xref: /openbmc/linux/mm/mprotect.c (revision 7fde9d6e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/mprotect.c
4  *
5  *  (C) Copyright 1994 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  *
8  *  Address space accounting code	<alan@lxorguk.ukuu.org.uk>
9  *  (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10  */
11 
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/tlbflush.h>
35 
36 #include "internal.h"
37 
38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
39 		unsigned long addr, unsigned long end, pgprot_t newprot,
40 		unsigned long cp_flags)
41 {
42 	pte_t *pte, oldpte;
43 	spinlock_t *ptl;
44 	unsigned long pages = 0;
45 	int target_node = NUMA_NO_NODE;
46 	bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT;
47 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
48 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
49 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
50 
51 	/*
52 	 * Can be called with only the mmap_lock for reading by
53 	 * prot_numa so we must check the pmd isn't constantly
54 	 * changing from under us from pmd_none to pmd_trans_huge
55 	 * and/or the other way around.
56 	 */
57 	if (pmd_trans_unstable(pmd))
58 		return 0;
59 
60 	/*
61 	 * The pmd points to a regular pte so the pmd can't change
62 	 * from under us even if the mmap_lock is only hold for
63 	 * reading.
64 	 */
65 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
66 
67 	/* Get target node for single threaded private VMAs */
68 	if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
69 	    atomic_read(&vma->vm_mm->mm_users) == 1)
70 		target_node = numa_node_id();
71 
72 	flush_tlb_batched_pending(vma->vm_mm);
73 	arch_enter_lazy_mmu_mode();
74 	do {
75 		oldpte = *pte;
76 		if (pte_present(oldpte)) {
77 			pte_t ptent;
78 			bool preserve_write = prot_numa && pte_write(oldpte);
79 
80 			/*
81 			 * Avoid trapping faults against the zero or KSM
82 			 * pages. See similar comment in change_huge_pmd.
83 			 */
84 			if (prot_numa) {
85 				struct page *page;
86 
87 				/* Avoid TLB flush if possible */
88 				if (pte_protnone(oldpte))
89 					continue;
90 
91 				page = vm_normal_page(vma, addr, oldpte);
92 				if (!page || PageKsm(page))
93 					continue;
94 
95 				/* Also skip shared copy-on-write pages */
96 				if (is_cow_mapping(vma->vm_flags) &&
97 				    page_mapcount(page) != 1)
98 					continue;
99 
100 				/*
101 				 * While migration can move some dirty pages,
102 				 * it cannot move them all from MIGRATE_ASYNC
103 				 * context.
104 				 */
105 				if (page_is_file_lru(page) && PageDirty(page))
106 					continue;
107 
108 				/*
109 				 * Don't mess with PTEs if page is already on the node
110 				 * a single-threaded process is running on.
111 				 */
112 				if (target_node == page_to_nid(page))
113 					continue;
114 			}
115 
116 			oldpte = ptep_modify_prot_start(vma, addr, pte);
117 			ptent = pte_modify(oldpte, newprot);
118 			if (preserve_write)
119 				ptent = pte_mk_savedwrite(ptent);
120 
121 			if (uffd_wp) {
122 				ptent = pte_wrprotect(ptent);
123 				ptent = pte_mkuffd_wp(ptent);
124 			} else if (uffd_wp_resolve) {
125 				/*
126 				 * Leave the write bit to be handled
127 				 * by PF interrupt handler, then
128 				 * things like COW could be properly
129 				 * handled.
130 				 */
131 				ptent = pte_clear_uffd_wp(ptent);
132 			}
133 
134 			/* Avoid taking write faults for known dirty pages */
135 			if (dirty_accountable && pte_dirty(ptent) &&
136 					(pte_soft_dirty(ptent) ||
137 					 !(vma->vm_flags & VM_SOFTDIRTY))) {
138 				ptent = pte_mkwrite(ptent);
139 			}
140 			ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
141 			pages++;
142 		} else if (is_swap_pte(oldpte)) {
143 			swp_entry_t entry = pte_to_swp_entry(oldpte);
144 			pte_t newpte;
145 
146 			if (is_writable_migration_entry(entry)) {
147 				/*
148 				 * A protection check is difficult so
149 				 * just be safe and disable write
150 				 */
151 				entry = make_readable_migration_entry(
152 							swp_offset(entry));
153 				newpte = swp_entry_to_pte(entry);
154 				if (pte_swp_soft_dirty(oldpte))
155 					newpte = pte_swp_mksoft_dirty(newpte);
156 				if (pte_swp_uffd_wp(oldpte))
157 					newpte = pte_swp_mkuffd_wp(newpte);
158 			} else if (is_writable_device_private_entry(entry)) {
159 				/*
160 				 * We do not preserve soft-dirtiness. See
161 				 * copy_one_pte() for explanation.
