1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/pagewalk.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mm_inline.h> 31 #include <asm/pgtable.h> 32 #include <asm/cacheflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/tlbflush.h> 35 36 #include "internal.h" 37 38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 39 unsigned long addr, unsigned long end, pgprot_t newprot, 40 int dirty_accountable, int prot_numa) 41 { 42 pte_t *pte, oldpte; 43 spinlock_t *ptl; 44 unsigned long pages = 0; 45 int target_node = NUMA_NO_NODE; 46 47 /* 48 * Can be called with only the mmap_sem for reading by 49 * prot_numa so we must check the pmd isn't constantly 50 * changing from under us from pmd_none to pmd_trans_huge 51 * and/or the other way around. 52 */ 53 if (pmd_trans_unstable(pmd)) 54 return 0; 55 56 /* 57 * The pmd points to a regular pte so the pmd can't change 58 * from under us even if the mmap_sem is only hold for 59 * reading. 60 */ 61 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 62 63 /* Get target node for single threaded private VMAs */ 64 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 65 atomic_read(&vma->vm_mm->mm_users) == 1) 66 target_node = numa_node_id(); 67 68 flush_tlb_batched_pending(vma->vm_mm); 69 arch_enter_lazy_mmu_mode(); 70 do { 71 oldpte = *pte; 72 if (pte_present(oldpte)) { 73 pte_t ptent; 74 bool preserve_write = prot_numa && pte_write(oldpte); 75 76 /* 77 * Avoid trapping faults against the zero or KSM 78 * pages. See similar comment in change_huge_pmd. 79 */ 80 if (prot_numa) { 81 struct page *page; 82 83 /* Avoid TLB flush if possible */ 84 if (pte_protnone(oldpte)) 85 continue; 86 87 page = vm_normal_page(vma, addr, oldpte); 88 if (!page || PageKsm(page)) 89 continue; 90 91 /* Also skip shared copy-on-write pages */ 92 if (is_cow_mapping(vma->vm_flags) && 93 page_mapcount(page) != 1) 94 continue; 95 96 /* 97 * While migration can move some dirty pages, 98 * it cannot move them all from MIGRATE_ASYNC 99 * context. 100 */ 101 if (page_is_file_cache(page) && PageDirty(page)) 102 continue; 103 104 /* 105 * Don't mess with PTEs if page is already on the node 106 * a single-threaded process is running on. 107 */ 108 if (target_node == page_to_nid(page)) 109 continue; 110 } 111 112 oldpte = ptep_modify_prot_start(vma, addr, pte); 113 ptent = pte_modify(oldpte, newprot); 114 if (preserve_write) 115 ptent = pte_mk_savedwrite(ptent); 116 117 /* Avoid taking write faults for known dirty pages */ 118 if (dirty_accountable && pte_dirty(ptent) && 119 (pte_soft_dirty(ptent) || 120 !(vma->vm_flags & VM_SOFTDIRTY))) { 121 ptent = pte_mkwrite(ptent); 122 } 123 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent); 124 pages++; 125 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 126 swp_entry_t entry = pte_to_swp_entry(oldpte); 127 128 if (is_write_migration_entry(entry)) { 129 pte_t newpte; 130 /* 131 * A protection check is difficult so 132 * just be safe and disable write 133 */ 134 make_migration_entry_read(&entry); 135 newpte = swp_entry_to_pte(entry); 136 if (pte_swp_soft_dirty(oldpte)) 137 newpte = pte_swp_mksoft_dirty(newpte); 138 set_pte_at(vma->vm_mm, addr, pte, newpte); 139 140 pages++; 141 } 142 143 if (is_write_device_private_entry(entry)) { 144 pte_t newpte; 145 146 /* 147 * We do not preserve soft-dirtiness. See 148 * copy_one_pte() for explanation. 149 */ 150 make_device_private_entry_read(&entry); 151 newpte = swp_entry_to_pte(entry); 152 set_pte_at(vma->vm_mm, addr, pte, newpte); 153 154 pages++; 155 } 156 } 157 } while (pte++, addr += PAGE_SIZE, addr != end); 158 arch_leave_lazy_mmu_mode(); 159 pte_unmap_unlock(pte - 1, ptl); 160 161 return pages; 162 } 163 164 /* 165 * Used when setting automatic NUMA hinting protection where it is 166 * critical that a numa hinting PMD is not confused with a bad PMD. 167 */ 168 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) 169 { 170 pmd_t pmdval = pmd_read_atomic(pmd); 171 172 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ 173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 174 barrier(); 175 #endif 176 177 if (pmd_none(pmdval)) 178 return 1; 179 if (pmd_trans_huge(pmdval)) 180 return 0; 181 if (unlikely(pmd_bad(pmdval))) { 182 pmd_clear_bad(pmd); 183 return 1; 184 } 185 186 