xref: /openbmc/linux/mm/mmu_notifier.c (revision 9d637f8113deef57bbeb141a2c1a4eb00e8c14c4)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/mmu_notifier.c
4   *
5   *  Copyright (C) 2008  Qumranet, Inc.
6   *  Copyright (C) 2008  SGI
7   *             Christoph Lameter <cl@linux.com>
8   */
9  
10  #include <linux/rculist.h>
11  #include <linux/mmu_notifier.h>
12  #include <linux/export.h>
13  #include <linux/mm.h>
14  #include <linux/err.h>
15  #include <linux/interval_tree.h>
16  #include <linux/srcu.h>
17  #include <linux/rcupdate.h>
18  #include <linux/sched.h>
19  #include <linux/sched/mm.h>
20  #include <linux/slab.h>
21  
22  /* global SRCU for all MMs */
23  DEFINE_STATIC_SRCU(srcu);
24  
25  #ifdef CONFIG_LOCKDEP
26  struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27  	.name = "mmu_notifier_invalidate_range_start"
28  };
29  #endif
30  
31  /*
32   * The mmu_notifier_subscriptions structure is allocated and installed in
33   * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34   * critical section and it's released only when mm_count reaches zero
35   * in mmdrop().
36   */
37  struct mmu_notifier_subscriptions {
38  	/* all mmu notifiers registered in this mm are queued in this list */
39  	struct hlist_head list;
40  	bool has_itree;
41  	/* to serialize the list modifications and hlist_unhashed */
42  	spinlock_t lock;
43  	unsigned long invalidate_seq;
44  	unsigned long active_invalidate_ranges;
45  	struct rb_root_cached itree;
46  	wait_queue_head_t wq;
47  	struct hlist_head deferred_list;
48  };
49  
50  /*
51   * This is a collision-retry read-side/write-side 'lock', a lot like a
52   * seqcount, however this allows multiple write-sides to hold it at
53   * once. Conceptually the write side is protecting the values of the PTEs in
54   * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55   * writer exists.
56   *
57   * Note that the core mm creates nested invalidate_range_start()/end() regions
58   * within the same thread, and runs invalidate_range_start()/end() in parallel
59   * on multiple CPUs. This is designed to not reduce concurrency or block
60   * progress on the mm side.
61   *
62   * As a secondary function, holding the full write side also serves to prevent
63   * writers for the itree, this is an optimization to avoid extra locking
64   * during invalidate_range_start/end notifiers.
65   *
66   * The write side has two states, fully excluded:
67   *  - mm->active_invalidate_ranges != 0
68   *  - subscriptions->invalidate_seq & 1 == True (odd)
69   *  - some range on the mm_struct is being invalidated
70   *  - the itree is not allowed to change
71   *
72   * And partially excluded:
73   *  - mm->active_invalidate_ranges != 0
74   *  - subscriptions->invalidate_seq & 1 == False (even)
75   *  - some range on the mm_struct is being invalidated
76   *  - the itree is allowed to change
77   *
78   * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
79   *    seq |= 1  # Begin writing
80   *    seq++     # Release the writing state
81   *    seq & 1   # True if a writer exists
82   *
83   * The later state avoids some expensive work on inv_end in the common case of
84   * no mmu_interval_notifier monitoring the VA.
85   */
86  static bool
87  mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
88  {
89  	lockdep_assert_held(&subscriptions->lock);
90  	return subscriptions->invalidate_seq & 1;
91  }
92  
93  static struct mmu_interval_notifier *
94  mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
95  			 const struct mmu_notifier_range *range,
96  			 unsigned long *seq)
97  {
98  	struct interval_tree_node *node;
99  	struct mmu_interval_notifier *res = NULL;
100  
101  	spin_lock(&subscriptions->lock);
102  	subscriptions->active_invalidate_ranges++;
103  	node = interval_tree_iter_first(&subscriptions->itree, range->start,
104  					range->end - 1);
105  	if (node) {
106  		subscriptions->invalidate_seq |= 1;
107  		res = container_of(node, struct mmu_interval_notifier,
108  				   interval_tree);
109  	}
110  
111  	*seq = subscriptions->invalidate_seq;
112  	spin_unlock(&subscriptions->lock);
113  	return res;
114  }
115  
116  static struct mmu_interval_notifier *
117  mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
118  		  const struct mmu_notifier_range *range)
119  {
120  	struct interval_tree_node *node;
121  
122  	node = interval_tree_iter_next(&interval_sub->interval_tree,
123  				       range->start, range->end - 1);
124  	if (!node)
125  		return NULL;
126  	return container_of(node, struct mmu_interval_notifier, interval_tree);
127  }
128  
129  static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
130  {
131  	struct mmu_interval_notifier *interval_sub;
132  	struct hlist_node *next;
133  
134  	spin_lock(&subscriptions->lock);
135  	if (--subscriptions->active_invalidate_ranges ||
136  	    !mn_itree_is_invalidating(subscriptions)) {
137  		spin_unlock(&subscriptions->lock);
138  		return;
139  	}
140  
141  	/* Make invalidate_seq even */
142  	subscriptions->invalidate_seq++;
143  
144  	/*
145  	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
146  	 * Adds and removes are queued until the final inv_end happens then
147  	 * they are progressed. This arrangement for tree updates is used to
148  	 * avoid using a blocking lock during invalidate_range_start.
