xref: /openbmc/linux/mm/mprotect.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/mprotect.c
4  *
5  *  (C) Copyright 1994 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  *
8  *  Address space accounting code	<alan@lxorguk.ukuu.org.uk>
9  *  (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10  */
11 
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <asm/cacheflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/tlb.h>
37 
38 #include "internal.h"
39 
40 static unsigned long change_pte_range(struct mmu_gather *tlb,
41 		struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
42 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
43 {
44 	pte_t *pte, oldpte;
45 	spinlock_t *ptl;
46 	unsigned long pages = 0;
47 	int target_node = NUMA_NO_NODE;
48 	bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT;
49 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
50 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
51 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
52 
53 	tlb_change_page_size(tlb, PAGE_SIZE);
54 
55 	/*
56 	 * Can be called with only the mmap_lock for reading by
57 	 * prot_numa so we must check the pmd isn't constantly
58 	 * changing from under us from pmd_none to pmd_trans_huge
59 	 * and/or the other way around.
60 	 */
61 	if (pmd_trans_unstable(pmd))
62 		return 0;
63 
64 	/*
65 	 * The pmd points to a regular pte so the pmd can't change
66 	 * from under us even if the mmap_lock is only hold for
67 	 * reading.
68 	 */
69 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
70 
71 	/* Get target node for single threaded private VMAs */
72 	if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
73 	    atomic_read(&vma->vm_mm->mm_users) == 1)
74 		target_node = numa_node_id();
75 
76 	flush_tlb_batched_pending(vma->vm_mm);
77 	arch_enter_lazy_mmu_mode();
78 	do {
79 		oldpte = *pte;
80 		if (pte_present(oldpte)) {
81 			pte_t ptent;
82 			bool preserve_write = prot_numa && pte_write(oldpte);
83 
84 			/*
85 			 * Avoid trapping faults against the zero or KSM
86 			 * pages. See similar comment in change_huge_pmd.
87 			 */
88 			if (prot_numa) {
89 				struct page *page;
90 				int nid;
91 
92 				/* Avoid TLB flush if possible */
93 				if (pte_protnone(oldpte))
94 					continue;
95 
96 				page = vm_normal_page(vma, addr, oldpte);
97 				if (!page || PageKsm(page))
98 					continue;
99 
100 				/* Also skip shared copy-on-write pages */
101 				if (is_cow_mapping(vma->vm_flags) &&
102 				    page_count(page) != 1)
103 					continue;
104 
105 				/*
106 				 * While migration can move some dirty pages,
107 				 * it cannot move them all from MIGRATE_ASYNC
108 				 * context.
109 				 */
110 				if (page_is_file_lru(page) && PageDirty(page))
111 					continue;
112 
113 				/*
114 				 * Don't mess with PTEs if page is already on the node
115 				 * a single-threaded process is running on.
116 				 */
117 				nid = page_to_nid(page);
118 				if (target_node == nid)
119 					continue;
120 
121 				/*
122 				 * Skip scanning top tier node if normal numa
123 				 * balancing is disabled
124 				 */
125 				if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
126 				    node_is_toptier(nid))
127 					continue;
128 			}
129 
130 			oldpte = ptep_modify_prot_start(vma, addr, pte);
131 			ptent = pte_modify(oldpte, newprot);
132 			if (preserve_write)
133 				ptent = pte_mk_savedwrite(ptent);
134 
135 			if (uffd_wp) {
136 				ptent = pte_wrprotect(ptent);
137 				ptent = pte_mkuffd_wp(ptent);
138 			} else if (uffd_wp_resolve) {
139 				/*
140 				 * Leave the write bit to be handled
141 				 * by PF interrupt handler, then
142 				 * things like COW could be properly
143 				 * handled.
144 				 */
145 				ptent = pte_clear_uffd_wp(ptent);
146 			}
147 
148 			/* Avoid taking write faults for known dirty pages */
149 			if (dirty_accountable && pte_dirty(ptent) &&
150 					(pte_soft_dirty(ptent) ||
151 					 !(vma->vm_flags & VM_SOFTDIRTY))) {
152 				ptent = pte_mkwrite(ptent);
153 			}
154 			ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
155 			if (pte_needs_flush(oldpte, ptent))
156 				tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
157 			pages++;
158 		} else if (is_swap_pte(oldpte)) {
159 			swp_entry_t entry = pte_to_swp_entry(oldpte);
160 			struct page *page = pfn_swap_entry_to_page(entry);
161 			pte_t newpte;
162 
163 			if (is_writable_migration_entry(entry)) {
164 				/*
165 				 * A protection check is difficult so
166 				 * just be safe and disable write
167 				 */
168 				if (PageAnon(page))
169 					entry = make_readable_exclusive_migration_entry(
170 							     swp_offset(entry));
171 				else
172 					entry = make_readable_migration_entry(swp_offset(entry));
173 				newpte = swp_entry_to_pte(entry);
174 				if (pte_swp_soft_dirty(oldpte))
175 					newpte = pte_swp_mksoft_dirty(newpte);
176 				if (pte_swp_uffd_wp(oldpte))
177 					newpte = pte_swp_mkuffd_wp(newpte);
178 			} else if (is_writable_device_private_entry(entry)) {
179 				/*
180 				 * We do not preserve soft-dirtiness. See
181 				 * copy_one_pte() for explanation.