return 0; 187 } 188 189 static inline unsigned long change_pmd_range(struct vm_area_struct *vma, 190 pud_t *pud, unsigned long addr, unsigned long end, 191 pgprot_t newprot, int dirty_accountable, int prot_numa) 192 { 193 pmd_t *pmd; 194 unsigned long next; 195 unsigned long pages = 0; 196 unsigned long nr_huge_updates = 0; 197 struct mmu_notifier_range range; 198 199 range.start = 0; 200 201 pmd = pmd_offset(pud, addr); 202 do { 203 unsigned long this_pages; 204 205 next = pmd_addr_end(addr, end); 206 207 /* 208 * Automatic NUMA balancing walks the tables with mmap_sem 209 * held for read. It's possible a parallel update to occur 210 * between pmd_trans_huge() and a pmd_none_or_clear_bad() 211 * check leading to a false positive and clearing. 212 * Hence, it's necessary to atomically read the PMD value 213 * for all the checks. 214 */ 215 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && 216 pmd_none_or_clear_bad_unless_trans_huge(pmd)) 217 goto next; 218 219 /* invoke the mmu notifier if the pmd is populated */ 220 if (!range.start) { 221 mmu_notifier_range_init(&range, 222 MMU_NOTIFY_PROTECTION_VMA, 0, 223 vma, vma->vm_mm, addr, end); 224 mmu_notifier_invalidate_range_start(&range); 225 } 226 227 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 228 if (next - addr != HPAGE_PMD_SIZE) { 229 __split_huge_pmd(vma, pmd, addr, false, NULL); 230 } else { 231 int nr_ptes = change_huge_pmd(vma, pmd, addr, 232 newprot, prot_numa); 233 234 if (nr_ptes) { 235 if (nr_ptes == HPAGE_PMD_NR) { 236 pages += HPAGE_PMD_NR; 237 nr_huge_updates++; 238 } 239 240 /* huge pmd was handled */ 241 goto next; 242 } 243 } 244 /* fall through, the trans huge pmd just split */ 245 } 246 this_pages = change_pte_range(vma, pmd, addr, next, newprot, 247 dirty_accountable, prot_numa); 248 pages += this_pages; 249 next: 250 cond_resched(); 251 } while (pmd++, addr = next, addr != end); 252 253 if (range.start) 254 mmu_notifier_invalidate_range_end(&range); 255 256 if (nr_huge_updates) 257 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 258 return pages; 259 } 260 261 static inline unsigned long change_pud_range(struct vm_area_struct *vma, 262 p4d_t *p4d, unsigned long addr, unsigned long end, 263 pgprot_t newprot, int dirty_accountable, int prot_numa) 264 { 265 pud_t *pud; 266 unsigned long next; 267 unsigned long pages = 0; 268 269 pud = pud_offset(p4d, addr); 270 do { 271 next = pud_addr_end(addr, end); 272 if (pud_none_or_clear_bad(pud)) 273 continue; 274 pages += change_pmd_range(vma, pud, addr, next, newprot, 275 dirty_accountable, prot_numa); 276 } while (pud++, addr = next, addr != end); 277 278 return pages; 279 } 280 281 static inline unsigned long change_p4d_range(struct vm_area_struct *vma, 282 pgd_t *pgd, unsigned long addr, unsigned long end, 283 pgprot_t newprot, int dirty_accountable, int prot_numa) 284 { 285 p4d_t *p4d; 286 unsigned long next; 287 unsigned long pages = 0; 288 289 p4d = p4d_offset(pgd, addr); 290 do { 291 next = p4d_addr_end(addr, end); 292 if (p4d_none_or_clear_bad(p4d)) 293 continue; 294 pages += change_pud_range(vma, p4d, addr, next, newprot, 295 dirty_accountable, prot_numa); 296 } while (p4d++, addr = next, addr != end); 297 298 return pages; 299 } 300 301 static unsigned long change_protection_range(struct vm_area_struct *vma, 302 unsigned long addr, unsigned long end, pgprot_t newprot, 303 int dirty_accountable, int prot_numa) 304 { 305 struct mm_struct *mm = vma->vm_mm; 306 pgd_t *pgd; 307 unsigned long next; 308 unsigned long start = addr; 309 unsigned long pages = 0; 310 311 BUG_ON(addr >= end); 312 pgd = pgd_offset(mm, addr); 313 flush_cache_range(vma, addr, end); 314 inc_tlb_flush_pending(mm); 315 do { 316 next = pgd_addr_end(addr, end); 317 if (pgd_none_or_clear_bad(pgd)) 318 continue; 319 pages += change_p4d_range(vma, pgd, addr, next, newprot, 320 dirty_accountable, prot_numa); 321 } while (pgd++, addr = next, addr != end); 322 323 /* Only flush the TLB if we actually modified any entries: */ 324 if (pages) 325 flush_tlb_range(vma, start, end); 326 dec_tlb_flush_pending(mm); 327 328 return pages; 329 } 330 331 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 332 unsigned long end, pgprot_t newprot, 333 int dirty_accountable, int prot_numa) 334 { 335 unsigned