149  	 */
150  	hlist_for_each_entry_safe(interval_sub, next,
151  				  &subscriptions->deferred_list,
152  				  deferred_item) {
153  		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
154  			interval_tree_insert(&interval_sub->interval_tree,
155  					     &subscriptions->itree);
156  		else
157  			interval_tree_remove(&interval_sub->interval_tree,
158  					     &subscriptions->itree);
159  		hlist_del(&interval_sub->deferred_item);
160  	}
161  	spin_unlock(&subscriptions->lock);
162  
163  	wake_up_all(&subscriptions->wq);
164  }
165  
166  /**
167   * mmu_interval_read_begin - Begin a read side critical section against a VA
168   *                           range
169   * @interval_sub: The interval subscription
170   *
171   * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
172   * collision-retry scheme similar to seqcount for the VA range under
173   * subscription. If the mm invokes invalidation during the critical section
174   * then mmu_interval_read_retry() will return true.
175   *
176   * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
177   * require a blocking context.  The critical region formed by this can sleep,
178   * and the required 'user_lock' can also be a sleeping lock.
179   *
180   * The caller is required to provide a 'user_lock' to serialize both teardown
181   * and setup.
182   *
183   * The return value should be passed to mmu_interval_read_retry().
184   */
185  unsigned long
186  mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
187  {
188  	struct mmu_notifier_subscriptions *subscriptions =
189  		interval_sub->mm->notifier_subscriptions;
190  	unsigned long seq;
191  	bool is_invalidating;
192  
193  	/*
194  	 * If the subscription has a different seq value under the user_lock
195  	 * than we started with then it has collided.
196  	 *
197  	 * If the subscription currently has the same seq value as the
198  	 * subscriptions seq, then it is currently between
199  	 * invalidate_start/end and is colliding.
200  	 *
201  	 * The locking looks broadly like this:
202  	 *   mn_tree_invalidate_start():          mmu_interval_read_begin():
203  	 *                                         spin_lock
204  	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
205  	 *                                          seq == subs->invalidate_seq
206  	 *                                         spin_unlock
207  	 *    spin_lock
208  	 *     seq = ++subscriptions->invalidate_seq
209  	 *    spin_unlock
210  	 *     op->invalidate_range():
211  	 *       user_lock
212  	 *        mmu_interval_set_seq()
213  	 *         interval_sub->invalidate_seq = seq
214  	 *       user_unlock
215  	 *
216  	 *                          [Required: mmu_interval_read_retry() == true]
217  	 *
218  	 *   mn_itree_inv_end():
219  	 *    spin_lock
220  	 *     seq = ++subscriptions->invalidate_seq
221  	 *    spin_unlock
222  	 *
223  	 *                                        user_lock
224  	 *                                         mmu_interval_read_retry():
225  	 *                                          interval_sub->invalidate_seq != seq
226  	 *                                        user_unlock
227  	 *
228  	 * Barriers are not needed here as any races here are closed by an
229  	 * eventual mmu_interval_read_retry(), which provides a barrier via the
230  	 * user_lock.
231  	 */
232  	spin_lock(&subscriptions->lock);
233  	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
234  	seq = READ_ONCE(interval_sub->invalidate_seq);
235  	is_invalidating = seq == subscriptions->invalidate_seq;
236  	spin_unlock(&subscriptions->lock);
237  
238  	/*
239  	 * interval_sub->invalidate_seq must always be set to an odd value via
240  	 * mmu_interval_set_seq() using the provided cur_seq from
241  	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
242  	 * will always clear the below sleep in some reasonable time as
243  	 * subscriptions->invalidate_seq is even in the idle state.
244  	 */
245  	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
246  	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
247  	if (is_invalidating)
248  		wait_event(subscriptions->wq,
249  			   READ_ONCE(subscriptions->invalidate_seq) != seq);
250  
251  	/*
252  	 * Notice that mmu_interval_read_retry() can already be true at this
253  	 * point, avoiding loops here allows the caller to provide a global
254  	 * time bound.
