1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mprotect.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 * 8 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 10 */ 11 12 #include <linux/pagewalk.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/mman.h> 16 #include <linux/fs.h> 17 #include <linux/highmem.h> 18 #include <linux/security.h> 19 #include <linux/mempolicy.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/migrate.h> 26 #include <linux/perf_event.h> 27 #include <linux/pkeys.h> 28 #include <linux/ksm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mm_inline.h> 31 #include <linux/pgtable.h> 32 #include <asm/cacheflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/tlbflush.h> 35 36 #include "internal.h" 37 38 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 39 unsigned long addr, unsigned long end, pgprot_t newprot, 40 unsigned long cp_flags) 41 { 42 pte_t *pte, oldpte; 43 spinlock_t *ptl; 44 unsigned long pages = 0; 45 int target_node = NUMA_NO_NODE; 46 bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT; 47 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 48 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 49 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 50 51 /* 52 * Can be called with only the mmap_lock for reading by 53 * prot_numa so we must check the pmd isn't constantly 54 * changing from under us from pmd_none to pmd_trans_huge 55 * and/or the other way around. 56 */ 57 if (pmd_trans_unstable(pmd)) 58 return 0; 59 60 /* 61 * The pmd points to a regular pte so the pmd can't change 62 * from under us even if the mmap_lock is only hold for 63 * reading. 64 */ 65 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 66 67 /* Get target node for single threaded private VMAs */ 68 if (prot_numa && !(vma->vm_flags & VM_SHARED) && 69 atomic_read(&vma->vm_mm->mm_users) == 1) 70 target_node = numa_node_id(); 71 72 flush_tlb_batched_pending(vma->vm_mm); 73 arch_enter_lazy_mmu_mode(); 74 do { 75 oldpte = *pte; 76 if (pte_present(oldpte)) { 77 pte_t ptent; 78 bool preserve_write = prot_numa && pte_write(oldpte); 79 80 /* 81 * Avoid trapping faults against the zero or KSM 82 * pages. See similar comment in change_huge_pmd. 83 */ 84 if (prot_numa) { 85 struct page *page; 86 87 /* Avoid TLB flush if possible */ 88 if (pte_protnone(oldpte)) 89 continue; 90 91 page = vm_normal_page(vma, addr, oldpte); 92 if (!page || PageKsm(page)) 93 continue; 94 95 /* Also skip shared copy-on-write pages */ 96 if (is_cow_mapping(vma->vm_flags) && 97 page_mapcount(page) != 1) 98 continue; 99 100 /* 101 * While migration can move some dirty pages, 102 * it cannot move them all from MIGRATE_ASYNC 103 * context. 104 */ 105 if (page_is_file_lru(page) && PageDirty(page)) 106 continue; 107 108 /* 109 * Don't mess with PTEs if page is already on the node 110 * a single-threaded process is running on. 111 */ 112 if (target_node == page_to_nid(page)) 113 continue; 114 } 115 116 oldpte = ptep_modify_prot_start(vma, addr, pte); 117 ptent = pte_modify(oldpte, newprot); 118 if (preserve_write) 119 ptent = pte_mk_savedwrite(ptent); 120 121 if (uffd_wp) { 122 ptent = pte_wrprotect(ptent); 123 ptent = pte_mkuffd_wp(ptent); 124 } else if (uffd_wp_resolve) { 125 /* 126 * Leave the write bit to be handled 127 * by PF interrupt handler, then 128 * things like COW could be properly 129 * handled. 130 */ 131 ptent = pte_clear_uffd_wp(ptent); 132 } 133 134 /* Avoid taking write faults for known dirty pages */ 135 if (dirty_accountable && pte_dirty(ptent) && 136 (pte_soft_dirty(ptent) || 137 !