162 				 */
163 				entry = make_readable_device_private_entry(
164 							swp_offset(entry));
165 				newpte = swp_entry_to_pte(entry);
166 				if (pte_swp_uffd_wp(oldpte))
167 					newpte = pte_swp_mkuffd_wp(newpte);
168 			} else if (is_writable_device_exclusive_entry(entry)) {
169 				entry = make_readable_device_exclusive_entry(
170 							swp_offset(entry));
171 				newpte = swp_entry_to_pte(entry);
172 				if (pte_swp_soft_dirty(oldpte))
173 					newpte = pte_swp_mksoft_dirty(newpte);
174 				if (pte_swp_uffd_wp(oldpte))
175 					newpte = pte_swp_mkuffd_wp(newpte);
176 			} else {
177 				newpte = oldpte;
178 			}
179 
180 			if (uffd_wp)
181 				newpte = pte_swp_mkuffd_wp(newpte);
182 			else if (uffd_wp_resolve)
183 				newpte = pte_swp_clear_uffd_wp(newpte);
184 
185 			if (!pte_same(oldpte, newpte)) {
186 				set_pte_at(vma->vm_mm, addr, pte, newpte);
187 				pages++;
188 			}
189 		}
190 	} while (pte++, addr += PAGE_SIZE, addr != end);
191 	arch_leave_lazy_mmu_mode();
192 	pte_unmap_unlock(pte - 1, ptl);
193 
194 	return pages;
195 }
196 
197 /*
198  * Used when setting automatic NUMA hinting protection where it is
199  * critical that a numa hinting PMD is not confused with a bad PMD.
200  */
201 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
202 {
203 	pmd_t pmdval = pmd_read_atomic(pmd);
204 
205 	/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
207 	barrier();
208 #endif
209 
210 	if (pmd_none(pmdval))
211 		return 1;
212 	if (pmd_trans_huge(pmdval))
213 		return 0;
214 	if (unlikely(pmd_bad(pmdval))) {
215 		pmd_clear_bad(pmd);
216 		return 1;
217 	}
218 
219 	return 0;
220 }
221 
222 static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
223 		pud_t *pud, unsigned long addr, unsigned long end,
224 		pgprot_t newprot, unsigned long cp_flags)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long pages = 0;
229 	unsigned long nr_huge_updates = 0;
230 	struct mmu_notifier_range range;
231 
232 	range.start = 0;
233 
234 	pmd = pmd_offset(pud, addr);
235 	do {
236 		unsigned long this_pages;
237 
238 		next = pmd_addr_end(addr, end);
239 
240 		/*
241 		 * Automatic NUMA balancing walks the tables with mmap_lock
242 		 * held for read. It's possible a parallel update to occur
243 		 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
244 		 * check leading to a false positive and clearing.
245 		 * Hence, it's necessary to atomically read the PMD value
246 		 * for all the checks.