255  	 */
256  
257  	return seq;
258  }
259  EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
260  
261  static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
262  			     struct mm_struct *mm)
263  {
264  	struct mmu_notifier_range range = {
265  		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
266  		.event = MMU_NOTIFY_RELEASE,
267  		.mm = mm,
268  		.start = 0,
269  		.end = ULONG_MAX,
270  	};
271  	struct mmu_interval_notifier *interval_sub;
272  	unsigned long cur_seq;
273  	bool ret;
274  
275  	for (interval_sub =
276  		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
277  	     interval_sub;
278  	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
279  		ret = interval_sub->ops->invalidate(interval_sub, &range,
280  						    cur_seq);
281  		WARN_ON(!ret);
282  	}
283  
284  	mn_itree_inv_end(subscriptions);
285  }
286  
287  /*
288   * This function can't run concurrently against mmu_notifier_register
289   * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
290   * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
291   * in parallel despite there being no task using this mm any more,
292   * through the vmas outside of the exit_mmap context, such as with
293   * vmtruncate. This serializes against mmu_notifier_unregister with
294   * the notifier_subscriptions->lock in addition to SRCU and it serializes
295   * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
296   * can't go away from under us as exit_mmap holds an mm_count pin
297   * itself.
298   */
299  static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
300  			     struct mm_struct *mm)
301  {
302  	struct mmu_notifier *subscription;
303  	int id;
304  
305  	/*
306  	 * SRCU here will block mmu_notifier_unregister until
307  	 * ->release returns.
308  	 */
309  	id = srcu_read_lock(&srcu);
310  	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
311  				 srcu_read_lock_held(&srcu))
312  		/*
313  		 * If ->release runs before mmu_notifier_unregister it must be
314  		 * handled, as it's the only way for the driver to flush all
315  		 * existing sptes and stop the driver from establishing any more
316  		 * sptes before all the pages in the mm are freed.
317  		 */
318  		if (subscription->ops->release)
319  			subscription->ops->release(subscription, mm);
320  
321  	spin_lock(&subscriptions->lock);
322  	while (unlikely(!hlist_empty(&subscriptions->list))) {
323  		subscription = hlist_entry(subscriptions->list.first,
324  					   struct mmu_notifier, hlist);
325  		/*
326  		 * We arrived before mmu_notifier_unregister so
327  		 * mmu_notifier_unregister will do nothing other than to wait
328  		 * for ->release to finish and for mmu_notifier_unregister to
329  		 * return.
330  		 */
331  		hlist_del_init_rcu(&subscription->hlist);
332  	}
333  	spin_unlock(&subscriptions->lock);
334  	srcu_read_unlock(&srcu, id);
335  
336  	/*
337  	 * synchronize_srcu here prevents mmu_notifier_release from returning to
338  	 * exit_mmap (which would proceed with freeing all pages in the mm)
339  	 * until the ->release method returns, if it was invoked by
340  	 * mmu_notifier_unregister.
341  	 *
342  	 * The notifier_subscriptions can't go away from under us because
343  	 * one mm_count is held by exit_mmap.
344  	 */
345  	synchronize_srcu(&srcu);
346  }
347  
348  void __mmu_notifier_release(struct mm_struct *mm)
349  {
350  	struct mmu_notifier_subscriptions *subscriptions =
351  		mm->notifier_subscriptions;
352  
353  	if (subscriptions->has_itree)
354  		mn_itree_release(subscriptions, mm);
355  
356  	if (!hlist_empty(&subscriptions->list))
357  		mn_hlist_release(subscriptions, mm);
358  }
359  
360  /*
361   * If no young bitflag is supported by the hardware, ->clear_flush_young can
362   * unmap the address and return 1 or 0 depending if the mapping previously
363   * existed or not.
364   */
365  int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
366  					unsigned long start,
367  					unsigned long end)
368  {
369  	struct mmu_notifier *subscription;
370  	int young = 0, id;
371  
372  	id = srcu_read_lock(&srcu);
373  	hlist_for_each_entry_rcu(subscription,
374  				 &mm->notifier_subscriptions->list, hlist,
375  				 srcu_read_lock_held(&srcu)) {
376  		if (subscription->ops->clear_flush_young)
377  			young |= subscription->ops->clear_flush_young(
378  				subscription, mm, start, end);
379  	}
380  	srcu_read_unlock(&srcu, id);
381  
382  	return young;
383  }
384  
385  int __mmu_notifier_clear_young(struct mm_struct *mm,
386  			       unsigned long start,
387  			       unsigned long end)
388  {
389  	struct mmu_notifier *subscription;
390  	int young = 0, id;
391  
392  	id = srcu_read_lock(&srcu);
393  	hlist_for_each_entry_rcu(subscription,
394  				 &mm->notifier_subscriptions->list, hlist,
