xref: /openbmc/linux/mm/mprotect.c (revision fa87c546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/mprotect.c
4  *
5  *  (C) Copyright 1994 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  *
8  *  Address space accounting code	<alan@lxorguk.ukuu.org.uk>
9  *  (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10  */
11 
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/memory-tiers.h>
35 #include <asm/cacheflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/tlb.h>
39 
40 #include "internal.h"
41 
42 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
43 			     pte_t pte)
44 {
45 	struct page *page;
46 
47 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
48 		return false;
49 
50 	/* Don't touch entries that are not even readable. */
51 	if (pte_protnone(pte))
52 		return false;
53 
54 	/* Do we need write faults for softdirty tracking? */
55 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
56 		return false;
57 
58 	/* Do we need write faults for uffd-wp tracking? */
59 	if (userfaultfd_pte_wp(vma, pte))
60 		return false;
61 
62 	if (!(vma->vm_flags & VM_SHARED)) {
63 		/*
64 		 * Writable MAP_PRIVATE mapping: We can only special-case on
65 		 * exclusive anonymous pages, because we know that our
66 		 * write-fault handler similarly would map them writable without
67 		 * any additional checks while holding the PT lock.
68 		 */
69 		page = vm_normal_page(vma, addr, pte);
70 		return page && PageAnon(page) && PageAnonExclusive(page);
71 	}
72 
73 	/*
74 	 * Writable MAP_SHARED mapping: "clean" might indicate that the FS still
75 	 * needs a real write-fault for writenotify
76 	 * (see vma_wants_writenotify()). If "dirty", the assumption is that the
77 	 * FS was already notified and we can simply mark the PTE writable
78 	 * just like the write-fault handler would do.
79 	 */
80 	return pte_dirty(pte);
81 }
82 
83 static long change_pte_range(struct mmu_gather *tlb,
84 		struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
85 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
86 {
87 	pte_t *pte, oldpte;
88 	spinlock_t *ptl;
89 	long pages = 0;
90 	int target_node = NUMA_NO_NODE;
91 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
92 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
93 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
94 
95 	tlb_change_page_size(tlb, PAGE_SIZE);
96 
97 	/*
98 	 * Can be called with only the mmap_lock for reading by
99 	 * prot_numa so we must check the pmd isn't constantly
100 	 * changing from under us from pmd_none to pmd_trans_huge
101 	 * and/or the other way around.
102 	 */
103 	if (pmd_trans_unstable(pmd))
104 		return 0;
105 
106 	/*
107 	 * The pmd points to a regular pte so the pmd can't change
108 	 * from under us even if the mmap_lock is only hold for
109 	 * reading.
110 	 */
111 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
112 
113 	/* Get target node for single threaded private VMAs */
114 	if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
115 	    atomic_read(&vma->vm_mm->mm_users) == 1)
116 		target_node = numa_node_id();
117 
118 	flush_tlb_batched_pending(vma->vm_mm);
119 	arch_enter_lazy_mmu_mode();
120 	do {
121 		oldpte = *pte;
122 		if (pte_present(oldpte)) {
123 			pte_t ptent;
124 
125 			/*
126 			 * Avoid trapping faults against the zero or KSM
127 			 * pages. See similar comment in change_huge_pmd.
128 			 */
129 			if (prot_numa) {
130 				struct page *page;
131 				int nid;
132 				bool toptier;
133 
134 				/* Avoid TLB flush if possible */
135 				if (pte_protnone(oldpte))
136 					continue;
137 
138 				page = vm_normal_page(vma, addr, oldpte);
139 				if (!page || is_zone_device_page(page) || PageKsm(page))
140 					continue;
141 
142 				/* Also skip shared copy-on-write pages */
143 				if (is_cow_mapping(vma->vm_flags) &&
144 				    page_count(page) != 1)
145 					continue;
146 
147 				/*
148 				 * While migration can move some dirty pages,
149 				 * it cannot move them all from MIGRATE_ASYNC
150 				 * context.
151 				 */
152 				if (page_is_file_lru(page) && PageDirty(page))
153 					continue;
154 
155 				/*
156 				 * Don't mess with PTEs if page is already on the node
157 				 * a single-threaded process is running on.