(vma->vm_flags & VM_SOFTDIRTY))) { 138 ptent = pte_mkwrite(ptent); 139 } 140 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent); 141 pages++; 142 } else if (is_swap_pte(oldpte)) { 143 swp_entry_t entry = pte_to_swp_entry(oldpte); 144 pte_t newpte; 145 146 if (is_write_migration_entry(entry)) { 147 /* 148 * A protection check is difficult so 149 * just be safe and disable write 150 */ 151 make_migration_entry_read(&entry); 152 newpte = swp_entry_to_pte(entry); 153 if (pte_swp_soft_dirty(oldpte)) 154 newpte = pte_swp_mksoft_dirty(newpte); 155 if (pte_swp_uffd_wp(oldpte)) 156 newpte = pte_swp_mkuffd_wp(newpte); 157 } else if (is_write_device_private_entry(entry)) { 158 /* 159 * We do not preserve soft-dirtiness. See 160 * copy_one_pte() for explanation. 161 */ 162 make_device_private_entry_read(&entry); 163 newpte = swp_entry_to_pte(entry); 164 if (pte_swp_uffd_wp(oldpte)) 165 newpte = pte_swp_mkuffd_wp(newpte); 166 } else { 167 newpte = oldpte; 168 } 169 170 if (uffd_wp) 171 newpte = pte_swp_mkuffd_wp(newpte); 172 else if (uffd_wp_resolve) 173 newpte = pte_swp_clear_uffd_wp(newpte); 174 175 if (!pte_same(oldpte, newpte)) { 176 set_pte_at(vma->vm_mm, addr, pte, newpte); 177 pages++; 178 } 179 } 180 } while (pte++, addr += PAGE_SIZE, addr != end); 181 arch_leave_lazy_mmu_mode(); 182 pte_unmap_unlock(pte - 1, ptl); 183 184 return pages; 185 } 186 187 /* 188 * Used when setting automatic NUMA hinting protection where it is 189 * critical that a numa hinting PMD is not confused with a bad PMD. 190 */ 191 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) 192 { 193 pmd_t pmdval = pmd_read_atomic(pmd); 194 195 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ 196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 197 barrier(); 198 #endif 199 200 if (pmd_none(pmdval)) 201 return 1; 202 if (pmd_trans_huge(pmdval)) 203 return 0; 204 if (unlikely(pmd_bad(pmdval))) { 205 pmd_clear_bad(pmd); 206 return 1; 207 } 208 209 return 0; 210 } 211 212 static inline unsigned long change_pmd_range(struct vm_area_struct *vma, 213 pud_t *pud, unsigned long addr, unsigned long end, 214 pgprot_t newprot, unsigned long cp_flags) 215 { 216 pmd_t *pmd; 217 unsigned long next; 218 unsigned long pages = 0; 219 unsigned long nr_huge_updates = 0; 220 struct mmu_notifier_range range; 221 222 range.start = 0; 223 224 pmd = pmd_offset(pud, addr); 225 do { 226 unsigned long this_pages; 227 228 next = pmd_addr_end(addr, end); 229 230 /* 231 * Automatic NUMA balancing walks the tables with mmap_lock 232 * held for read. It's possible a parallel update to occur 233 * between pmd_trans_huge() and a pmd_none_or_clear_bad() 234 * check leading to a false positive and clearing. 235 * Hence, it's necessary to atomically read the PMD value 236 * for all the checks. 237 */ 238 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && 239 pmd_none_or_clear_bad_unless_trans_huge(pmd)) 240 goto next; 241 242 /* invoke the mmu notifier if the pmd is populated */ 243 if (!range.start) { 244 mmu_notifier_range_init(&range, 245 MMU_NOTIFY_PROTECTION_VMA, 0, 246 vma, vma->vm_mm, addr, end); 247 mmu_notifier_invalidate_range_start(&range); 248 } 249 250 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 251 if (next - addr != HPAGE_PMD_SIZE) { 252 __split_huge_pmd(vma, pmd, addr, false, NULL); 253 } else { 254 int nr_ptes = change_huge_pmd(vma, pmd, addr, 255 newprot, cp_flags); 256 257 if (nr_ptes) { 258 if (nr_ptes == HPAGE_PMD_NR) { 259 pages += HPAGE_PMD_NR; 260 nr_huge_updates++; 261 } 262 263 /* huge pmd was handled */ 264 goto next; 265 } 266 } 267 /* fall through, the trans huge pmd just split */ 268 } 269 this_pages = change_pte_range(vma, pmd, addr, next, newprot, 270 cp_flags); 271 pages += this_pages; 272 next: 273 