better option but stop.
330  */
331 #define  change_pmd_prepare(vma, pmd, cp_flags)				\
332 	do {								\
333 		if (unlikely(uffd_wp_protect_file(vma, cp_flags))) {	\
334 			if (WARN_ON_ONCE(pte_alloc(vma->vm_mm, pmd)))	\
335 				break;					\
336 		}							\
337 	} while (0)
338 /*
339  * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
340  * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
341  * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
342  */
343 #define  change_prepare(vma, high, low, addr, cp_flags)			\
344 	do {								\
345 		if (unlikely(uffd_wp_protect_file(vma, cp_flags))) {	\
346 			low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
347 			if (WARN_ON_ONCE(p == NULL))			\
348 				break;					\
349 		}							\
350 	} while (0)
351 
352 static inline unsigned long change_pmd_range(struct mmu_gather *tlb,
353 		struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
354 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
355 {
356 	pmd_t *pmd;
357 	unsigned long next;
358 	unsigned long pages = 0;
359 	unsigned long nr_huge_updates = 0;
360 	struct mmu_notifier_range range;
361 
362 	range.start = 0;
363 
364 	pmd = pmd_offset(pud, addr);
365 	do {
366 		unsigned long this_pages;
367 
368 		next = pmd_addr_end(addr, end);
369 
370 		change_pmd_prepare(vma, pmd, cp_flags);
371 		/*
372 		 * Automatic NUMA balancing walks the tables with mmap_lock
373 		 * held for read. It's possible a parallel update to occur
374 		 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
375 		 * check leading to a false positive and clearing.
376 		 * Hence, it's necessary to atomically read the PMD value
377 		 * for all the checks.
378 		 */
379 		if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
380 		     pmd_none_or_clear_bad_unless_trans_huge(pmd))
381 			goto next;
382 
383 		/* invoke the mmu notifier if the pmd is populated */
384 		if (!range.start) {
385 			mmu_notifier_range_init(&range,
386 				MMU_NOTIFY_PROTECTION_VMA, 0,
387 				vma, vma->vm_mm, addr, end);
388 			mmu_notifier_invalidate_range_start(&range);
389 		}
390 
391 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
392 			if ((next - addr != HPAGE_PMD_SIZE) ||
393 			    uffd_wp_protect_file(vma, cp_flags)) {
394 				__split_huge_pmd(vma, pmd, addr, false, NULL);
395 				/*
396 				 * For file-backed, the pmd could have been
397 				 * cleared; make sure pmd populated if
398 				 * necessary, then fall-through to pte level.
399 				 */
400 				change_pmd_prepare(vma, pmd, cp_flags);
401 			} else {
402 				/*
403 				 * change_huge_pmd() does not defer TLB flushes,
404 				 * so no need to propagate the tlb argument.
405 				 */
406 				int nr_ptes = change_huge_pmd(tlb, vma, pmd,
407 						addr, newprot, cp_flags);
408 
409 				if (nr_ptes) {
410 					if (nr_ptes == HPAGE_PMD_NR) {
411 						pages += HPAGE_PMD_NR;
412 						nr_huge_updates++;
413 					}
414 
415 					/* huge pmd was handled */
416 					goto next;
417 				}
418 			}
419 			/* fall through, the trans huge pmd just split */
420 		}
421 		this_pages = change_pte_range(tlb, vma, pmd, addr, next,
422 					      newprot, cp_flags);
423 		pages += this_pages;
424 next:
425 		cond_resched();
426 	} while (pmd++, addr = next, addr != end);
427 
428 	if (range.start)
429 		mmu_notifier_invalidate_range_end(&range);
430 
431 	if (nr_huge_updates)
432 		count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
433 	return pages;
434 }
435 
436 static inline unsigned long change_pud_range(struct mmu_gather *tlb,
437 		struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
438 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
439 {
440 	pud_t *pud;
441 	unsigned long next;
442 	unsigned long pages = 0;
443 
444 	pud = pud_offset(p4d, addr);