395  				 srcu_read_lock_held(&srcu)) {
396  		if (subscription->ops->clear_young)
397  			young |= subscription->ops->clear_young(subscription,
398  								mm, start, end);
399  	}
400  	srcu_read_unlock(&srcu, id);
401  
402  	return young;
403  }
404  
405  int __mmu_notifier_test_young(struct mm_struct *mm,
406  			      unsigned long address)
407  {
408  	struct mmu_notifier *subscription;
409  	int young = 0, id;
410  
411  	id = srcu_read_lock(&srcu);
412  	hlist_for_each_entry_rcu(subscription,
413  				 &mm->notifier_subscriptions->list, hlist,
414  				 srcu_read_lock_held(&srcu)) {
415  		if (subscription->ops->test_young) {
416  			young = subscription->ops->test_young(subscription, mm,
417  							      address);
418  			if (young)
419  				break;
420  		}
421  	}
422  	srcu_read_unlock(&srcu, id);
423  
424  	return young;
425  }
426  
427  void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
428  			       pte_t pte)
429  {
430  	struct mmu_notifier *subscription;
431  	int id;
432  
433  	id = srcu_read_lock(&srcu);
434  	hlist_for_each_entry_rcu(subscription,
435  				 &mm->notifier_subscriptions->list, hlist,
436  				 srcu_read_lock_held(&srcu)) {
437  		if (subscription->ops->change_pte)
438  			subscription->ops->change_pte(subscription, mm, address,
439  						      pte);
440  	}
441  	srcu_read_unlock(&srcu, id);
442  }
443  
444  static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
445  			       const struct mmu_notifier_range *range)
446  {
447  	struct mmu_interval_notifier *interval_sub;
448  	unsigned long cur_seq;
449  
450  	for (interval_sub =
451  		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
452  	     interval_sub;
453  	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
454  		bool ret;
455  
456  		ret = interval_sub->ops->invalidate(interval_sub, range,
457  						    cur_seq);
458  		if (!ret) {
459  			if (WARN_ON(mmu_notifier_range_blockable(range)))
460  				continue;
461  			goto out_would_block;
462  		}
463  	}
464  	return 0;
465  
466  out_would_block:
467  	/*
468  	 * On -EAGAIN the non-blocking caller is not allowed to call
469  	 * invalidate_range_end()
470  	 */
471  	mn_itree_inv_end(subscriptions);
472  	return -EAGAIN;
473  }
474  
475  static int mn_hlist_invalidate_range_start(
476  	struct mmu_notifier_subscriptions *subscriptions,
477  	struct mmu_notifier_range *range)
478  {
479  	struct mmu_notifier *subscription;
480  	int ret = 0;
481  	int id;
482  
483  	id = srcu_read_lock(&srcu);
484  	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
485  				 srcu_read_lock_held(&srcu)) {
486  		const struct mmu_notifier_ops *ops = subscription->ops;
487  
488  		if (ops->invalidate_range_start) {
489  			int _ret;
490  
491  			if (!mmu_notifier_range_blockable(range))
492  				non_block_start();
493  			_ret = ops->invalidate_range_start(subscription, range);
494  			if (!mmu_notifier_range_blockable(range))
495  				non_block_end();
496  			if (_ret) {
497  				pr_info("%pS callback failed with %d in %sblockable context.\n",
498  					ops->invalidate_range_start, _ret,
499  					!mmu_notifier_range_blockable(range) ?
500  						"non-" :
501  						"");
502  				WARN_ON(mmu_notifier_range_blockable(range) ||
503  					_ret != -EAGAIN);
504  				ret = _ret;
505  			}
506  		}
507  	}
508  	srcu_read_unlock(&srcu, id);
509  
510  	return ret;
511  }
512  
513  int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
514  {
515  	struct mmu_notifier_subscriptions *subscriptions =
516  		range->mm->notifier_subscriptions;
517  	int ret;
518  
519  	if (subscriptions->has_itree) {
520  		ret = mn_itree_invalidate(subscriptions, range);
521  		if (ret)
522  			return ret;
523  	}
524  	if (!hlist_empty(&subscriptions->list))
525  		return mn_hlist_invalidate_range_start(subscriptions, range);
526  	return 0;
527  }
528  
529  static void
530  mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
531  			struct mmu_notifier_range *range, bool only_end)
532  {
533  	struct mmu_notifier *subscription;
534  	int id;
535  
536  	id = srcu_read_lock(&srcu);
537  	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
538  				 srcu_read_lock_held(&srcu)) {
539  		/*
540  		 * Call invalidate_range here too to avoid the need for the
541  		 * subsystem of having to register an invalidate_range_end
542  		 * call-back when there is invalidate_range already. Usually a
543  		 * subsystem registers either invalidate_range_start()/end() or
544  		 * invalidate_range(), so this will be no additional overhead
545  		 * (besides the pointer check).
546  		 *
547  		 * We skip call to invalidate_range() if we know it is safe ie
548  		 * call site use mmu_notifier_invalidate_range_only_end() which
549  		 * is safe to do when we know that a call to invalidate_range()
550  		 * already happen under page table lock.
