xref: /openbmc/linux/mm/mmu_notifier.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/mmu_notifier.c
4  *
5  *  Copyright (C) 2008  Qumranet, Inc.
6  *  Copyright (C) 2008  SGI
7  *             Christoph Lameter <cl@linux.com>
8  */
9 
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
24 
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 	.name = "mmu_notifier_invalidate_range_start"
28 };
29 #endif
30 
31 /*
32  * The mmu notifier_mm structure is allocated and installed in
33  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
34  * critical section and it's released only when mm_count reaches zero
35  * in mmdrop().
36  */
37 struct mmu_notifier_mm {
38 	/* all mmu notifiers registered in this mm are queued in this list */
39 	struct hlist_head list;
40 	bool has_itree;
41 	/* to serialize the list modifications and hlist_unhashed */
42 	spinlock_t lock;
43 	unsigned long invalidate_seq;
44 	unsigned long active_invalidate_ranges;
45 	struct rb_root_cached itree;
46 	wait_queue_head_t wq;
47 	struct hlist_head deferred_list;
48 };
49 
50 /*
51  * This is a collision-retry read-side/write-side 'lock', a lot like a
52  * seqcount, however this allows multiple write-sides to hold it at
53  * once. Conceptually the write side is protecting the values of the PTEs in
54  * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55  * writer exists.
56  *
57  * Note that the core mm creates nested invalidate_range_start()/end() regions
58  * within the same thread, and runs invalidate_range_start()/end() in parallel
59  * on multiple CPUs. This is designed to not reduce concurrency or block
60  * progress on the mm side.
61  *
62  * As a secondary function, holding the full write side also serves to prevent
63  * writers for the itree, this is an optimization to avoid extra locking
64  * during invalidate_range_start/end notifiers.
65  *
66  * The write side has two states, fully excluded:
67  *  - mm->active_invalidate_ranges != 0
68  *  - mnn->invalidate_seq & 1 == True (odd)
69  *  - some range on the mm_struct is being invalidated
70  *  - the itree is not allowed to change
71  *
72  * And partially excluded:
73  *  - mm->active_invalidate_ranges != 0
74  *  - mnn->invalidate_seq & 1 == False (even)
75  *  - some range on the mm_struct is being invalidated
76  *  - the itree is allowed to change
77  *
78  * Operations on mmu_notifier_mm->invalidate_seq (under spinlock):
79  *    seq |= 1  # Begin writing
80  *    seq++     # Release the writing state
81  *    seq & 1   # True if a writer exists
82  *
83  * The later state avoids some expensive work on inv_end in the common case of
84  * no mni monitoring the VA.
85  */
86 static bool mn_itree_is_invalidating(struct mmu_notifier_mm *mmn_mm)
87 {
88 	lockdep_assert_held(&mmn_mm->lock);
89 	return mmn_mm->invalidate_seq & 1;
90 }
91 
92 static struct mmu_interval_notifier *
93 mn_itree_inv_start_range(struct mmu_notifier_mm *mmn_mm,
94 			 const struct mmu_notifier_range *range,
95 			 unsigned long *seq)
96 {
97 	struct interval_tree_node *node;
98 	struct mmu_interval_notifier *res = NULL;
99 
100 	spin_lock(&mmn_mm->lock);
101 	mmn_mm->active_invalidate_ranges++;
102 	node = interval_tree_iter_first(&mmn_mm->itree, range->start,
103 					range->end - 1);
104 	if (node) {
105 		mmn_mm->invalidate_seq |= 1;
106 		res = container_of(node, struct mmu_interval_notifier,
107 				   interval_tree);
108 	}
109 
110 	*seq = mmn_mm->invalidate_seq;
111 	spin_unlock(&mmn_mm->lock);
112 	return res;
113 }
114 
115 static struct mmu_interval_notifier *
116 mn_itree_inv_next(struct mmu_interval_notifier *mni,
117 		  const struct mmu_notifier_range *range)
118 {
119 	struct interval_tree_node *node;
120 
121 	node = interval_tree_iter_next(&mni->interval_tree, range->start,
122 				       range->end - 1);
123 	if (!node)
124 		return NULL;
125 	return container_of(node, struct mmu_interval_notifier, interval_tree);
126 }
127 
128 static void mn_itree_inv_end(struct mmu_notifier_mm *mmn_mm)
129 {
130 	struct mmu_interval_notifier *mni;
131 	struct hlist_node *next;
132 
133 	spin_lock(&mmn_mm->lock);
134 	if (--mmn_mm->active_invalidate_ranges ||
135 	    !mn_itree_is_invalidating(mmn_mm)) {
136 		spin_unlock(&mmn_mm->lock);
137 		return;
138 	}
139 
140 	/* Make invalidate_seq even */
141 	mmn_mm->invalidate_seq++;
142 
143 	/*
144 	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
145 	 * Adds and removes are queued until the final inv_end happens then
146 	 * they are progressed. This arrangement for tree updates is used to
147 	 * avoid using a blocking lock during invalidate_range_start.