158 				 */
159 				nid = page_to_nid(page);
160 				if (target_node == nid)
161 					continue;
162 				toptier = node_is_toptier(nid);
163 
164 				/*
165 				 * Skip scanning top tier node if normal numa
166 				 * balancing is disabled
167 				 */
168 				if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
169 				    toptier)
170 					continue;
171 				if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
172 				    !toptier)
173 					xchg_page_access_time(page,
174 						jiffies_to_msecs(jiffies));
175 			}
176 
177 			oldpte = ptep_modify_prot_start(vma, addr, pte);
178 			ptent = pte_modify(oldpte, newprot);
179 
180 			if (uffd_wp)
181 				ptent = pte_mkuffd_wp(ptent);
182 			else if (uffd_wp_resolve)
183 				ptent = pte_clear_uffd_wp(ptent);
184 
185 			/*
186 			 * In some writable, shared mappings, we might want
187 			 * to catch actual write access -- see
188 			 * vma_wants_writenotify().
189 			 *
190 			 * In all writable, private mappings, we have to
191 			 * properly handle COW.
192 			 *
193 			 * In both cases, we can sometimes still change PTEs
194 			 * writable and avoid the write-fault handler, for
195 			 * example, if a PTE is already dirty and no other
196 			 * COW or special handling is required.
197 			 */
198 			if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
199 			    !pte_write(ptent) &&
200 			    can_change_pte_writable(vma, addr, ptent))
201 				ptent = pte_mkwrite(ptent);
202 
203 			ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
204 			if (pte_needs_flush(oldpte, ptent))
205 				tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
206 			pages++;
207 		} else if (is_swap_pte(oldpte)) {
208 			swp_entry_t entry = pte_to_swp_entry(oldpte);
209 			pte_t newpte;
210 
211 			if (is_writable_migration_entry(entry)) {
212 				struct page *page = pfn_swap_entry_to_page(entry);
213 
214 				/*
215 				 * A protection check is difficult so
216 				 * just be safe and disable write
217 				 */
218 				if (PageAnon(page))
219 					entry = make_readable_exclusive_migration_entry(
220 							     swp_offset(entry));
221 				else
222 					entry = make_readable_migration_entry(swp_offset(entry));
223 				newpte = swp_entry_to_pte(entry);
224 				if (pte_swp_soft_dirty(oldpte))
225 					newpte = pte_swp_mksoft_dirty(newpte);
226 			} else if (is_writable_device_private_entry(entry)) {
227 				/*
228 				 * We do not preserve soft-dirtiness. See
229 				 * copy_one_pte() for explanation.
230 				 */
231 				entry = make_readable_device_private_entry(
232 							swp_offset(entry));
233 				newpte = swp_entry_to_pte(entry);
234 				if (pte_swp_uffd_wp(oldpte))
235 					newpte = pte_swp_mkuffd_wp(newpte);
236 			} else if (is_writable_device_exclusive_entry(entry)) {
237 				entry = make_readable_device_exclusive_entry(
238 							swp_offset(entry));
239 				newpte = swp_entry_to_pte(entry);
240 				if (pte_swp_soft_dirty(oldpte))
241 					newpte = pte_swp_mksoft_dirty(newpte);
242 				if (pte_swp_uffd_wp(oldpte))
243 					newpte = pte_swp_mkuffd_wp(newpte);
244 			} else if (is_pte_marker_entry(entry)) {
245 				/*
246 				 * Ignore swapin errors unconditionally,
247 				 * because any access should sigbus anyway.
248 				 */
249 				if (is_swapin_error_entry(entry))
250 					continue;
251 				/*
252 				 * If this is uffd-wp pte marker and we'd like
253 				 * to unprotect it, drop it; the next page
254 				 * fault will trigger without uffd trapping.
255 				 */
256 				if (uffd_wp_resolve) {
257 					pte_clear(vma->vm_mm, addr, pte);
258 					pages++;
259 				}
260 				continue;
261 			} else {
262 				newpte = oldpte;
263 			}
264 
265 			if (uffd_wp)
266 				newpte = pte_swp_mkuffd_wp(newpte);
267 			else if (uffd_wp_resolve)
268 				newpte = pte_swp_clear_uffd_wp(newpte);
269 
270 			if (!pte_same(oldpte, newpte)) {
271 				set_pte_at(vma->vm_mm, addr, pte, newpte);
272 				pages++;
273 			}
274 		} else {
275 			/* It must be an none page, or what else?.. */
276 			WARN_ON_ONCE(!pte_none(oldpte));
277 
278 			/*
279 			 * Nobody plays with any none ptes besides
280 			 * userfaultfd when applying the protections.