182 				 */
183 				entry = make_readable_device_private_entry(
184 							swp_offset(entry));
185 				newpte = swp_entry_to_pte(entry);
186 				if (pte_swp_uffd_wp(oldpte))
187 					newpte = pte_swp_mkuffd_wp(newpte);
188 			} else if (is_writable_device_exclusive_entry(entry)) {
189 				entry = make_readable_device_exclusive_entry(
190 							swp_offset(entry));
191 				newpte = swp_entry_to_pte(entry);
192 				if (pte_swp_soft_dirty(oldpte))
193 					newpte = pte_swp_mksoft_dirty(newpte);
194 				if (pte_swp_uffd_wp(oldpte))
195 					newpte = pte_swp_mkuffd_wp(newpte);
196 			} else {
197 				newpte = oldpte;
198 			}
199 
200 			if (uffd_wp)
201 				newpte = pte_swp_mkuffd_wp(newpte);
202 			else if (uffd_wp_resolve)
203 				newpte = pte_swp_clear_uffd_wp(newpte);
204 
205 			if (!pte_same(oldpte, newpte)) {
206 				set_pte_at(vma->vm_mm, addr, pte, newpte);
207 				pages++;
208 			}
209 		}
210 	} while (pte++, addr += PAGE_SIZE, addr != end);
211 	arch_leave_lazy_mmu_mode();
212 	pte_unmap_unlock(pte - 1, ptl);
213 
214 	return pages;
215 }
216 
217 /*
218  * Used when setting automatic NUMA hinting protection where it is
219  * critical that a numa hinting PMD is not confused with a bad PMD.
220  */
221 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
222 {
223 	pmd_t pmdval = pmd_read_atomic(pmd);
224 
225 	/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
227 	barrier();
228 #endif
229 
230 	if (pmd_none(pmdval))
231 		return 1;
232 	if (pmd_trans_huge(pmdval))
233 		return 0;
234 	if (unlikely(pmd_bad(pmdval))) {
235 		pmd_clear_bad(pmd);
236 		return 1;
237 	}
238 
239 	return 0;
240 }
241 
242 static inline unsigned long change_pmd_range(struct mmu_gather *tlb,
243 		struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
244 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
245 {
246 	pmd_t *pmd;
247 	unsigned long next;
248 	unsigned long pages = 0;
249 	unsigned long nr_huge_updates = 0;
250 	struct mmu_notifier_range range;
251 
252 	range.start = 0;
253 
254 	pmd = pmd_offset(pud, addr);
255 	do {
256 		unsigned long this_pages;
257 
258 		next = pmd_addr_end(addr, end);
259 
260 		/*
261 		 * Automatic NUMA balancing walks the tables with mmap_lock
262 		 * held for read. It's possible a parallel update to occur
263 		 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
264 		 * check leading to a false positive and clearing.
265 		 * Hence, it's necessary to atomically read the PMD value
266 		 * for all the checks.
267 		 */
268 		if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
269 		     pmd_none_or_clear_bad_unless_trans_huge(pmd))
270 			goto next;
271 
272 		/* invoke the mmu notifier if the pmd is populated */
273 		if (!range.start) {
274 			mmu_notifier_range_init(&range,
275 				MMU_NOTIFY_PROTECTION_VMA, 0,
276 				vma, vma->vm_mm, addr, end);
277 			mmu_notifier_invalidate_range_start(&range);
278 		}
279 
280 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
281 			if (next - addr != HPAGE_PMD_SIZE) {
282 				__split_huge_pmd(vma, pmd, addr, false, NULL);
283 			} else {
284 				/*
285 				 * change_huge_pmd() does not defer TLB flushes,
286 				 * so no need to propagate the tlb argument.