247 		 */
248 		if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
249 		     pmd_none_or_clear_bad_unless_trans_huge(pmd))
250 			goto next;
251 
252 		/* invoke the mmu notifier if the pmd is populated */
253 		if (!range.start) {
254 			mmu_notifier_range_init(&range,
255 				MMU_NOTIFY_PROTECTION_VMA, 0,
256 				vma, vma->vm_mm, addr, end);
257 			mmu_notifier_invalidate_range_start(&range);
258 		}
259 
260 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
261 			if (next - addr != HPAGE_PMD_SIZE) {
262 				__split_huge_pmd(vma, pmd, addr, false, NULL);
263 			} else {
264 				int nr_ptes = change_huge_pmd(vma, pmd, addr,
265 							      newprot, cp_flags);
266 
267 				if (nr_ptes) {
268 					if (nr_ptes == HPAGE_PMD_NR) {
269 						pages += HPAGE_PMD_NR;
270 						nr_huge_updates++;
271 					}
272 
273 					/* huge pmd was handled */
274 					goto next;
275 				}
276 			}
277 			/* fall through, the trans huge pmd just split */
278 		}
279 		this_pages = change_pte_range(vma, pmd, addr, next, newprot,
280 					      cp_flags);
281 		pages += this_pages;
282 next:
283 		cond_resched();
284 	} while (pmd++, addr = next, addr != end);
285 
286 	if (range.start)
287 		mmu_notifier_invalidate_range_end(&range);
288 
289 	if (nr_huge_updates)
290 		count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
291 	return pages;
292 }
293 
294 static inline unsigned long change_pud_range(struct vm_area_struct *vma,
295 		p4d_t *p4d, unsigned long addr, unsigned long end,
296 		pgprot_t newprot, unsigned long cp_flags)
297 {
298 	pud_t *pud;
299 	unsigned long next;
300 	unsigned long pages = 0;
301 
302 	pud = pud_offset(p4d, addr);
303 	do {
304 		next = pud_addr_end(addr, end);
305 		if (pud_none_or_clear_bad(pud))
306 			continue;
307 		pages += change_pmd_range(vma, pud, addr, next, newprot,
308 					  cp_flags);
309 	} while (pud++, addr = next, addr != end);
310 
311 	return pages;
312 }
313 
314 static inline unsigned long change_p4d_range(struct vm_area_struct *vma,
315 		pgd_t *pgd, unsigned long addr, unsigned long end,
316 		pgprot_t newprot, unsigned long cp_flags)
317 {
318 	p4d_t *p4d;
319 	unsigned long next;
320 	unsigned long pages = 0;
321 
322 	p4d = p4d_offset(pgd, addr);
323 	do {
324 		next = p4d_addr_end(addr, end);
325 		if (p4d_none_or_clear_bad(p4d))
326 			continue;
327 		pages += change_pud_range(vma, p4d, addr, next, newprot,
328 					  cp_flags);
329 	} while (p4d++, addr = next, addr != end);
330 
331 	return pages;
332 }
333 
334 static unsigned long change_protection_range(struct vm_area_struct *vma,
335 		unsigned long addr, unsigned long end, pgprot_t newprot,
336 		unsigned long cp_flags)
337 {
338 	struct mm_struct *mm = vma->vm_mm;
339 	pgd_t *pgd;
340 	unsigned long next;
341 	unsigned long start = addr;
342 	unsigned long pages = 0;
343 
344 	BUG_ON(addr >= end);
345 	pgd = pgd_offset(mm, addr);
346 	flush_cache_range(vma, addr, end);
347 	inc_tlb_flush_pending(mm);
348 	do {
349 		next = pgd_addr_end(addr, end);
350 		if (pgd_none_or_clear_bad(pgd))
351 			continue;
352 		pages += change_p4d_range(vma, pgd, addr, next, newprot,
353 					  cp_flags);
354 	} while (pgd++, addr = next, addr != end);
355 
356 	/* Only flush the TLB if we actually modified any entries: */
357 	if (pages)
358 		flush_tlb_range(vma, start, end);
359 	dec_tlb_flush_pending(mm);
360 
361 	return pages;
362 }
363 
364 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
365 		       unsigned long end, pgprot_t newprot,
366 		       unsigned long cp_flags)
367 {
368 	unsigned long pages;
369 
370 	BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
371 
372 	if (is_vm_hugetlb_page(vma))
373 		pages = hugetlb_change_protection(vma, start, end, newprot);
374 	else
375 		pages = change_protection_range(vma, start, end, newprot,
376 						cp_flags);
377 
378 	return pages;
379 }
380 
381 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
382 			       unsigned long next, struct mm_walk *walk)
383 {
384 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
385 		0 : -EACCES;
386 }
387 
388 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
389 				   unsigned long addr, unsigned long next,
390 				   struct mm_walk *walk)
391 {
392 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
393 		0 : -EACCES;
394 }
395 
396 static int prot_none_test(unsigned long addr, unsigned long next,
397 			  struct mm_walk *walk)
398 {
399 	return 0;
400 }
401 
402 static const struct mm_walk_ops prot_none_walk_ops = {
403 	.pte_entry		= prot_none_pte_entry,
404 	.hugetlb_entry		= prot_none_hugetlb_entry,
405 	.test_walk		= prot_none_test,
406 };
407 
408 int
409 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
410 	unsigned long start, unsigned long end, unsigned long newflags)
411 {
412 	struct mm_struct *mm = vma->vm_mm;
413 	unsigned long oldflags = vma->vm_flags;
414 	long nrpages = (end - start) >> PAGE_SHIFT;
415 	unsigned long charged = 0;
416 	pgoff_t pgoff;
417 	int error;
418 	int dirty_accountable = 0;
419 
420 	if (newflags == oldflags) {
421 		*pprev = vma;
422 		return 0;
423 	}
424 
425 	/*
426 	 * Do PROT_NONE PFN permission checks here when we can still
427 	 * bail out without undoing a lot of state. This is a rather
428 	 * uncommon case, so doesn't need to be very optimized.