cond_resched(); 274 } while (pmd++, addr = next, addr != end); 275 276 if (range.start) 277 mmu_notifier_invalidate_range_end(&range); 278 279 if (nr_huge_updates) 280 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); 281 return pages; 282 } 283 284 static inline unsigned long change_pud_range(struct vm_area_struct *vma, 285 p4d_t *p4d, unsigned long addr, unsigned long end, 286 pgprot_t newprot, unsigned long cp_flags) 287 { 288 pud_t *pud; 289 unsigned long next; 290 unsigned long pages = 0; 291 292 pud = pud_offset(p4d, addr); 293 do { 294 next = pud_addr_end(addr, end); 295 if (pud_none_or_clear_bad(pud)) 296 continue; 297 pages += change_pmd_range(vma, pud, addr, next, newprot, 298 cp_flags); 299 } while (pud++, addr = next, addr != end); 300 301 return pages; 302 } 303 304 static inline unsigned long change_p4d_range(struct vm_area_struct *vma, 305 pgd_t *pgd, unsigned long addr, unsigned long end, 306 pgprot_t newprot, unsigned long cp_flags) 307 { 308 p4d_t *p4d; 309 unsigned long next; 310 unsigned long pages = 0; 311 312 p4d = p4d_offset(pgd, addr); 313 do { 314 next = p4d_addr_end(addr, end); 315 if (p4d_none_or_clear_bad(p4d)) 316 continue; 317 pages += change_pud_range(vma, p4d, addr, next, newprot, 318 cp_flags); 319 } while (p4d++, addr = next, addr != end); 320 321 return pages; 322 } 323 324 static unsigned long change_protection_range(struct vm_area_struct *vma, 325 unsigned long addr, unsigned long end, pgprot_t newprot, 326 unsigned long cp_flags) 327 { 328 struct mm_struct *mm = vma->vm_mm; 329 pgd_t *pgd; 330 unsigned long next; 331 unsigned long start = addr; 332 unsigned long pages = 0; 333 334 BUG_ON(addr >= end); 335 pgd = pgd_offset(mm, addr); 336 flush_cache_range(vma, addr, end); 337 inc_tlb_flush_pending(mm); 338 do { 339 next = pgd_addr_end(addr, end); 340 if (pgd_none_or_clear_bad(pgd)) 341 continue; 342 pages += change_p4d_range(vma, pgd, addr, next, newprot, 343 cp_flags); 344 } while (pgd++, addr = next, addr != end); 345 346 /* Only flush the TLB if we actually modified any entries: */ 347 if (pages) 348 flush_tlb_range(vma, start, end); 349 dec_tlb_flush_pending(mm); 350 351 return pages; 352 } 353 354 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 355 unsigned long end, pgprot_t newprot, 356 unsigned long cp_flags) 357 { 358 unsigned long pages; 359 360 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL); 361 362 if (is_vm_hugetlb_page(vma)) 363 pages = hugetlb_change_protection(vma, start, end, newprot); 364 else 365 pages = change_protection_range(vma, start, end, newprot, 366 cp_flags); 367 368 return pages; 369 } 370 371 static int prot_none_pte_entry(pte_t *pte, unsigned long addr, 372 unsigned long next, struct mm_walk *walk) 373 { 374 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 375 0 : -EACCES; 376 } 377 378 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, 379 unsigned long addr, unsigned long next, 380 struct mm_walk *walk) 381 { 382 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? 383 0 : -EACCES; 384 } 385 386 static int prot_none_test(unsigned long addr, unsigned long next, 387 struct mm_walk *walk) 388 { 389 return 0; 390 } 391 392 static const struct mm_walk_ops prot_none_walk_ops = { 393 .pte_entry = prot_none_pte_entry, 394 .hugetlb_entry = prot_none_hugetlb_entry, 395 .test_walk = prot_none_test, 396 }; 397 398 int 399 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, 400 unsigned long start, unsigned long end, unsigned long newflags) 401 { 402 struct mm_struct *mm = vma->vm_mm; 403 unsigned long oldflags = vma->vm_flags; 404 long nrpages = (end - start) >> PAGE_SHIFT; 405 unsigned long charged = 0; 406 pgoff_t pgoff; 407 int error; 408 int dirty_accountable = 0; 409 410 if (newflags == oldflags) { 411 *pprev = vma; 412 return 0; 413 } 414 415 /* 416 * Do PROT_NONE PFN permission checks here when we can still 417 * bail out without undoing a lot of state. This is a rather 418 * uncommon case, so doesn't need to be very optimized. 