445 	do {
446 		next = pud_addr_end(addr, end);
447 		change_prepare(vma, pud, pmd, addr, cp_flags);
448 		if (pud_none_or_clear_bad(pud))
449 			continue;
450 		pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
451 					  cp_flags);
452 	} while (pud++, addr = next, addr != end);
453 
454 	return pages;
455 }
456 
457 static inline unsigned long change_p4d_range(struct mmu_gather *tlb,
458 		struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
459 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
460 {
461 	p4d_t *p4d;
462 	unsigned long next;
463 	unsigned long pages = 0;
464 
465 	p4d = p4d_offset(pgd, addr);
466 	do {
467 		next = p4d_addr_end(addr, end);
468 		change_prepare(vma, p4d, pud, addr, cp_flags);
469 		if (p4d_none_or_clear_bad(p4d))
470 			continue;
471 		pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
472 					  cp_flags);
473 	} while (p4d++, addr = next, addr != end);
474 
475 	return pages;
476 }
477 
478 static unsigned long change_protection_range(struct mmu_gather *tlb,
479 		struct vm_area_struct *vma, unsigned long addr,
480 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
481 {
482 	struct mm_struct *mm = vma->vm_mm;
483 	pgd_t *pgd;
484 	unsigned long next;
485 	unsigned long pages = 0;
486 
487 	BUG_ON(addr >= end);
488 	pgd = pgd_offset(mm, addr);
489 	tlb_start_vma(tlb, vma);
490 	do {
491 		next = pgd_addr_end(addr, end);
492 		change_prepare(vma, pgd, p4d, addr, cp_flags);
493 		if (pgd_none_or_clear_bad(pgd))
494 			continue;
495 		pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
496 					  cp_flags);
497 	} while (pgd++, addr = next, addr != end);
498 
499 	tlb_end_vma(tlb, vma);
500 
501 	return pages;
502 }
503 
504 unsigned long change_protection(struct mmu_gather *tlb,
505 		       struct vm_area_struct *vma, unsigned long start,
506 		       unsigned long end, pgprot_t newprot,
507 		       unsigned long cp_flags)
508 {
509 	unsigned long pages;
510 
511 	BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
512 
513 	if (is_vm_hugetlb_page(vma))
514 		pages = hugetlb_change_protection(vma, start, end, newprot,
515 						  cp_flags);
516 	else
517 		pages = change_protection_range(tlb, vma, start, end, newprot,
518 						cp_flags);
519 
520 	return pages;
521 }
522 
523 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
524 			       unsigned long next, struct mm_walk *walk)
525 {
526 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
527 		0 : -EACCES;
528 }
529 
530 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
531 				   unsigned long addr, unsigned long next,
532 				   struct mm_walk *walk)
533 {
534 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
535 		0 : -EACCES;
536 }
537 
538 static int prot_none_test(unsigned long addr, unsigned long next,
539 			  struct mm_walk *walk)
540 {
541 	return 0;
542 }
543 
544 static const struct mm_walk_ops prot_none_walk_ops = {
545 	.pte_entry		= prot_none_pte_entry,
546 	.hugetlb_entry		= prot_none_hugetlb_entry,
547 	.test_walk		= prot_none_test,
548 };
549 
550 int
551 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
552 	       struct vm_area_struct **pprev, unsigned long start,
553 	       unsigned long end, unsigned long newflags)
554 {
555 	struct mm_struct *mm = vma->vm_mm;
556 	unsigned long oldflags = vma->vm_flags;
557 	long nrpages = (end - start) >> PAGE_SHIFT;
558 	unsigned int mm_cp_flags = 0;
559 	unsigned long charged = 0;
560 	pgoff_t pgoff;
561 	int error;
562 
563 	if (newflags == oldflags) {
564 		*pprev = vma;
565 		return 0;
566 	}
567 
568 	/*
569 	 * Do PROT_NONE PFN permission checks here when we can still
570 	 * bail out without undoing a lot of state. This is a rather
571 	 * uncommon case, so doesn't need to be very optimized.