long pages; 336 337 if (is_vm_hugetlb_page(vma)) 338 pages = hugetlb_change_protection(vma, start, end, newprot); 339 else 340 pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa); 341 342 return pages; 343 } 344 345 static int prot_none_pte_entry(pte_t *pte, unsigned long addr, 346 unsigned long next, struct mm_walk *walk) 347 { 348 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 349 0 : -EACCES; 350 } 351 352 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, 353 unsigned long addr, unsigned long next, 354 struct mm_walk *walk) 355 { 356 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 357 0 : -EACCES; 358 } 359 360 static int prot_none_test(unsigned long addr, unsigned long next, 361 struct mm_walk *walk) 362 { 363 return 0; 364 } 365 366 static const struct mm_walk_ops prot_none_walk_ops = { 367 .pte_entry = prot_none_pte_entry, 368 .hugetlb_entry = prot_none_hugetlb_entry, 369 .test_walk = prot_none_test, 370 }; 371 372 int 373 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, 374 unsigned long start, unsigned long end, unsigned long newflags) 375 { 376 struct mm_struct *mm = vma->vm_mm; 377 unsigned long oldflags = vma->vm_flags; 378 long nrpages = (end - start) >> PAGE_SHIFT; 379 unsigned long charged = 0; 380 pgoff_t pgoff; 381 int error; 382 int dirty_accountable = 0; 383 384 if (newflags == oldflags) { 385 *pprev = vma; 386 return 0; 387 } 388 389 /* 390 * Do PROT_NONE PFN permission checks here when we can still 391 * bail out without undoing a lot of state. This is a rather 392 * uncommon case, so doesn't need to be very optimized. 393 */ 394 if (arch_has_pfn_modify_check() && 395 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 396 (newflags & (VM_READ|VM_WRITE|VM_EXEC)) == 0) { 397 pgprot_t new_pgprot = vm_get_page_prot(newflags); 398 399 error = walk_page_range(current->mm, start, end, 400 &prot_none_walk_ops, &new_pgprot); 401 if (error) 402 return error; 403 } 404 405 /* 406 * If we make a private mapping writable we increase our commit; 407 * but (without finer accounting) cannot reduce our commit if we 408 * make it unwritable again. hugetlb mapping were accounted for 409 * even if read-only so there is no need to account for them here 410 */ 411 if (newflags & VM_WRITE) { 412 /* Check space limits when area turns into data. */ 413 if (!may_expand_vm(mm, newflags, nrpages) && 414 may_expand_vm(mm, oldflags, nrpages)) 415 return -ENOMEM; 416 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 417 VM_SHARED|VM_NORESERVE))) { 418 charged = nrpages; 419 if (security_vm_enough_memory_mm(mm, charged)) 420 return -ENOMEM; 421 newflags |= VM_ACCOUNT; 422 } 423 } 424 425 /* 426 * First try to merge with previous and/or next vma. 427 */ 428 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 429 *pprev = vma_merge(mm, *pprev, start, end, newflags, 430 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 431 vma->vm_userfaultfd_ctx); 432 if (*pprev) { 433 vma = *pprev; 434 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 435 goto success; 436 } 437 438 *pprev = vma; 439 440 if (start != vma->vm_start) { 441 error = split_vma(mm, vma, start, 1); 442 if (error) 443 goto fail; 444 } 445 446 if (end != vma->vm_end) { 447 error = split_vma(mm, vma, end, 0); 448 if (error) 449 goto fail; 450 } 451 452 success: 453 /* 454 * vm_flags and vm_page_prot are protected by the mmap_sem 455 * held in write mode. 456 */ 457 vma->vm_flags = newflags; 458 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); 459 vma_set_page_prot(vma); 460 461 change_protection(vma, start, end, vma->vm_page_prot, 462 dirty_accountable, 0); 463 464 /* 465 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 466 * fault on access. 