551  		 */
552  		if (!only_end && subscription->ops->invalidate_range)
553  			subscription->ops->invalidate_range(subscription,
554  							    range->mm,
555  							    range->start,
556  							    range->end);
557  		if (subscription->ops->invalidate_range_end) {
558  			if (!mmu_notifier_range_blockable(range))
559  				non_block_start();
560  			subscription->ops->invalidate_range_end(subscription,
561  								range);
562  			if (!mmu_notifier_range_blockable(range))
563  				non_block_end();
564  		}
565  	}
566  	srcu_read_unlock(&srcu, id);
567  }
568  
569  void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
570  					 bool only_end)
571  {
572  	struct mmu_notifier_subscriptions *subscriptions =
573  		range->mm->notifier_subscriptions;
574  
575  	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
576  	if (subscriptions->has_itree)
577  		mn_itree_inv_end(subscriptions);
578  
579  	if (!hlist_empty(&subscriptions->list))
580  		mn_hlist_invalidate_end(subscriptions, range, only_end);
581  	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
582  }
583  
584  void __mmu_notifier_invalidate_range(struct mm_struct *mm,
585  				  unsigned long start, unsigned long end)
586  {
587  	struct mmu_notifier *subscription;
588  	int id;
589  
590  	id = srcu_read_lock(&srcu);
591  	hlist_for_each_entry_rcu(subscription,
592  				 &mm->notifier_subscriptions->list, hlist,
593  				 srcu_read_lock_held(&srcu)) {
594  		if (subscription->ops->invalidate_range)
595  			subscription->ops->invalidate_range(subscription, mm,
596  							    start, end);
597  	}
598  	srcu_read_unlock(&srcu, id);
599  }
600  
601  /*
602   * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
603   * write mode. A NULL mn signals the notifier is being registered for itree
604   * mode.
605   */
606  int __mmu_notifier_register(struct mmu_notifier *subscription,
607  			    struct mm_struct *mm)
608  {
609  	struct mmu_notifier_subscriptions *subscriptions = NULL;
610  	int ret;
611  
612  	mmap_assert_write_locked(mm);
613  	BUG_ON(atomic_read(&mm->mm_users) <= 0);
614  
615  	if (IS_ENABLED(CONFIG_LOCKDEP)) {
616  		fs_reclaim_acquire(GFP_KERNEL);
617  		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
618  		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
619  		fs_reclaim_release(GFP_KERNEL);
620  	}
621  
622  	if (!mm->notifier_subscriptions) {
623  		/*
624  		 * kmalloc cannot be called under mm_take_all_locks(), but we
625  		 * know that mm->notifier_subscriptions can't change while we
626  		 * hold the write side of the mmap_lock.
627  		 */
628  		subscriptions = kzalloc(
629  			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
630  		if (!subscriptions)
631  			return -ENOMEM;
632  
633  		INIT_HLIST_HEAD(&subscriptions->list);
634  		spin_lock_init(&subscriptions->lock);
635  		subscriptions->invalidate_seq = 2;
636  		subscriptions->itree = RB_ROOT_CACHED;
637  		init_waitqueue_head(&subscriptions->wq);
638  		INIT_HLIST_HEAD(&subscriptions->deferred_list);
639  	}
640  
641  	ret = mm_take_all_locks(mm);
642  	if (unlikely(ret))
643  		goto out_clean;
644  
645  	/*
646  	 * Serialize the update against mmu_notifier_unregister. A
647  	 * side note: mmu_notifier_release can't run concurrently with
648  	 * us because we hold the mm_users pin (either implicitly as
649  	 * current->mm or explicitly with get_task_mm() or similar).
650  	 * We can't race against any other mmu notifier method either
651  	 * thanks to mm_take_all_locks().
652  	 *
653  	 * release semantics on the initialization of the
654  	 * mmu_notifier_subscriptions's contents are provided for unlocked
655  	 * readers.  acquire can only be used while holding the mmgrab or
656  	 * mmget, and is safe because once created the
657  	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
658  	 * As above, users holding the mmap_lock or one of the
659  	 * mm_take_all_locks() do not need to use acquire semantics.
660  	 */
661  	if (subscriptions)
662  		smp_store_release(&mm->notifier_subscriptions, subscriptions);
663  
664  	if (subscription) {
665  		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
666  		mmgrab(mm);
667  		subscription->mm = mm;
668  		subscription->users = 1;
669  
670  		spin_lock(&mm->notifier_subscriptions->lock);
671  		hlist_add_head_rcu(&subscription->hlist,
672  				   &mm->notifier_subscriptions->list);
673  		spin_unlock(&mm->notifier_subscriptions->lock);
674  	} else
675  		mm->notifier_subscriptions->has_itree = true;
676  
677  	mm_drop_all_locks(mm);
678  	BUG_ON(atomic_read(&mm->mm_users) <= 0);
679  	return 0;
680  
681  out_clean:
682  	kfree(subscriptions);
683  	return ret;
684  }
685  EXPORT_SYMBOL_GPL(__mmu_notifier_register);
686  
687  /**
688   * mmu_notifier_register - Register a notifier on a mm
689   * @subscription: The notifier to attach
690   * @mm: The mm to attach the notifier to
691   *
692   * Must not hold mmap_lock nor any other VM related lock when calling
693   * this registration function. Must also ensure mm_users can't go down
694   * to zero while this runs to avoid races with mmu_notifier_release,
695   * so mm has to be current->mm or the mm should be pinned safely such
696   * as with get_task_mm(). If the mm is not current->mm, the mm_users
697   * pin should be released by calling mmput after mmu_notifier_register
698   * returns.