148 	 */
149 	hlist_for_each_entry_safe(mni, next, &mmn_mm->deferred_list,
150 				  deferred_item) {
151 		if (RB_EMPTY_NODE(&mni->interval_tree.rb))
152 			interval_tree_insert(&mni->interval_tree,
153 					     &mmn_mm->itree);
154 		else
155 			interval_tree_remove(&mni->interval_tree,
156 					     &mmn_mm->itree);
157 		hlist_del(&mni->deferred_item);
158 	}
159 	spin_unlock(&mmn_mm->lock);
160 
161 	wake_up_all(&mmn_mm->wq);
162 }
163 
164 /**
165  * mmu_interval_read_begin - Begin a read side critical section against a VA
166  *                           range
167  * mni: The range to use
168  *
169  * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
170  * collision-retry scheme similar to seqcount for the VA range under mni. If
171  * the mm invokes invalidation during the critical section then
172  * mmu_interval_read_retry() will return true.
173  *
174  * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
175  * require a blocking context.  The critical region formed by this can sleep,
176  * and the required 'user_lock' can also be a sleeping lock.
177  *
178  * The caller is required to provide a 'user_lock' to serialize both teardown
179  * and setup.
180  *
181  * The return value should be passed to mmu_interval_read_retry().
182  */
183 unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni)
184 {
185 	struct mmu_notifier_mm *mmn_mm = mni->mm->mmu_notifier_mm;
186 	unsigned long seq;
187 	bool is_invalidating;
188 
189 	/*
190 	 * If the mni has a different seq value under the user_lock than we
191 	 * started with then it has collided.
192 	 *
193 	 * If the mni currently has the same seq value as the mmn_mm seq, then
194 	 * it is currently between invalidate_start/end and is colliding.
195 	 *
196 	 * The locking looks broadly like this:
197 	 *   mn_tree_invalidate_start():          mmu_interval_read_begin():
198 	 *                                         spin_lock
199 	 *                                          seq = READ_ONCE(mni->invalidate_seq);
200 	 *                                          seq == mmn_mm->invalidate_seq
201 	 *                                         spin_unlock
202 	 *    spin_lock
203 	 *     seq = ++mmn_mm->invalidate_seq
204 	 *    spin_unlock
205 	 *     op->invalidate_range():
206 	 *       user_lock
207 	 *        mmu_interval_set_seq()
208 	 *         mni->invalidate_seq = seq
209 	 *       user_unlock
210 	 *
211 	 *                          [Required: mmu_interval_read_retry() == true]
212 	 *
213 	 *   mn_itree_inv_end():
214 	 *    spin_lock
215 	 *     seq = ++mmn_mm->invalidate_seq
216 	 *    spin_unlock
217 	 *
218 	 *                                        user_lock
219 	 *                                         mmu_interval_read_retry():
220 	 *                                          mni->invalidate_seq != seq
221 	 *                                        user_unlock
222 	 *
223 	 * Barriers are not needed here as any races here are closed by an
224 	 * eventual mmu_interval_read_retry(), which provides a barrier via the
225 	 * user_lock.
226 	 */
227 	spin_lock(&mmn_mm->lock);
228 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
229 	seq = READ_ONCE(mni->invalidate_seq);
230 	is_invalidating = seq == mmn_mm->invalidate_seq;
231 	spin_unlock(&mmn_mm->lock);
232 
233 	/*
234 	 * mni->invalidate_seq must always be set to an odd value via
235 	 * mmu_interval_set_seq() using the provided cur_seq from
236 	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
237 	 * will always clear the below sleep in some reasonable time as
238 	 * mmn_mm->invalidate_seq is even in the idle state.