429 	 */
430 	if (arch_has_pfn_modify_check() &&
431 	    (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
432 	    (newflags & VM_ACCESS_FLAGS) == 0) {
433 		pgprot_t new_pgprot = vm_get_page_prot(newflags);
434 
435 		error = walk_page_range(current->mm, start, end,
436 				&prot_none_walk_ops, &new_pgprot);
437 		if (error)
438 			return error;
439 	}
440 
441 	/*
442 	 * If we make a private mapping writable we increase our commit;
443 	 * but (without finer accounting) cannot reduce our commit if we
444 	 * make it unwritable again. hugetlb mapping were accounted for
445 	 * even if read-only so there is no need to account for them here
446 	 */
447 	if (newflags & VM_WRITE) {
448 		/* Check space limits when area turns into data. */
449 		if (!may_expand_vm(mm, newflags, nrpages) &&
450 				may_expand_vm(mm, oldflags, nrpages))
451 			return -ENOMEM;
452 		if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
453 						VM_SHARED|VM_NORESERVE))) {
454 			charged = nrpages;
455 			if (security_vm_enough_memory_mm(mm, charged))
456 				return -ENOMEM;
457 			newflags |= VM_ACCOUNT;
458 		}
459 	}
460 
461 	/*
462 	 * First try to merge with previous and/or next vma.
463 	 */
464 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
465 	*pprev = vma_merge(mm, *pprev, start, end, newflags,
466 			   vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
467 			   vma->vm_userfaultfd_ctx);
468 	if (*pprev) {
469 		vma = *pprev;
470 		VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
471 		goto success;
472 	}
473 
474 	*pprev = vma;
475 
476 	if (start != vma->vm_start) {
477 		error = split_vma(mm, vma, start, 1);
478 		if (error)
479 			goto fail;
480 	}
481 
482 	if (end != vma->vm_end) {
483 		error = split_vma(mm, vma, end, 0);
484 		if (error)
485 			goto fail;
486 	}
487 
488 success:
489 	/*
490 	 * vm_flags and vm_page_prot are protected by the mmap_lock
491 	 * held in write mode.
492 	 */
493 	vma->vm_flags = newflags;
494 	dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot);
495 	vma_set_page_prot(vma);
496 
497 	change_protection(vma, start, end, vma->vm_page_prot,
498 			  dirty_accountable ? MM_CP_DIRTY_ACCT : 0);
499 
500 	/*
501 	 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
502 	 * fault on access.
503 	 */
504 	if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
505 			(newflags & VM_WRITE)) {
506 		populate_vma_page_range(vma, start, end, NULL);
507 	}
508 
509 	vm_stat_account(mm, oldflags, -nrpages);
510 	vm_stat_account(mm, newflags, nrpages);
511 	perf_event_mmap(vma);
512 	return 0;
513 
514 fail:
515 	vm_unacct_memory(charged);
516 	return error;
517 }
518 
519 /*
520  * pkey==-1 when doing a legacy mprotect()
521  */
522 static int do_mprotect_pkey(unsigned long start, size_t len,
523 		unsigned long prot, int pkey)
524 {
525 	unsigned long nstart, end, tmp, reqprot;
526 	struct vm_area_struct *vma, *prev;
527 	int error = -EINVAL;
528 	const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
529 	const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
530 				(prot & PROT_READ);
531 
532 	start = untagged_addr(start);
533 
534 	prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
535 	if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
536 		return -EINVAL;
537 
538 	if (start & ~PAGE_MASK)
539 		return -EINVAL;
540 	if (!len)
541 		return 0;
542 	len = PAGE_ALIGN(len);
543 	end = start + len;
544 	if (end <= start)
545 		return -ENOMEM;
546 	if (!arch_validate_prot(prot, start))
547 		return -EINVAL;
548 
549 	reqprot = prot;
550 
551 	if (mmap_write_lock_killable(current->mm))
552 		return -EINTR;
553 
554 	/*
555 	 * If userspace did not allocate the pkey, do not let
556 	 * them use it here.