699   *
700   * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
701   * unregister the notifier.
702   *
703   * While the caller has a mmu_notifier get the subscription->mm pointer will remain
704   * valid, and can be converted to an active mm pointer via mmget_not_zero().
705   */
706  int mmu_notifier_register(struct mmu_notifier *subscription,
707  			  struct mm_struct *mm)
708  {
709  	int ret;
710  
711  	mmap_write_lock(mm);
712  	ret = __mmu_notifier_register(subscription, mm);
713  	mmap_write_unlock(mm);
714  	return ret;
715  }
716  EXPORT_SYMBOL_GPL(mmu_notifier_register);
717  
718  static struct mmu_notifier *
719  find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
720  {
721  	struct mmu_notifier *subscription;
722  
723  	spin_lock(&mm->notifier_subscriptions->lock);
724  	hlist_for_each_entry_rcu(subscription,
725  				 &mm->notifier_subscriptions->list, hlist,
726  				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
727  		if (subscription->ops != ops)
728  			continue;
729  
730  		if (likely(subscription->users != UINT_MAX))
731  			subscription->users++;
732  		else
733  			subscription = ERR_PTR(-EOVERFLOW);
734  		spin_unlock(&mm->notifier_subscriptions->lock);
735  		return subscription;
736  	}
737  	spin_unlock(&mm->notifier_subscriptions->lock);
738  	return NULL;
739  }
740  
741  /**
742   * mmu_notifier_get_locked - Return the single struct mmu_notifier for
743   *                           the mm & ops
744   * @ops: The operations struct being subscribe with
745   * @mm : The mm to attach notifiers too
746   *
747   * This function either allocates a new mmu_notifier via
748   * ops->alloc_notifier(), or returns an already existing notifier on the
749   * list. The value of the ops pointer is used to determine when two notifiers
750   * are the same.
751   *
752   * Each call to mmu_notifier_get() must be paired with a call to
753   * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
754   *
755   * While the caller has a mmu_notifier get the mm pointer will remain valid,
756   * and can be converted to an active mm pointer via mmget_not_zero().
757   */
758  struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
759  					     struct mm_struct *mm)
760  {
761  	struct mmu_notifier *subscription;
762  	int ret;
763  
764  	mmap_assert_write_locked(mm);
765  
766  	if (mm->notifier_subscriptions) {
767  		subscription = find_get_mmu_notifier(mm, ops);
768  		if (subscription)
769  			return subscription;
770  	}
771  
772  	subscription = ops->alloc_notifier(mm);
773  	if (IS_ERR(subscription))
774  		return subscription;
775  	subscription->ops = ops;
776  	ret = __mmu_notifier_register(subscription, mm);
777  	if (ret)
778  		goto out_free;
779  	return subscription;
780  out_free:
781  	subscription->ops->free_notifier(subscription);
782  	return ERR_PTR(ret);
783  }
784  EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
785  
786  /* this is called after the last mmu_notifier_unregister() returned */
787  void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
788  {
789  	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
790  	kfree(mm->notifier_subscriptions);
791  	mm->notifier_subscriptions = LIST_POISON1; /* debug */
792  }
793  
794  /*
795   * This releases the mm_count pin automatically and frees the mm
796   * structure if it was the last user of it. It serializes against
797   * running mmu notifiers with SRCU and against mmu_notifier_unregister
798   * with the unregister lock + SRCU. All sptes must be dropped before
799   * calling mmu_notifier_unregister. ->release or any other notifier
800   * method may be invoked concurrently with mmu_notifier_unregister,
801   * and only after mmu_notifier_unregister returned we're guaranteed
802   * that ->release or any other method can't run anymore.
803   */
804  void mmu_notifier_unregister(struct mmu_notifier *subscription,
805  			     struct mm_struct *mm)
806  {
807  	BUG_ON(atomic_read(&mm->mm_count) <= 0);
808  
809  	if (!hlist_unhashed(&subscription->hlist)) {
810  		/*
811  		 * SRCU here will force exit_mmap to wait for ->release to
812  		 * finish before freeing the pages.
813  		 */
814  		int id;
815  
816  		id = srcu_read_lock(&srcu);
817  		/*
818  		 * exit_mmap will block in mmu_notifier_release to guarantee
819  		 * that ->release is called before freeing the pages.
820  		 */
821  		if (subscription->ops->release)
822  			subscription->ops->release(subscription, mm);
823  		srcu_read_unlock(&srcu, id);
824  
825  		spin_lock(&mm->notifier_subscriptions->lock);
826  		/*
827  		 * Can not use list_del_rcu() since __mmu_notifier_release
828  		 * can delete it before we hold the lock.