281 			 */
282 			if (likely(!uffd_wp))
283 				continue;
284 
285 			if (userfaultfd_wp_use_markers(vma)) {
286 				/*
287 				 * For file-backed mem, we need to be able to
288 				 * wr-protect a none pte, because even if the
289 				 * pte is none, the page/swap cache could
290 				 * exist.  Doing that by install a marker.
291 				 */
292 				set_pte_at(vma->vm_mm, addr, pte,
293 					   make_pte_marker(PTE_MARKER_UFFD_WP));
294 				pages++;
295 			}
296 		}
297 	} while (pte++, addr += PAGE_SIZE, addr != end);
298 	arch_leave_lazy_mmu_mode();
299 	pte_unmap_unlock(pte - 1, ptl);
300 
301 	return pages;
302 }
303 
304 /*
305  * Used when setting automatic NUMA hinting protection where it is
306  * critical that a numa hinting PMD is not confused with a bad PMD.
307  */
308 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
309 {
310 	pmd_t pmdval = pmdp_get_lockless(pmd);
311 
312 	/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 	barrier();
315 #endif
316 
317 	if (pmd_none(pmdval))
318 		return 1;
319 	if (pmd_trans_huge(pmdval))
320 		return 0;
321 	if (unlikely(pmd_bad(pmdval))) {
322 		pmd_clear_bad(pmd);
323 		return 1;
324 	}
325 
326 	return 0;
327 }
328 
329 /*
330  * Return true if we want to split THPs into PTE mappings in change
331  * protection procedure, false otherwise.
332  */
333 static inline bool
334 pgtable_split_needed(struct vm_area_struct *vma, unsigned long cp_flags)
335 {
336 	/*
337 	 * pte markers only resides in pte level, if we need pte markers,
338 	 * we need to split.  We cannot wr-protect shmem thp because file
339 	 * thp is handled differently when split by erasing the pmd so far.
340 	 */
341 	return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
342 }
343 
344 /*
345  * Return true if we want to populate pgtables in change protection
346  * procedure, false otherwise
347  */
348 static inline bool
349 pgtable_populate_needed(struct vm_area_struct *vma, unsigned long cp_flags)
350 {
351 	/* If not within ioctl(UFFDIO_WRITEPROTECT), then don't bother */
352 	if (!(cp_flags & MM_CP_UFFD_WP))
353 		return false;
354 
355 	/* Populate if the userfaultfd mode requires pte markers */
356 	return userfaultfd_wp_use_markers(vma);
357 }
358 
359 /*
360  * Populate the pgtable underneath for whatever reason if requested.
361  * When {pte|pmd|...}_alloc() failed we treat it the same way as pgtable
362  * allocation failures during page faults by kicking OOM and returning
363  * error.
364  */
365 #define  change_pmd_prepare(vma, pmd, cp_flags)				\
366 	({								\
367 		long err = 0;						\
368 		if (unlikely(pgtable_populate_needed(vma, cp_flags))) {	\
369 			if (pte_alloc(vma->vm_mm, pmd))			\
370 				err = -ENOMEM;				\
371 		}							\
372 		err;							\
373 	})
374 
375 /*
376  * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
377  * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
378  * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
379  */
380 #define  change_prepare(vma, high, low, addr, cp_flags)			\
381 	  ({								\
382 		long err = 0;						\
383 		if (unlikely(pgtable_populate_needed(vma, cp_flags))) {	\
384 			low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
385 			if (p == NULL)					\
386 				err = -ENOMEM;				\
387 		}							\
388 		err;							\
389 	})
390 
391 static inline long change_pmd_range(struct mmu_gather *tlb,
392 		struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
393 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
394 {
395 	pmd_t *pmd;
396 	unsigned long next;
397 	long pages = 0;
398 	unsigned long nr_huge_updates = 0;
399 	struct mmu_notifier_range range;
400 
401 	range.start = 0;
402 
403 	pmd = pmd_offset(pud, addr);
404 	do {
405 		long ret;
406 
407 		next = pmd_addr_end(addr, end);
408 
409 		ret = change_pmd_prepare(vma, pmd, cp_flags);
410 		if (ret) {
411 			pages = ret;
412 			break;
413 		}
414 		/*
415 		 * Automatic NUMA balancing walks the tables with mmap_lock
416 		 * held for read. It's possible a parallel update to occur
417 		 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
418 		 * check leading to a false positive and clearing.