287 				 */
288 				int nr_ptes = change_huge_pmd(tlb, vma, pmd,
289 						addr, newprot, cp_flags);
290 
291 				if (nr_ptes) {
292 					if (nr_ptes == HPAGE_PMD_NR) {
293 						pages += HPAGE_PMD_NR;
294 						nr_huge_updates++;
295 					}
296 
297 					/* huge pmd was handled */
298 					goto next;
299 				}
300 			}
301 			/* fall through, the trans huge pmd just split */
302 		}
303 		this_pages = change_pte_range(tlb, vma, pmd, addr, next,
304 					      newprot, cp_flags);
305 		pages += this_pages;
306 next:
307 		cond_resched();
308 	} while (pmd++, addr = next, addr != end);
309 
310 	if (range.start)
311 		mmu_notifier_invalidate_range_end(&range);
312 
313 	if (nr_huge_updates)
314 		count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
315 	return pages;
316 }
317 
318 static inline unsigned long change_pud_range(struct mmu_gather *tlb,
319 		struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
320 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
321 {
322 	pud_t *pud;
323 	unsigned long next;
324 	unsigned long pages = 0;
325 
326 	pud = pud_offset(p4d, addr);
327 	do {
328 		next = pud_addr_end(addr, end);
329 		if (pud_none_or_clear_bad(pud))
330 			continue;
331 		pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
332 					  cp_flags);
333 	} while (pud++, addr = next, addr != end);
334 
335 	return pages;
336 }
337 
338 static inline unsigned long change_p4d_range(struct mmu_gather *tlb,
339 		struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
340 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
341 {
342 	p4d_t *p4d;
343 	unsigned long next;
344 	unsigned long pages = 0;
345 
346 	p4d = p4d_offset(pgd, addr);
347 	do {
348 		next = p4d_addr_end(addr, end);
349 		if (p4d_none_or_clear_bad(p4d))
350 			continue;
351 		pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
352 					  cp_flags);
353 	} while (p4d++, addr = next, addr != end);
354 
355 	return pages;
356 }
357 
358 static unsigned long change_protection_range(struct mmu_gather *tlb,
359 		struct vm_area_struct *vma, unsigned long addr,
360 		unsigned long end, pgprot_t newprot, unsigned long cp_flags)
361 {
362 	struct mm_struct *mm = vma->vm_mm;
363 	pgd_t *pgd;
364 	unsigned long next;
365 	unsigned long pages = 0;
366 
367 	BUG_ON(addr >= end);
368 	pgd = pgd_offset(mm, addr);
369 	tlb_start_vma(tlb, vma);
370 	do {
371 		next = pgd_addr_end(addr, end);
372 		if (pgd_none_or_clear_bad(pgd))
373 			continue;
374 		pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
375 					  cp_flags);
376 	} while (pgd++, addr = next, addr != end);
377 
378 	tlb_end_vma(tlb, vma);
379 
380 	return pages;
381 }
382 
383 unsigned long change_protection(struct mmu_gather *tlb,
384 		       struct vm_area_struct *vma, unsigned long start,
385 		       unsigned long end, pgprot_t newprot,
386 		       unsigned long cp_flags)
387 {
388 	unsigned long pages;
389 
390 	BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
391 
392 	if (is_vm_hugetlb_page(vma))
393 		pages = hugetlb_change_protection(vma, start, end, newprot);
394 	else
395 		pages = change_protection_range(tlb, vma, start, end, newprot,
396 						cp_flags);
397 
398 	return pages;
399 }
400 
401 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
402 			       unsigned long next, struct mm_walk *walk)
403 {
404 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
405 		0 : -EACCES;
406 }
407 
408 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
409 				   unsigned long addr, unsigned long next,
410 				   struct mm_walk *walk)
411 {
412 	return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
413 		0 : -EACCES;
414 }
415 
416 static int prot_none_test(unsigned long addr, unsigned long next,
417 			  struct mm_walk *walk)
418 {
419 	return 0;
420 }
421 
422 static const struct mm_walk_ops prot_none_walk_ops = {
423 	.pte_entry		= prot_none_pte_entry,
424 	.hugetlb_entry		= prot_none_hugetlb_entry,
425 	.test_walk		= prot_none_test,
426 };
427 
428 int
429 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
430 	       struct vm_area_struct **pprev, unsigned long start,
431 	       unsigned long end, unsigned long newflags)
432 {
433 	struct mm_struct *mm = vma->vm_mm;
434 	unsigned long oldflags = vma->vm_flags;
435 	long nrpages = (end - start) >> PAGE_SHIFT;
436 	unsigned long charged = 0;
437 	pgoff_t pgoff;
438 	int error;
439 	int dirty_accountable = 0;
440 
441 	if (newflags == oldflags) {
442 		*pprev = vma;
443 		return 0;
444 	}
445 
446 	/*
447 	 * Do PROT_NONE PFN permission checks here when we can still
448 	 * bail out without undoing a lot of state. This is a rather
449 	 * uncommon case, so doesn't need to be very optimized.