829  		 */
830  		hlist_del_init_rcu(&subscription->hlist);
831  		spin_unlock(&mm->notifier_subscriptions->lock);
832  	}
833  
834  	/*
835  	 * Wait for any running method to finish, of course including
836  	 * ->release if it was run by mmu_notifier_release instead of us.
837  	 */
838  	synchronize_srcu(&srcu);
839  
840  	BUG_ON(atomic_read(&mm->mm_count) <= 0);
841  
842  	mmdrop(mm);
843  }
844  EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
845  
846  static void mmu_notifier_free_rcu(struct rcu_head *rcu)
847  {
848  	struct mmu_notifier *subscription =
849  		container_of(rcu, struct mmu_notifier, rcu);
850  	struct mm_struct *mm = subscription->mm;
851  
852  	subscription->ops->free_notifier(subscription);
853  	/* Pairs with the get in __mmu_notifier_register() */
854  	mmdrop(mm);
855  }
856  
857  /**
858   * mmu_notifier_put - Release the reference on the notifier
859   * @subscription: The notifier to act on
860   *
861   * This function must be paired with each mmu_notifier_get(), it releases the
862   * reference obtained by the get. If this is the last reference then process
863   * to free the notifier will be run asynchronously.
864   *
865   * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
866   * when the mm_struct is destroyed. Instead free_notifier is always called to
867   * release any resources held by the user.
868   *
869   * As ops->release is not guaranteed to be called, the user must ensure that
870   * all sptes are dropped, and no new sptes can be established before
871   * mmu_notifier_put() is called.
872   *
873   * This function can be called from the ops->release callback, however the
874   * caller must still ensure it is called pairwise with mmu_notifier_get().
875   *
876   * Modules calling this function must call mmu_notifier_synchronize() in
877   * their __exit functions to ensure the async work is completed.
878   */
879  void mmu_notifier_put(struct mmu_notifier *subscription)
880  {
881  	struct mm_struct *mm = subscription->mm;
882  
883  	spin_lock(&mm->notifier_subscriptions->lock);
884  	if (WARN_ON(!subscription->users) || --subscription->users)
885  		goto out_unlock;
886  	hlist_del_init_rcu(&subscription->hlist);
887  	spin_unlock(&mm->notifier_subscriptions->lock);
888  
889  	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
890  	return;
891  
892  out_unlock:
893  	spin_unlock(&mm->notifier_subscriptions->lock);
894  }
895  EXPORT_SYMBOL_GPL(mmu_notifier_put);
896  
897  static int __mmu_interval_notifier_insert(
898  	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
899  	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
900  	unsigned long length, const struct mmu_interval_notifier_ops *ops)
901  {
902  	interval_sub->mm = mm;
903  	interval_sub->ops = ops;
904  	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
905  	interval_sub->interval_tree.start = start;
906  	/*
907  	 * Note that the representation of the intervals in the interval tree
908  	 * considers the ending point as contained in the interval.
909  	 */
910  	if (length == 0 ||
911  	    check_add_overflow(start, length - 1,
912  			       &interval_sub->interval_tree.last))
913  		return -EOVERFLOW;
914  
915  	/* Must call with a mmget() held */
916  	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
917  		return -EINVAL;
918  
919  	/* pairs with mmdrop in mmu_interval_notifier_remove() */
920  	mmgrab(mm);
921  
922  	/*
923  	 * If some invalidate_range_start/end region is going on in parallel
924  	 * we don't know what VA ranges are affected, so we must assume this
925  	 * new range is included.
926  	 *
927  	 * If the itree is invalidating then we are not allowed to change
928  	 * it. Retrying until invalidation is done is tricky due to the
929  	 * possibility for live lock, instead defer the add to
930  	 * mn_itree_inv_end() so this algorithm is deterministic.
931  	 *
932  	 * In all cases the value for the interval_sub->invalidate_seq should be
933  	 * odd, see mmu_interval_read_begin()
934  	 */
935  	spin_lock(&subscriptions->lock);
936  	if (subscriptions->active_invalidate_ranges) {
937  		if (mn_itree_is_invalidating(subscriptions))
938  			hlist_add_head(&interval_sub->deferred_item,
939  				       &subscriptions->deferred_list);
940  		else {
941  			subscriptions->invalidate_seq |= 1;
942  			interval_tree_insert(&interval_sub->interval_tree,
943  					     &subscriptions->itree);
944  		}
945  		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
946  	} else {
947  		WARN_ON(mn_itree_is_invalidating(subscriptions));
948  		/*
949  		 * The starting seq for a subscription not under invalidation
950  		 * should be odd, not equal to the current invalidate_seq and
951  		 * invalidate_seq should not 'wrap' to the new seq any time
952  		 * soon.