419 		 * Hence, it's necessary to atomically read the PMD value
420 		 * for all the checks.
421 		 */
422 		if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
423 		     pmd_none_or_clear_bad_unless_trans_huge(pmd))
424 			goto next;
425 
426 		/* invoke the mmu notifier if the pmd is populated */
427 		if (!range.start) {
428 			mmu_notifier_range_init(&range,
429 				MMU_NOTIFY_PROTECTION_VMA, 0,
430 				vma->vm_mm, addr, end);
431 			mmu_notifier_invalidate_range_start(&range);
432 		}
433 
434 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
435 			if ((next - addr != HPAGE_PMD_SIZE) ||
436 			    pgtable_split_needed(vma, cp_flags)) {
437 				__split_huge_pmd(vma, pmd, addr, false, NULL);
438 				/*
439 				 * For file-backed, the pmd could have been
440 				 * cleared; make sure pmd populated if
441 				 * necessary, then fall-through to pte level.
442 				 */
443 				ret = change_pmd_prepare(vma, pmd, cp_flags);
444 				if (ret) {
445 					pages = ret;
446 					break;
447 				}
448 			} else {
449 				/*
450 				 * change_huge_pmd() does not defer TLB flushes,
451 				 * so no need to propagate the tlb argument.
452 				 */
453 				int nr_ptes = change_huge_pmd(tlb, vma, pmd,
454 						addr, newprot, cp_flags);
455 
456 				if (nr_ptes) {
457 					if (nr_ptes == HPAGE_PMD_NR) {
458 						pages += HPAGE_PMD_NR;
459 						nr_huge_updates++;
460 					}
461 
462 					/* huge pmd was handled */
463 					goto next;
464 				}
465 			}
466 			/* fall through, the trans huge pmd just split */
467 		}
468 		pages += change_pte_range(tlb, vma, pmd, addr, next,
469 					  newprot, cp_flags);
470 next:
471 		cond_resched();
472 	} while (pmd++, addr = next, addr != end);
473 
474 	if (range.start)
475 		mmu_notifier_invalidate_range_end(&range);
476 
477 	if (nr_huge_updates)
478 		count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
479 	return pages;
480 }
481 
482 static inline long change_pud_range(struct mmu_gather *tlb,
483 		struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
484 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
485 {
486 	pud_t *pud;
487 	unsigned long next;
488 	long pages = 0, ret;
489 
490 	pud = pud_offset(p4d, addr);
491 	do {
492 		next = pud_addr_end(addr, end);
493 		ret = change_prepare(vma, pud, pmd, addr, cp_flags);
494 		if (ret)
495 			return ret;
496 		if (pud_none_or_clear_bad(pud))
497 			continue;
498 		pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
499 					  cp_flags);
500 	} while (pud++, addr = next, addr != end);
501 
502 	return pages;
503 }
504 
505 static inline long change_p4d_range(struct mmu_gather *tlb,
506 		struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
507 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
508 {
509 	p4d_t *p4d;
510 	unsigned long next;
511 	long pages = 0, ret;
512 
513 	p4d = p4d_offset(pgd, addr);
514 	do {
515 		next = p4d_addr_end(addr, end);
516 		ret = change_prepare(vma, p4d, pud, addr, cp_flags);
517 		if (ret)
518 			return ret;
519 		if (p4d_none_or_clear_bad(p4d))
520 			continue;
521 		pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
522 					  cp_flags);
523 	} while (p4d++, addr = next, addr != end);
524 
525 	return pages;
526 }
527 
528 static long change_protection_range(struct mmu_gather *tlb,
529 		struct vm_area_struct *vma, unsigned long addr,
530 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
531 {
532 	struct mm_struct *mm = vma->vm_mm;
533 	pgd_t *pgd;
534 	unsigned long next;
535 	long pages = 0, ret;
536 
537 	BUG_ON(addr >= end);
538 	pgd = pgd_offset(mm, addr);
539 	tlb_start_vma(tlb, vma);
540 	do {
541 		next = pgd_addr_end(addr, end);
542 		ret = change_prepare(vma, pgd, p4d, addr, cp_flags);
543 		if (ret) {
544 			pages = ret;
545 			break;
546 		}
547 		if (pgd_none_or_clear_bad(pgd))
548 			continue;