450 	 */
451 	if (arch_has_pfn_modify_check() &&
452 	    (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
453 	    (newflags & VM_ACCESS_FLAGS) == 0) {
454 		pgprot_t new_pgprot = vm_get_page_prot(newflags);
455 
456 		error = walk_page_range(current->mm, start, end,
457 				&prot_none_walk_ops, &new_pgprot);
458 		if (error)
459 			return error;
460 	}
461 
462 	/*
463 	 * If we make a private mapping writable we increase our commit;
464 	 * but (without finer accounting) cannot reduce our commit if we
465 	 * make it unwritable again. hugetlb mapping were accounted for
466 	 * even if read-only so there is no need to account for them here
467 	 */
468 	if (newflags & VM_WRITE) {
469 		/* Check space limits when area turns into data. */
470 		if (!may_expand_vm(mm, newflags, nrpages) &&
471 				may_expand_vm(mm, oldflags, nrpages))
472 			return -ENOMEM;
473 		if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
474 						VM_SHARED|VM_NORESERVE))) {
475 			charged = nrpages;
476 			if (security_vm_enough_memory_mm(mm, charged))
477 				return -ENOMEM;
478 			newflags |= VM_ACCOUNT;
479 		}
480 	}
481 
482 	/*
483 	 * First try to merge with previous and/or next vma.
484 	 */
485 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
486 	*pprev = vma_merge(mm, *pprev, start, end, newflags,
487 			   vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
488 			   vma->vm_userfaultfd_ctx, anon_vma_name(vma));
489 	if (*pprev) {
490 		vma = *pprev;
491 		VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
492 		goto success;
493 	}
494 
495 	*pprev = vma;
496 
497 	if (start != vma->vm_start) {
498 		error = split_vma(mm, vma, start, 1);
499 		if (error)
500 			goto fail;
501 	}
502 
503 	if (end != vma->vm_end) {
504 		error = split_vma(mm, vma, end, 0);
505 		if (error)
506 			goto fail;
507 	}
508 
509 success:
510 	/*
511 	 * vm_flags and vm_page_prot are protected by the mmap_lock
512 	 * held in write mode.
513 	 */
514 	vma->vm_flags = newflags;
515 	dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot);
516 	vma_set_page_prot(vma);
517 
518 	change_protection(tlb, vma, start, end, vma->vm_page_prot,
519 			  dirty_accountable ? MM_CP_DIRTY_ACCT : 0);
520 
521 	/*
522 	 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
523 	 * fault on access.
524 	 */
525 	if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
526 			(newflags & VM_WRITE)) {
527 		populate_vma_page_range(vma, start, end, NULL);
528 	}
529 
530 	vm_stat_account(mm, oldflags, -nrpages);
531 	vm_stat_account(mm, newflags, nrpages);
532 	perf_event_mmap(vma);
533 	return 0;
534 
535 fail:
536 	vm_unacct_memory(charged);
537 	return error;
538 }
539 
540 /*
541  * pkey==-1 when doing a legacy mprotect()
542  */
543 static int do_mprotect_pkey(unsigned long start, size_t len,
544 		unsigned long prot, int pkey)
545 {
546 	unsigned long nstart, end, tmp, reqprot;
547 	struct vm_area_struct *vma, *prev;
548 	int error = -EINVAL;
549 	const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
550 	const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
551 				(prot & PROT_READ);
552 	struct mmu_gather tlb;
553 
554 	start = untagged_addr(start);
555 
556 	prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
557 	if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
558 		return -EINVAL;
559 
560 	if (start & ~PAGE_MASK)
561 		return -EINVAL;
562 	if (!len)
563 		return 0;
564 	len = PAGE_ALIGN(len);
565 	end = start + len;
566 	if (end <= start)
567 		return -ENOMEM;
568 	if (!arch_validate_prot(prot, start))
569 		return -EINVAL;
570 
571 	reqprot = prot;
572 
573 	if (mmap_write_lock_killable(current->mm))
574 		return -EINTR;
575 
576 	/*
577 	 * If userspace did not allocate the pkey, do not let
578 	 * them use it here.