557 	 */
558 	error = -EINVAL;
559 	if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
560 		goto out;
561 
562 	vma = find_vma(current->mm, start);
563 	error = -ENOMEM;
564 	if (!vma)
565 		goto out;
566 	prev = vma->vm_prev;
567 	if (unlikely(grows & PROT_GROWSDOWN)) {
568 		if (vma->vm_start >= end)
569 			goto out;
570 		start = vma->vm_start;
571 		error = -EINVAL;
572 		if (!(vma->vm_flags & VM_GROWSDOWN))
573 			goto out;
574 	} else {
575 		if (vma->vm_start > start)
576 			goto out;
577 		if (unlikely(grows & PROT_GROWSUP)) {
578 			end = vma->vm_end;
579 			error = -EINVAL;
580 			if (!(vma->vm_flags & VM_GROWSUP))
581 				goto out;
582 		}
583 	}
584 	if (start > vma->vm_start)
585 		prev = vma;
586 
587 	for (nstart = start ; ; ) {
588 		unsigned long mask_off_old_flags;
589 		unsigned long newflags;
590 		int new_vma_pkey;
591 
592 		/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
593 
594 		/* Does the application expect PROT_READ to imply PROT_EXEC */
595 		if (rier && (vma->vm_flags & VM_MAYEXEC))
596 			prot |= PROT_EXEC;
597 
598 		/*
599 		 * Each mprotect() call explicitly passes r/w/x permissions.
600 		 * If a permission is not passed to mprotect(), it must be
601 		 * cleared from the VMA.
602 		 */
603 		mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
604 					VM_FLAGS_CLEAR;
605 
606 		new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
607 		newflags = calc_vm_prot_bits(prot, new_vma_pkey);
608 		newflags |= (vma->vm_flags & ~mask_off_old_flags);
609 
610 		/* newflags >> 4 shift VM_MAY% in place of VM_% */
611 		if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
612 			error = -EACCES;
613 			goto out;
614 		}
615 
616 		/* Allow architectures to sanity-check the new flags */
617 		if (!arch_validate_flags(newflags)) {
618 			error = -EINVAL;
619 			goto out;
620 		}
621 
622 		error = security_file_mprotect(vma, reqprot, prot);
623 		if (error)
624 			goto out;
625 
626 		tmp = vma->vm_end;
627 		if (tmp > end)
628 			tmp = end;
629 
630 		if (vma->vm_ops && vma->vm_ops->mprotect) {
631 			error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
632 			if (error)
633 				goto out;
634 		}
635 
636 		error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
637 		if (error)
638 			goto out;
639 
640 		nstart = tmp;
641 
642 		if (nstart < prev->vm_end)
643 			nstart = prev->vm_end;
644 		if (nstart >= end)
645 			goto out;
646 
647 		vma = prev->vm_next;
648 		if (!vma || vma->vm_start != nstart) {
649 			error = -ENOMEM;
650 			goto out;
651 		}
652 		prot = reqprot;
653 	}
654 out:
655 	mmap_write_unlock(current->mm);
656 	return error;
657 }
658 
659 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
660 		unsigned long, prot)
661 {
662 	return do_mprotect_pkey(start, len, prot, -1);
663 }
664 
665 #ifdef CONFIG_ARCH_HAS_PKEYS
666 
667 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
668 		unsigned long, prot, int, pkey)
669 {
670 	return do_mprotect_pkey(start, len, prot, pkey);
671 }
672 
673 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
674 {
675 	int pkey;
676 	int ret;
677 
678 	/* No flags supported yet. */
679 	if (flags)
680 		return -EINVAL;
681 	/* check for unsupported init values */
682 	if (init_val & ~PKEY_ACCESS_MASK)
683 		return -EINVAL;
684 
685 	mmap_write_lock(current->mm);
686 	pkey = mm_pkey_alloc(current->mm);
687 
688 	ret = -ENOSPC;
689 	if (pkey == -1)
690 		goto out;
691 
692 	ret = arch_set_user_pkey_access(current, pkey, init_val);
693 	if (ret) {
694 		mm_pkey_free(current->mm, pkey);
695 		goto out;
696 	}
697 	ret = pkey;
698 out:
699 	mmap_write_unlock(current->mm);
700 	return ret;
701 }
702 
703 SYSCALL_DEFINE1(pkey_free, int, pkey)
704 {
705 	int ret;
706 
707 	mmap_write_lock(current->mm);
708 	ret = mm_pkey_free(current->mm, pkey);
709 	mmap_write_unlock(current->mm);
710 
711 	/*
712 	 * We could provide warnings or errors if any VMA still
713 	 * has the pkey set here.
714 	 */
715 	return ret;
716 }
717 
718 #endif /* CONFIG_ARCH_HAS_PKEYS */
719