953  		 */
954  		interval_sub->invalidate_seq =
955  			subscriptions->invalidate_seq - 1;
956  		interval_tree_insert(&interval_sub->interval_tree,
957  				     &subscriptions->itree);
958  	}
959  	spin_unlock(&subscriptions->lock);
960  	return 0;
961  }
962  
963  /**
964   * mmu_interval_notifier_insert - Insert an interval notifier
965   * @interval_sub: Interval subscription to register
966   * @start: Starting virtual address to monitor
967   * @length: Length of the range to monitor
968   * @mm: mm_struct to attach to
969   * @ops: Interval notifier operations to be called on matching events
970   *
971   * This function subscribes the interval notifier for notifications from the
972   * mm.  Upon return the ops related to mmu_interval_notifier will be called
973   * whenever an event that intersects with the given range occurs.
974   *
975   * Upon return the range_notifier may not be present in the interval tree yet.
976   * The caller must use the normal interval notifier read flow via
977   * mmu_interval_read_begin() to establish SPTEs for this range.
978   */
979  int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
980  				 struct mm_struct *mm, unsigned long start,
981  				 unsigned long length,
982  				 const struct mmu_interval_notifier_ops *ops)
983  {
984  	struct mmu_notifier_subscriptions *subscriptions;
985  	int ret;
986  
987  	might_lock(&mm->mmap_lock);
988  
989  	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
990  	if (!subscriptions || !subscriptions->has_itree) {
991  		ret = mmu_notifier_register(NULL, mm);
992  		if (ret)
993  			return ret;
994  		subscriptions = mm->notifier_subscriptions;
995  	}
996  	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
997  					      start, length, ops);
998  }
999  EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1000  
1001  int mmu_interval_notifier_insert_locked(
1002  	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1003  	unsigned long start, unsigned long length,
1004  	const struct mmu_interval_notifier_ops *ops)
1005  {
1006  	struct mmu_notifier_subscriptions *subscriptions =
1007  		mm->notifier_subscriptions;
1008  	int ret;
1009  
1010  	mmap_assert_write_locked(mm);
1011  
1012  	if (!subscriptions || !subscriptions->has_itree) {
1013  		ret = __mmu_notifier_register(NULL, mm);
1014  		if (ret)
1015  			return ret;
1016  		subscriptions = mm->notifier_subscriptions;
1017  	}
1018  	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1019  					      start, length, ops);
1020  }
1021  EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1022  
1023  /**
1024   * mmu_interval_notifier_remove - Remove a interval notifier
1025   * @interval_sub: Interval subscription to unregister
1026   *
1027   * This function must be paired with mmu_interval_notifier_insert(). It cannot
1028   * be called from any ops callback.
1029   *
1030   * Once this returns ops callbacks are no longer running on other CPUs and
1031   * will not be called in future.
1032   */
1033  void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1034  {
1035  	struct mm_struct *mm = interval_sub->mm;
1036  	struct mmu_notifier_subscriptions *subscriptions =
1037  		mm->notifier_subscriptions;
1038  	unsigned long seq = 0;
1039  
1040  	might_sleep();
1041  
1042  	spin_lock(&subscriptions->lock);
1043  	if (mn_itree_is_invalidating(subscriptions)) {
1044  		/*
1045  		 * remove is being called after insert put this on the
1046  		 * deferred list, but before the deferred list was processed.
1047  		 */
1048  		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1049  			hlist_del(&interval_sub->deferred_item);
1050  		} else {
1051  			hlist_add_head(&interval_sub->deferred_item,
1052  				       &subscriptions->deferred_list);
1053  			seq = subscriptions->invalidate_seq;
1054  		}
1055  	} else {
1056  		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1057  		interval_tree_remove(&interval_sub->interval_tree,
1058  				     &subscriptions->itree);
1059  	}
1060  	spin_unlock(&subscriptions->lock);
1061  
1062  	/*
1063  	 * The possible sleep on progress in the invalidation requires the
1064  	 * caller not hold any locks held by invalidation callbacks.
1065  	 */
1066  	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1067  	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1068  	if (seq)
1069  		wait_event(subscriptions->wq,
1070  			   READ_ONCE(subscriptions->invalidate_seq) != seq);
1071  
1072  	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1073  	mmdrop(mm);
1074  }
1075  EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1076  
1077  /**
1078   * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1079   *
1080   * This function ensures that all outstanding async SRU work from
1081   * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1082   * associated with an unused mmu_notifier will no longer be called.
1083   *
1084   * Before using the caller must ensure that all of its mmu_notifiers have been
1085   * fully released via mmu_notifier_put().
1086   *
1087   * Modules using the mmu_notifier_put() API should call this in their __exit
1088   * function to avoid module unloading races.
1089   */
1090  void mmu_notifier_synchronize(void)
1091  {
1092  	synchronize_srcu(&srcu);
1093  }
1094  EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1095  
1096  bool
1097  mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1098  {
1099  	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1100  		return false;
1101  	/* Return true if the vma still have the read flag set. */
1102  	return range->vma->vm_flags & VM_READ;
1103  }
1104  EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1105