549 		pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
550 					  cp_flags);
551 	} while (pgd++, addr = next, addr != end);
552 
553 	tlb_end_vma(tlb, vma);
554 
555 	return pages;
556 }
557 
558 long change_protection(struct mmu_gather *tlb,
559 		       struct vm_area_struct *vma, unsigned long start,
560 		       unsigned long end, unsigned long cp_flags)
561 {
562 	pgprot_t newprot = vma->vm_page_prot;
563 	long pages;
564 
565 	BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
566 
567 #ifdef CONFIG_NUMA_BALANCING
568 	/*
569 	 * Ordinary protection updates (mprotect, uffd-wp, softdirty tracking)
570 	 * are expected to reflect their requirements via VMA flags such that
571 	 * vma_set_page_prot() will adjust vma->vm_page_prot accordingly.
572 	 */
573 	if (cp_flags & MM_CP_PROT_NUMA)
574 		newprot = PAGE_NONE;
575 #else
576 	WARN_ON_ONCE(cp_flags & MM_CP_PROT_NUMA);
577 #endif
578 
579 	if (is_vm_hugetlb_page(vma))
580 		pages = hugetlb_change_protection(vma, start, end, newprot,
581 						  cp_flags);
582 	else
583 		pages = change_protection_range(tlb, vma, start, end, newprot,
584 						cp_flags);
585 
586 	return pages;
587 }
588 
589 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
590 			       unsigned long next, struct mm_walk *walk)
591 {
592 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
593 		0 : -EACCES;
594 }
595 
596 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
597 				   unsigned long addr, unsigned long next,
598 				   struct mm_walk *walk)
599 {
600 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
601 		0 : -EACCES;
602 }
603 
604 static int prot_none_test(unsigned long addr, unsigned long next,
605 			  struct mm_walk *walk)
606 {
607 	return 0;
608 }
609 
610 static const struct mm_walk_ops prot_none_walk_ops = {
611 	.pte_entry		= prot_none_pte_entry,
612 	.hugetlb_entry		= prot_none_hugetlb_entry,
613 	.test_walk		= prot_none_test,
614 };
615 
616 int
617 mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
618 	       struct vm_area_struct *vma, struct vm_area_struct **pprev,
619 	       unsigned long start, unsigned long end, unsigned long newflags)
620 {
621 	struct mm_struct *mm = vma->vm_mm;
622 	unsigned long oldflags = vma->vm_flags;
623 	long nrpages = (end - start) >> PAGE_SHIFT;
624 	unsigned int mm_cp_flags = 0;
625 	unsigned long charged = 0;
626 	pgoff_t pgoff;
627 	int error;
628 
629 	if (newflags == oldflags) {
630 		*pprev = vma;
631 		return 0;
632 	}
633 
634 	/*
635 	 * Do PROT_NONE PFN permission checks here when we can still
636 	 * bail out without undoing a lot of state. This is a rather
637 	 * uncommon case, so doesn't need to be very optimized.
638 	 */
639 	if (arch_has_pfn_modify_check() &&
640 	    (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
641 	    (newflags & VM_ACCESS_FLAGS) == 0) {
642 		pgprot_t new_pgprot = vm_get_page_prot(newflags);
643 
644 		error = walk_page_range(current->mm, start, end,
645 				&prot_none_walk_ops, &new_pgprot);
646 		if (error)
647 			return error;
648 	}
649 
650 	/*
651 	 * If we make a private mapping writable we increase our commit;
652 	 * but (without finer accounting) cannot reduce our commit if we
653 	 * make it unwritable again. hugetlb mapping were accounted for
654 	 * even if read-only so there is no need to account for them here
655 	 */
656 	if (newflags & VM_WRITE) {
657 		/* Check space limits when area turns into data. */
658 		if (!may_expand_vm(mm, newflags, nrpages) &&
659 				may_expand_vm(mm, oldflags, nrpages))
660 			return -ENOMEM;
661 		if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
662 						VM_SHARED|VM_NORESERVE))) {
663 			charged = nrpages;
664 			if (security_vm_enough_memory_mm(mm, charged))
665 				return -ENOMEM;
666 			newflags |= VM_ACCOUNT;
667 		}
668 	}
669 
670 	/*
671 	 * First try to merge with previous and/or next vma.