419 */ 420 if (arch_has_pfn_modify_check() && 421 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 422 (newflags & VM_ACCESS_FLAGS) == 0) { 423 pgprot_t new_pgprot = vm_get_page_prot(newflags); 424 425 error = walk_page_range(current->mm, start, end, 426 &prot_none_walk_ops, &new_pgprot); 427 if (error) 428 return error; 429 } 430 431 /* 432 * If we make a private mapping writable we increase our commit; 433 * but (without finer accounting) cannot reduce our commit if we 434 * make it unwritable again. hugetlb mapping were accounted for 435 * even if read-only so there is no need to account for them here 436 */ 437 if (newflags & VM_WRITE) { 438 /* Check space limits when area turns into data. */ 439 if (!may_expand_vm(mm, newflags, nrpages) && 440 may_expand_vm(mm, oldflags, nrpages)) 441 return -ENOMEM; 442 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| 443 VM_SHARED|VM_NORESERVE))) { 444 charged = nrpages; 445 if (security_vm_enough_memory_mm(mm, charged)) 446 return -ENOMEM; 447 newflags |= VM_ACCOUNT; 448 } 449 } 450 451 /* 452 * First try to merge with previous and/or next vma. 453 */ 454 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 455 *pprev = vma_merge(mm, *pprev, start, end, newflags, 456 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), 457 vma->vm_userfaultfd_ctx); 458 if (*pprev) { 459 vma = *pprev; 460 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); 461 goto success; 462 } 463 464 *pprev = vma; 465 466 if (start != vma->vm_start) { 467 error = split_vma(mm, vma, start, 1); 468 if (error) 469 goto fail; 470 } 471 472 if (end != vma->vm_end) { 473 error = split_vma(mm, vma, end, 0); 474 if (error) 475 goto fail; 476 } 477 478 success: 479 /* 480 * vm_flags and vm_page_prot are protected by the mmap_lock 481 * held in write mode. 482 */ 483 vma->vm_flags = newflags; 484 dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); 485 vma_set_page_prot(vma); 486 487 change_protection(vma, start, end, vma->vm_page_prot, 488 dirty_accountable ? MM_CP_DIRTY_ACCT : 0); 489 490 /* 491 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major 492 * fault on access. 493 */ 494 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && 495 (newflags & VM_WRITE)) { 496 populate_vma_page_range(vma, start, end, NULL); 497 } 498 499 vm_stat_account(mm, oldflags, -nrpages); 500 vm_stat_account(mm, newflags, nrpages); 501 perf_event_mmap(vma); 502 return 0; 503 504 fail: 505 vm_unacct_memory(charged); 506 return error; 507 } 508 509 /* 510 * pkey==-1 when doing a legacy mprotect() 511 */ 512 static int do_mprotect_pkey(unsigned long start, size_t len, 513 unsigned long prot, int pkey) 514 { 515 unsigned long nstart, end, tmp, reqprot; 516 struct vm_area_struct *vma, *prev; 517 int error = -EINVAL; 518 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); 519 const bool rier = (current->personality & READ_IMPLIES_EXEC) && 520 (prot & PROT_READ); 521 522 start = untagged_addr(start); 523 524 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); 525 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ 526 return -EINVAL; 527 528 if (start & ~PAGE_MASK) 529 return -EINVAL; 530 if (!len) 531 return 0; 532 len = PAGE_ALIGN(len); 533 end = start + len; 534 if (end <= start) 535 return -ENOMEM; 536 if (!arch_validate_prot(prot, start)) 537 return -EINVAL; 538 539 reqprot = prot; 540 541 if (mmap_write_lock_killable(current->mm)) 542 return -EINTR; 543 544 /* 545 * If userspace did not allocate the pkey, do not let 546 * them use it here. 547 */ 548 error = -EINVAL; 549 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) 550 goto out; 551 552 vma = find_vma(current->mm, start); 553 error = -ENOMEM; 554 if (!vma) 555 goto out; 556 prev = vma->vm_prev; 557 if (unlikely(grows & PROT_GROWSDOWN)) { 558 if (vma->vm_start >= end) 559 goto out; 560 start = vma->vm_start; 561 error = -EINVAL; 562 if (!(vma->vm_flags & VM_GROWSDOWN)) 563 goto out; 564 } else { 565 if (vma->vm_start > start) 566 goto out; 567 if (unlikely(grows & PROT_GROWSUP)) { 568 end = vma->vm_end; 569 error = -EINVAL; 570 if (!(vma->vm_flags & VM_GROWSUP)) 571 goto out; 572 } 573 } 574 if (start > vma->vm_start) 575 prev = vma; 576 577 for (nstart = start ; ; ) { 578 unsigned long mask_off_old_flags; 579 unsigned long newflags; 580 int new_vma_pkey; 581 582 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 583 584 /* Does the application expect PROT_READ to imply PROT_EXEC */ 585 if (rier && (vma->vm_flags & VM_MAYEXEC)) 586 prot |= PROT_EXEC; 587 588 /* 589 * Each mprotect() call explicitly passes r/w/x permissions. 590 * If a permission is not passed to mprotect(), it must be 591 * cleared from the VMA. 592 */ 593 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | 594 VM_FLAGS_CLEAR; 595 596 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); 597 newflags = calc_vm_prot_bits(prot, new_vma_pkey); 598 newflags |= (vma->vm_flags & ~mask_off_old_flags); 599 600 /* newflags >> 4 shift VM_MAY% in place of VM_% */ 601 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) { 602 error = -EACCES; 603 goto out; 604 } 605 606 error = security_file_mprotect(vma, reqprot, prot); 607 if (error) 608 goto out; 609 610 tmp = vma->vm_end; 611 if (tmp > end) 612 tmp = end; 613 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); 614 if (error) 615 goto out; 616 nstart = tmp; 617 618 if (nstart < prev->vm_end) 619 nstart = prev->vm_end; 620 if (nstart >= end) 621 goto out; 622 623 vma = prev->vm_next; 624 if (!vma || vma->vm_start != nstart) { 625 error = -ENOMEM; 626 goto out; 627 } 628 prot = reqprot; 629 } 630 out: 631 mmap_write_unlock(current->mm); 632 return error; 633 } 634 635 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, 636 unsigned long, prot) 637 { 638 return do_mprotect_pkey(start, len, prot, -1); 639 } 640 641 #ifdef CONFIG_ARCH_HAS_PKEYS 642 643 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, 644 unsigned long, prot, int, pkey) 645 { 646 return do_mprotect_pkey(start, len, prot, pkey); 647 } 648 649 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) 650 { 651 int pkey; 652 int ret; 653 654 /* No flags supported yet. */ 655 if (flags) 656 return -EINVAL; 657 /* check for unsupported init values */ 658 if (init_val & ~PKEY_ACCESS_MASK) 659 return -EINVAL; 660 661 mmap_write_lock(current->mm); 662 pkey = mm_pkey_alloc(current->mm); 663 664 ret = -ENOSPC; 665 if (pkey == -1) 666 goto out; 667 668 ret = arch_set_user_pkey_access(current, pkey, init_val); 669 if (ret) { 670 mm_pkey_free(current->mm, pkey); 671 goto out; 672 } 673 ret = pkey; 674 out: 675 mmap_write_unlock(current->mm); 676 return ret; 677 } 678 679 SYSCALL_DEFINE1(pkey_free, int, pkey) 680 { 681 int ret; 682 683 mmap_write_lock(current->mm); 684 ret = mm_pkey_free(current->mm, pkey); 685 mmap_write_unlock(current->mm); 686 687 /* 688 * We could provie warnings or errors if any VMA still 689 * has the pkey set here. 690 */ 691 return ret; 692 } 693 694 #endif /* CONFIG_ARCH_HAS_PKEYS */ 695