239 	 */
240 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
241 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
242 	if (is_invalidating)
243 		wait_event(mmn_mm->wq,
244 			   READ_ONCE(mmn_mm->invalidate_seq) != seq);
245 
246 	/*
247 	 * Notice that mmu_interval_read_retry() can already be true at this
248 	 * point, avoiding loops here allows the caller to provide a global
249 	 * time bound.
250 	 */
251 
252 	return seq;
253 }
254 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
255 
256 static void mn_itree_release(struct mmu_notifier_mm *mmn_mm,
257 			     struct mm_struct *mm)
258 {
259 	struct mmu_notifier_range range = {
260 		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
261 		.event = MMU_NOTIFY_RELEASE,
262 		.mm = mm,
263 		.start = 0,
264 		.end = ULONG_MAX,
265 	};
266 	struct mmu_interval_notifier *mni;
267 	unsigned long cur_seq;
268 	bool ret;
269 
270 	for (mni = mn_itree_inv_start_range(mmn_mm, &range, &cur_seq); mni;
271 	     mni = mn_itree_inv_next(mni, &range)) {
272 		ret = mni->ops->invalidate(mni, &range, cur_seq);
273 		WARN_ON(!ret);
274 	}
275 
276 	mn_itree_inv_end(mmn_mm);
277 }
278 
279 /*
280  * This function can't run concurrently against mmu_notifier_register
281  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
282  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
283  * in parallel despite there being no task using this mm any more,
284  * through the vmas outside of the exit_mmap context, such as with
285  * vmtruncate. This serializes against mmu_notifier_unregister with
286  * the mmu_notifier_mm->lock in addition to SRCU and it serializes
287  * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
288  * can't go away from under us as exit_mmap holds an mm_count pin
289  * itself.
290  */
291 static void mn_hlist_release(struct mmu_notifier_mm *mmn_mm,
292 			     struct mm_struct *mm)
293 {
294 	struct mmu_notifier *mn;
295 	int id;
296 
297 	/*
298 	 * SRCU here will block mmu_notifier_unregister until
299 	 * ->release returns.
300 	 */
301 	id = srcu_read_lock(&srcu);
302 	hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist)
303 		/*
304 		 * If ->release runs before mmu_notifier_unregister it must be
305 		 * handled, as it's the only way for the driver to flush all
306 		 * existing sptes and stop the driver from establishing any more
307 		 * sptes before all the pages in the mm are freed.
308 		 */
309 		if (mn->ops->release)
310 			mn->ops->release(mn, mm);
311 
312 	spin_lock(&mmn_mm->lock);
313 	while (unlikely(!hlist_empty(&mmn_mm->list))) {
314 		mn = hlist_entry(mmn_mm->list.first, struct mmu_notifier,
315 				 hlist);
316 		/*
317 		 * We arrived before mmu_notifier_unregister so
318 		 * mmu_notifier_unregister will do nothing other than to wait
319 		 * for ->release to finish and for mmu_notifier_unregister to
320 		 * return.
321 		 */
322 		hlist_del_init_rcu(&mn->hlist);
323 	}
324 	spin_unlock(&mmn_mm->lock);
325 	srcu_read_unlock(&srcu, id);
326 
327 	/*
328 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
329 	 * exit_mmap (which would proceed with freeing all pages in the mm)
330 	 * until the ->release method returns, if it was invoked by
331 	 * mmu_notifier_unregister.
332 	 *
333 	 * The mmu_notifier_mm can't go away from under us because one mm_count
334 	 * is held by exit_mmap.
335 	 */
336 	synchronize_srcu(&srcu);
337 }
338 
339 void __mmu_notifier_release(struct mm_struct *mm)
340 {
341 	struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
342 
343 	if (mmn_mm->has_itree)
344 		mn_itree_release(mmn_mm, mm);
345 
346 	if (!hlist_empty(&mmn_mm->list))
347 		mn_hlist_release(mmn_mm, mm);
348 }
349 
350 /*
351  * If no young bitflag is supported by the hardware, ->clear_flush_young can
352  * unmap the address and return 1 or 0 depending if the mapping previously
353  * existed or not.