572 	 */
573 	if (arch_has_pfn_modify_check() &&
574 	    (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
575 	    (newflags & VM_ACCESS_FLAGS) == 0) {
576 		pgprot_t new_pgprot = vm_get_page_prot(newflags);
577 
578 		error = walk_page_range(current->mm, start, end,
579 				&prot_none_walk_ops, &new_pgprot);
580 		if (error)
581 			return error;
582 	}
583 
584 	/*
585 	 * If we make a private mapping writable we increase our commit;
586 	 * but (without finer accounting) cannot reduce our commit if we
587 	 * make it unwritable again. hugetlb mapping were accounted for
588 	 * even if read-only so there is no need to account for them here
589 	 */
590 	if (newflags & VM_WRITE) {
591 		/* Check space limits when area turns into data. */
592 		if (!may_expand_vm(mm, newflags, nrpages) &&
593 				may_expand_vm(mm, oldflags, nrpages))
594 			return -ENOMEM;
595 		if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
596 						VM_SHARED|VM_NORESERVE))) {
597 			charged = nrpages;
598 			if (security_vm_enough_memory_mm(mm, charged))
599 				return -ENOMEM;
600 			newflags |= VM_ACCOUNT;
601 		}
602 	}
603 
604 	/*
605 	 * First try to merge with previous and/or next vma.
606 	 */
607 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
608 	*pprev = vma_merge(mm, *pprev, start, end, newflags,
609 			   vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
610 			   vma->vm_userfaultfd_ctx, anon_vma_name(vma));
611 	if (*pprev) {
612 		vma = *pprev;
613 		VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
614 		goto success;
615 	}
616 
617 	*pprev = vma;
618 
619 	if (start != vma->vm_start) {
620 		error = split_vma(mm, vma, start, 1);
621 		if (error)
622 			goto fail;
623 	}
624 
625 	if (end != vma->vm_end) {
626 		error = split_vma(mm, vma, end, 0);
627 		if (error)
628 			goto fail;
629 	}
630 
631 success:
632 	/*
633 	 * vm_flags and vm_page_prot are protected by the mmap_lock
634 	 * held in write mode.
635 	 */
636 	vma->vm_flags = newflags;
637 	if (vma_wants_manual_pte_write_upgrade(vma))
638 		mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
639 	vma_set_page_prot(vma);
640 
641 	change_protection(tlb, vma, start, end, vma->vm_page_prot, mm_cp_flags);
642 
643 	/*
644 	 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
645 	 * fault on access.
646 	 */
647 	if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
648 			(newflags & VM_WRITE)) {
649 		populate_vma_page_range(vma, start, end, NULL);
650 	}
651 
652 	vm_stat_account(mm, oldflags, -nrpages);
653 	vm_stat_account(mm, newflags, nrpages);
654 	perf_event_mmap(vma);
655 	return 0;
656 
657 fail:
658 	vm_unacct_memory(charged);
659 	return error;
660 }
661 
662 /*
663  * pkey==-1 when doing a legacy mprotect()
664  */
665 static int do_mprotect_pkey(unsigned long start, size_t len,
666 		unsigned long prot, int pkey)
667 {
668 	unsigned long nstart, end, tmp, reqprot;
669 	struct vm_area_struct *vma, *prev;
670 	int error;
671 	const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
672 	const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
673 				(prot & PROT_READ);
674 	struct mmu_gather tlb;
675 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
676 
677 	start = untagged_addr(start);
678 
679 	prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
680 	if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
681 		return -EINVAL;
682 
683 	if (start & ~PAGE_MASK)
684 		return -EINVAL;
685 	if (!len)
686 		return 0;
687 	len = PAGE_ALIGN(len);
688 	end = start + len;
689 	if (end <= start)
690 		return -ENOMEM;
691 	if (!arch_validate_prot(prot, start))
692 		return -EINVAL;
693 
694 	reqprot = prot;
695 
696 	if (mmap_write_lock_killable(current->mm))
697 		return -EINTR;
698 
699 	/*
700 	 * If userspace did not allocate the pkey, do not let
701 	 * them use it here.