672 	 */
673 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
674 	*pprev = vma_merge(vmi, mm, *pprev, start, end, newflags,
675 			   vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
676 			   vma->vm_userfaultfd_ctx, anon_vma_name(vma));
677 	if (*pprev) {
678 		vma = *pprev;
679 		VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
680 		goto success;
681 	}
682 
683 	*pprev = vma;
684 
685 	if (start != vma->vm_start) {
686 		error = split_vma(vmi, vma, start, 1);
687 		if (error)
688 			goto fail;
689 	}
690 
691 	if (end != vma->vm_end) {
692 		error = split_vma(vmi, vma, end, 0);
693 		if (error)
694 			goto fail;
695 	}
696 
697 success:
698 	/*
699 	 * vm_flags and vm_page_prot are protected by the mmap_lock
700 	 * held in write mode.
701 	 */
702 	vm_flags_reset(vma, newflags);
703 	if (vma_wants_manual_pte_write_upgrade(vma))
704 		mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
705 	vma_set_page_prot(vma);
706 
707 	change_protection(tlb, vma, start, end, mm_cp_flags);
708 
709 	/*
710 	 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
711 	 * fault on access.
712 	 */
713 	if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
714 			(newflags & VM_WRITE)) {
715 		populate_vma_page_range(vma, start, end, NULL);
716 	}
717 
718 	vm_stat_account(mm, oldflags, -nrpages);
719 	vm_stat_account(mm, newflags, nrpages);
720 	perf_event_mmap(vma);
721 	return 0;
722 
723 fail:
724 	vm_unacct_memory(charged);
725 	return error;
726 }
727 
728 /*
729  * pkey==-1 when doing a legacy mprotect()
730  */
731 static int do_mprotect_pkey(unsigned long start, size_t len,
732 		unsigned long prot, int pkey)
733 {
734 	unsigned long nstart, end, tmp, reqprot;
735 	struct vm_area_struct *vma, *prev;
736 	int error;
737 	const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
738 	const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
739 				(prot & PROT_READ);
740 	struct mmu_gather tlb;
741 	struct vma_iterator vmi;
742 
743 	start = untagged_addr(start);
744 
745 	prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
746 	if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
747 		return -EINVAL;
748 
749 	if (start & ~PAGE_MASK)
750 		return -EINVAL;
751 	if (!len)
752 		return 0;
753 	len = PAGE_ALIGN(len);
754 	end = start + len;
755 	if (end <= start)
756 		return -ENOMEM;
757 	if (!arch_validate_prot(prot, start))
758 		return -EINVAL;
759 
760 	reqprot = prot;
761 
762 	if (mmap_write_lock_killable(current->mm))
763 		return -EINTR;
764 
765 	/*
766 	 * If userspace did not allocate the pkey, do not let
767 	 * them use it here.