579 	 */
580 	error = -EINVAL;
581 	if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
582 		goto out;
583 
584 	vma = find_vma(current->mm, start);
585 	error = -ENOMEM;
586 	if (!vma)
587 		goto out;
588 
589 	if (unlikely(grows & PROT_GROWSDOWN)) {
590 		if (vma->vm_start >= end)
591 			goto out;
592 		start = vma->vm_start;
593 		error = -EINVAL;
594 		if (!(vma->vm_flags & VM_GROWSDOWN))
595 			goto out;
596 	} else {
597 		if (vma->vm_start > start)
598 			goto out;
599 		if (unlikely(grows & PROT_GROWSUP)) {
600 			end = vma->vm_end;
601 			error = -EINVAL;
602 			if (!(vma->vm_flags & VM_GROWSUP))
603 				goto out;
604 		}
605 	}
606 
607 	if (start > vma->vm_start)
608 		prev = vma;
609 	else
610 		prev = vma->vm_prev;
611 
612 	tlb_gather_mmu(&tlb, current->mm);
613 	for (nstart = start ; ; ) {
614 		unsigned long mask_off_old_flags;
615 		unsigned long newflags;
616 		int new_vma_pkey;
617 
618 		/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
619 
620 		/* Does the application expect PROT_READ to imply PROT_EXEC */
621 		if (rier && (vma->vm_flags & VM_MAYEXEC))
622 			prot |= PROT_EXEC;
623 
624 		/*
625 		 * Each mprotect() call explicitly passes r/w/x permissions.
626 		 * If a permission is not passed to mprotect(), it must be
627 		 * cleared from the VMA.
628 		 */
629 		mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
630 					VM_FLAGS_CLEAR;
631 
632 		new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
633 		newflags = calc_vm_prot_bits(prot, new_vma_pkey);
634 		newflags |= (vma->vm_flags & ~mask_off_old_flags);
635 
636 		/* newflags >> 4 shift VM_MAY% in place of VM_% */
637 		if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
638 			error = -EACCES;
639 			break;
640 		}
641 
642 		/* Allow architectures to sanity-check the new flags */
643 		if (!arch_validate_flags(newflags)) {
644 			error = -EINVAL;
645 			break;
646 		}
647 
648 		error = security_file_mprotect(vma, reqprot, prot);
649 		if (error)
650 			break;
651 
652 		tmp = vma->vm_end;
653 		if (tmp > end)
654 			tmp = end;
655 
656 		if (vma->vm_ops && vma->vm_ops->mprotect) {
657 			error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
658 			if (error)
659 				break;
660 		}
661 
662 		error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags);
663 		if (error)
664 			break;
665 
666 		nstart = tmp;
667 
668 		if (nstart < prev->vm_end)
669 			nstart = prev->vm_end;
670 		if (nstart >= end)
671 			break;
672 
673 		vma = prev->vm_next;
674 		if (!vma || vma->vm_start != nstart) {
675 			error = -ENOMEM;
676 			break;
677 		}
678 		prot = reqprot;
679 	}
680 	tlb_finish_mmu(&tlb);
681 out:
682 	mmap_write_unlock(current->mm);
683 	return error;
684 }
685 
686 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
687 		unsigned long, prot)
688 {
689 	return do_mprotect_pkey(start, len, prot, -1);
690 }
691 
692 #ifdef CONFIG_ARCH_HAS_PKEYS
693 
694 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
695 		unsigned long, prot, int, pkey)
696 {
697 	return do_mprotect_pkey(start, len, prot, pkey);
698 }
699 
700 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
701 {
702 	int pkey;
703 	int ret;
704 
705 	/* No flags supported yet. */
706 	if (flags)
707 		return -EINVAL;
708 	/* check for unsupported init values */
709 	if (init_val & ~PKEY_ACCESS_MASK)
710 		return -EINVAL;
711 
712 	mmap_write_lock(current->mm);
713 	pkey = mm_pkey_alloc(current->mm);
714 
715 	ret = -ENOSPC;
716 	if (pkey == -1)
717 		goto out;
718 
719 	ret = arch_set_user_pkey_access(current, pkey, init_val);
720 	if (ret) {
721 		mm_pkey_free(current->mm, pkey);
722 		goto out;
723 	}
724 	ret = pkey;
725 out:
726 	mmap_write_unlock(current->mm);
727 	return ret;
728 }
729 
730 SYSCALL_DEFINE1(pkey_free, int, pkey)
731 {
732 	int ret;
733 
734 	mmap_write_lock(current->mm);
735 	ret = mm_pkey_free(current->mm, pkey);
736 	mmap_write_unlock(current->mm);
737 
738 	/*
739 	 * We could provide warnings or errors if any VMA still
740 	 * has the pkey set here.
741 	 */
742 	return ret;
743 }
744 
745 #endif /* CONFIG_ARCH_HAS_PKEYS */
746