702 	 */
703 	error = -EINVAL;
704 	if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
705 		goto out;
706 
707 	mas_set(&mas, start);
708 	vma = mas_find(&mas, ULONG_MAX);
709 	error = -ENOMEM;
710 	if (!vma)
711 		goto out;
712 
713 	if (unlikely(grows & PROT_GROWSDOWN)) {
714 		if (vma->vm_start >= end)
715 			goto out;
716 		start = vma->vm_start;
717 		error = -EINVAL;
718 		if (!(vma->vm_flags & VM_GROWSDOWN))
719 			goto out;
720 	} else {
721 		if (vma->vm_start > start)
722 			goto out;
723 		if (unlikely(grows & PROT_GROWSUP)) {
724 			end = vma->vm_end;
725 			error = -EINVAL;
726 			if (!(vma->vm_flags & VM_GROWSUP))
727 				goto out;
728 		}
729 	}
730 
731 	if (start > vma->vm_start)
732 		prev = vma;
733 	else
734 		prev = mas_prev(&mas, 0);
735 
736 	tlb_gather_mmu(&tlb, current->mm);
737 	for (nstart = start ; ; ) {
738 		unsigned long mask_off_old_flags;
739 		unsigned long newflags;
740 		int new_vma_pkey;
741 
742 		/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
743 
744 		/* Does the application expect PROT_READ to imply PROT_EXEC */
745 		if (rier && (vma->vm_flags & VM_MAYEXEC))
746 			prot |= PROT_EXEC;
747 
748 		/*
749 		 * Each mprotect() call explicitly passes r/w/x permissions.
750 		 * If a permission is not passed to mprotect(), it must be
751 		 * cleared from the VMA.
752 		 */
753 		mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR;
754 
755 		new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
756 		newflags = calc_vm_prot_bits(prot, new_vma_pkey);
757 		newflags |= (vma->vm_flags & ~mask_off_old_flags);
758 
759 		/* newflags >> 4 shift VM_MAY% in place of VM_% */
760 		if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
761 			error = -EACCES;
762 			break;
763 		}
764 
765 		/* Allow architectures to sanity-check the new flags */
766 		if (!arch_validate_flags(newflags)) {
767 			error = -EINVAL;
768 			break;
769 		}
770 
771 		error = security_file_mprotect(vma, reqprot, prot);
772 		if (error)
773 			break;
774 
775 		tmp = vma->vm_end;
776 		if (tmp > end)
777 			tmp = end;
778 
779 		if (vma->vm_ops && vma->vm_ops->mprotect) {
780 			error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
781 			if (error)
782 				break;
783 		}
784 
785 		error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags);
786 		if (error)
787 			break;
788 
789 		nstart = tmp;
790 
791 		if (nstart < prev->vm_end)
792 			nstart = prev->vm_end;
793 		if (nstart >= end)
794 			break;
795 
796 		vma = find_vma(current->mm, prev->vm_end);
797 		if (!vma || vma->vm_start != nstart) {
798 			error = -ENOMEM;
799 			break;
800 		}
801 		prot = reqprot;
802 	}
803 	tlb_finish_mmu(&tlb);
804 out:
805 	mmap_write_unlock(current->mm);
806 	return error;
807 }
808 
809 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
810 		unsigned long, prot)
811 {
812 	return do_mprotect_pkey(start, len, prot, -1);
813 }
814 
815 #ifdef CONFIG_ARCH_HAS_PKEYS
816 
817 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
818 		unsigned long, prot, int, pkey)
819 {
820 	return do_mprotect_pkey(start, len, prot, pkey);
821 }
822 
823 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
824 {
825 	int pkey;
826 	int ret;
827 
828 	/* No flags supported yet. */
829 	if (flags)
830 		return -EINVAL;
831 	/* check for unsupported init values */
832 	if (init_val & ~PKEY_ACCESS_MASK)
833 		return -EINVAL;
834 
835 	mmap_write_lock(current->mm);
836 	pkey = mm_pkey_alloc(current->mm);
837 
838 	ret = -ENOSPC;
839 	if (pkey == -1)
840 		goto out;
841 
842 	ret = arch_set_user_pkey_access(current, pkey, init_val);
843 	if (ret) {
844 		mm_pkey_free(current->mm, pkey);
845 		goto out;
846 	}
847 	ret = pkey;
848 out:
849 	mmap_write_unlock(current->mm);
850 	return ret;
851 }
852 
853 SYSCALL_DEFINE1(pkey_free, int, pkey)
854 {
855 	int ret;
856 
857 	mmap_write_lock(current->mm);
858 	ret = mm_pkey_free(current->mm, pkey);
859 	mmap_write_unlock(current->mm);
860 
861 	/*
862 	 * We could provide warnings or errors if any VMA still
863 	 * has the pkey set here.
864 	 */
865 	return ret;
866 }
867 
868 #endif /* CONFIG_ARCH_HAS_PKEYS */
869