768 	 */
769 	error = -EINVAL;
770 	if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
771 		goto out;
772 
773 	vma_iter_init(&vmi, current->mm, start);
774 	vma = vma_find(&vmi, end);
775 	error = -ENOMEM;
776 	if (!vma)
777 		goto out;
778 
779 	if (unlikely(grows & PROT_GROWSDOWN)) {
780 		if (vma->vm_start >= end)
781 			goto out;
782 		start = vma->vm_start;
783 		error = -EINVAL;
784 		if (!(vma->vm_flags & VM_GROWSDOWN))
785 			goto out;
786 	} else {
787 		if (vma->vm_start > start)
788 			goto out;
789 		if (unlikely(grows & PROT_GROWSUP)) {
790 			end = vma->vm_end;
791 			error = -EINVAL;
792 			if (!(vma->vm_flags & VM_GROWSUP))
793 				goto out;
794 		}
795 	}
796 
797 	prev = vma_prev(&vmi);
798 	if (start > vma->vm_start)
799 		prev = vma;
800 
801 	tlb_gather_mmu(&tlb, current->mm);
802 	nstart = start;
803 	tmp = vma->vm_start;
804 	for_each_vma_range(vmi, vma, end) {
805 		unsigned long mask_off_old_flags;
806 		unsigned long newflags;
807 		int new_vma_pkey;
808 
809 		if (vma->vm_start != tmp) {
810 			error = -ENOMEM;
811 			break;
812 		}
813 
814 		/* Does the application expect PROT_READ to imply PROT_EXEC */
815 		if (rier && (vma->vm_flags & VM_MAYEXEC))
816 			prot |= PROT_EXEC;
817 
818 		/*
819 		 * Each mprotect() call explicitly passes r/w/x permissions.
820 		 * If a permission is not passed to mprotect(), it must be
821 		 * cleared from the VMA.
822 		 */
823 		mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR;
824 
825 		new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
826 		newflags = calc_vm_prot_bits(prot, new_vma_pkey);
827 		newflags |= (vma->vm_flags & ~mask_off_old_flags);
828 
829 		/* newflags >> 4 shift VM_MAY% in place of VM_% */
830 		if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
831 			error = -EACCES;
832 			break;
833 		}
834 
835 		if (map_deny_write_exec(vma, newflags)) {
836 			error = -EACCES;
837 			break;
838 		}
839 
840 		/* Allow architectures to sanity-check the new flags */
841 		if (!arch_validate_flags(newflags)) {
842 			error = -EINVAL;
843 			break;
844 		}
845 
846 		error = security_file_mprotect(vma, reqprot, prot);
847 		if (error)
848 			break;
849 
850 		tmp = vma->vm_end;
851 		if (tmp > end)
852 			tmp = end;
853 
854 		if (vma->vm_ops && vma->vm_ops->mprotect) {
855 			error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
856 			if (error)
857 				break;
858 		}
859 
860 		error = mprotect_fixup(&vmi, &tlb, vma, &prev, nstart, tmp, newflags);
861 		if (error)
862 			break;
863 
864 		tmp = vma_iter_end(&vmi);
865 		nstart = tmp;
866 		prot = reqprot;
867 	}
868 	tlb_finish_mmu(&tlb);
869 
870 	if (!error && tmp < end)
871 		error = -ENOMEM;
872 
873 out:
874 	mmap_write_unlock(current->mm);
875 	return error;
876 }
877 
878 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
879 		unsigned long, prot)
880 {
881 	return do_mprotect_pkey(start, len, prot, -1);
882 }
883 
884 #ifdef CONFIG_ARCH_HAS_PKEYS
885 
886 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
887 		unsigned long, prot, int, pkey)
888 {
889 	return do_mprotect_pkey(start, len, prot, pkey);
890 }
891 
892 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
893 {
894 	int pkey;
895 	int ret;
896 
897 	/* No flags supported yet. */
898 	if (flags)
899 		return -EINVAL;
900 	/* check for unsupported init values */
901 	if (init_val & ~PKEY_ACCESS_MASK)
902 		return -EINVAL;
903 
904 	mmap_write_lock(current->mm);
905 	pkey = mm_pkey_alloc(current->mm);
906 
907 	ret = -ENOSPC;
908 	if (pkey == -1)
909 		goto out;
910 
911 	ret = arch_set_user_pkey_access(current, pkey, init_val);
912 	if (ret) {
913 		mm_pkey_free(current->mm, pkey);
914 		goto out;
915 	}
916 	ret = pkey;
917 out:
918 	mmap_write_unlock(current->mm);
919 	return ret;
920 }
921 
922 SYSCALL_DEFINE1(pkey_free, int, pkey)
923 {
924 	int ret;
925 
926 	mmap_write_lock(current->mm);
927 	ret = mm_pkey_free(current->mm, pkey);
928 	mmap_write_unlock(current->mm);
929 
930 	/*
931 	 * We could provide warnings or errors if any VMA still
932 	 * has the pkey set here.
933 	 */
934 	return ret;
935 }
936 
937 #endif /* CONFIG_ARCH_HAS_PKEYS */
938