467 */ 468 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 469 (newflags & VM_WRITE)) { 470 populate_vma_page_range(vma, start, end, NULL); 471 } 472 473 vm_stat_account(mm, oldflags, -nrpages); 474 vm_stat_account(mm, newflags, nrpages); 475 perf_event_mmap(vma); 476 return 0; 477 478 fail: 479 vm_unacct_memory(charged); 480 return error; 481 } 482 483 /* 484 * pkey==-1 when doing a legacy mprotect() 485 */ 486 static int do_mprotect_pkey(unsigned long start, size_t len, 487 unsigned long prot, int pkey) 488 { 489 unsigned long nstart, end, tmp, reqprot; 490 struct vm_area_struct *vma, *prev; 491 int error = -EINVAL; 492 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 493 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 494 (prot & PROT_READ); 495 496 start = untagged_addr(start); 497 498 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 499 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 500 return -EINVAL; 501 502 if (start & ~PAGE_MASK) 503 return -EINVAL; 504 if (!len) 505 return 0; 506 len = PAGE_ALIGN(len); 507 end = start + len; 508 if (end <= start) 509 return -ENOMEM; 510 if (!arch_validate_prot(prot, start)) 511 return -EINVAL; 512 513 reqprot = prot; 514 515 if (down_write_killable(¤t->mm->mmap_sem)) 516 return -EINTR; 517 518 /* 519 * If userspace did not allocate the pkey, do not let 520 * them use it here. 521 */ 522 error = -EINVAL; 523 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 524 goto out; 525 526 vma = find_vma(current->mm, start); 527 error = -ENOMEM; 528 if (!vma) 529 goto out; 530 prev = vma->vm_prev; 531 if (unlikely(grows & PROT_GROWSDOWN)) { 532 if (vma->vm_start >= end) 533 goto out; 534 start = vma->vm_start; 535 error = -EINVAL; 536 if (!(vma->vm_flags & VM_GROWSDOWN)) 537 goto out; 538 } else { 539 if (vma->vm_start > start) 540 goto out; 541 if (unlikely(grows & PROT_GROWSUP)) { 542 end = vma->vm_end; 543 error = -EINVAL; 544 if (!(vma->vm_flags & VM_GROWSUP)) 545 goto out; 546 } 547 } 548 if (start > vma->vm_start) 549 prev = vma; 550 551 for (nstart = start ; ; ) { 552 unsigned long mask_off_old_flags; 553 unsigned long newflags; 554 int new_vma_pkey; 555 556 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 557 558 /* Does the application expect PROT_READ to imply PROT_EXEC */ 559 if (rier && (vma->vm_flags & VM_MAYEXEC)) 560 prot |= PROT_EXEC; 561 562 /* 563 * Each mprotect() call explicitly passes r/w/x permissions. 564 * If a permission is not passed to mprotect(), it must be 565 * cleared from the VMA. 566 */ 567 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 568 VM_FLAGS_CLEAR; 569 570 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 571 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 572 newflags |= (vma->vm_flags & ~mask_off_old_flags); 573 574 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 575 if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) { 576 error = -EACCES; 577 goto out; 578 } 579 580 error = security_file_mprotect(vma, reqprot, prot); 581 if (error) 582 goto out; 583 584 tmp = vma->vm_end; 585 if (tmp > end) 586 tmp = end; 587 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); 588 if (error) 589 goto out; 590 nstart = tmp; 591 592 if (nstart < prev->vm_end) 593 nstart = prev->vm_end; 594 if (nstart >= end) 595 goto out; 596 597 vma = prev->vm_next; 598 if (!vma || vma->vm_start != nstart) { 599 error = -ENOMEM; 600 goto out; 601 } 602 prot = reqprot; 603 } 604 out: 605 up_write(¤t->mm->mmap_sem); 606 return error; 607 } 608 609 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 610 unsigned long, prot) 611 { 612 return do_mprotect_pkey(start, len, prot, -1); 613 } 614 615 #ifdef CONFIG_ARCH_HAS_PKEYS 616 617 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 618 unsigned long, prot, int, pkey) 619 { 620 return do_mprotect_pkey(start, len, prot, pkey); 621 } 622 623 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 624 { 625 int pkey; 626 int ret; 627 628 /* No flags supported yet. */ 629 if (flags) 630 return -EINVAL; 631 /* check for unsupported init values */ 632 if (init_val & ~PKEY_ACCESS_MASK) 633 return -EINVAL; 634 635 down_write(¤t->mm->mmap_sem); 636 pkey = mm_pkey_alloc(current->mm); 637 638 ret = -ENOSPC; 639 if (pkey == -1) 640 goto out; 641 642 ret = arch_set_user_pkey_access(current, pkey, init_val); 643 if (ret) { 644 mm_pkey_free(current->mm, pkey); 645 goto out; 646 } 647 ret = pkey; 648 out: 649 up_write(¤t->mm->mmap_sem); 650 return ret; 651 } 652 653 SYSCALL_DEFINE1(pkey_free, int, pkey) 654 { 655 int ret; 656 657 down_write(¤t->mm->mmap_sem); 658 ret = mm_pkey_free(current->mm, pkey); 659 up_write(¤t->mm->mmap_sem); 660 661 /* 662 * We could provie warnings or errors if any VMA still 663 * has the pkey set here. 664 */ 665 return ret; 666 } 667 668 #endif /* CONFIG_ARCH_HAS_PKEYS */ 669