354  */
355 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
356 					unsigned long start,
357 					unsigned long end)
358 {
359 	struct mmu_notifier *mn;
360 	int young = 0, id;
361 
362 	id = srcu_read_lock(&srcu);
363 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
364 		if (mn->ops->clear_flush_young)
365 			young |= mn->ops->clear_flush_young(mn, mm, start, end);
366 	}
367 	srcu_read_unlock(&srcu, id);
368 
369 	return young;
370 }
371 
372 int __mmu_notifier_clear_young(struct mm_struct *mm,
373 			       unsigned long start,
374 			       unsigned long end)
375 {
376 	struct mmu_notifier *mn;
377 	int young = 0, id;
378 
379 	id = srcu_read_lock(&srcu);
380 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
381 		if (mn->ops->clear_young)
382 			young |= mn->ops->clear_young(mn, mm, start, end);
383 	}
384 	srcu_read_unlock(&srcu, id);
385 
386 	return young;
387 }
388 
389 int __mmu_notifier_test_young(struct mm_struct *mm,
390 			      unsigned long address)
391 {
392 	struct mmu_notifier *mn;
393 	int young = 0, id;
394 
395 	id = srcu_read_lock(&srcu);
396 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
397 		if (mn->ops->test_young) {
398 			young = mn->ops->test_young(mn, mm, address);
399 			if (young)
400 				break;
401 		}
402 	}
403 	srcu_read_unlock(&srcu, id);
404 
405 	return young;
406 }
407 
408 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
409 			       pte_t pte)
410 {
411 	struct mmu_notifier *mn;
412 	int id;
413 
414 	id = srcu_read_lock(&srcu);
415 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
416 		if (mn->ops->change_pte)
417 			mn->ops->change_pte(mn, mm, address, pte);
418 	}
419 	srcu_read_unlock(&srcu, id);
420 }
421 
422 static int mn_itree_invalidate(struct mmu_notifier_mm *mmn_mm,
423 			       const struct mmu_notifier_range *range)
424 {
425 	struct mmu_interval_notifier *mni;
426 	unsigned long cur_seq;
427 
428 	for (mni = mn_itree_inv_start_range(mmn_mm, range, &cur_seq); mni;
429 	     mni = mn_itree_inv_next(mni, range)) {
430 		bool ret;
431 
432 		ret = mni->ops->invalidate(mni, range, cur_seq);
433 		if (!ret) {
434 			if (WARN_ON(mmu_notifier_range_blockable(range)))
435 				continue;
436 			goto out_would_block;
437 		}
438 	}
439 	return 0;
440 
441 out_would_block:
442 	/*
443 	 * On -EAGAIN the non-blocking caller is not allowed to call
444 	 * invalidate_range_end()
445 	 */
446 	mn_itree_inv_end(mmn_mm);
447 	return -EAGAIN;
448 }
449 
450 static int mn_hlist_invalidate_range_start(struct mmu_notifier_mm *mmn_mm,
451 					   struct mmu_notifier_range *range)
452 {
453 	struct mmu_notifier *mn;
454 	int ret = 0;
455 	int id;
456 
457 	id = srcu_read_lock(&srcu);
458 	hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
459 		if (mn->ops->invalidate_range_start) {
460 			int _ret;
461 
462 			if (!mmu_notifier_range_blockable(range))
463 				non_block_start();
464 			_ret = mn->ops->invalidate_range_start(mn, range);
465 			if (!mmu_notifier_range_blockable(range))
466 				non_block_end();
467 			if (_ret) {
468 				pr_info("%pS callback failed with %d in %sblockable context.\n",
469 					mn->ops->invalidate_range_start, _ret,
470 					!mmu_notifier_range_blockable(range) ? "non-" : "");
471 				WARN_ON(mmu_notifier_range_blockable(range) ||
472 					_ret != -EAGAIN);
473 				ret = _ret;
474 			}
475 		}
476 	}
477 	srcu_read_unlock(&srcu, id);
478 
479 	return ret;
480 }
481 
482 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
483 {
484 	struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
485 	int ret;
486 
487 	if (mmn_mm->has_itree) {
488 		ret = mn_itree_invalidate(mmn_mm, range);
489 		if (ret)
490 			return ret;
491 	}
492 	if (!hlist_empty(&mmn_mm->list))
493 		return mn_hlist_invalidate_range_start(mmn_mm, range);
494 	return 0;
495 }
496 
497 static void mn_hlist_invalidate_end(struct mmu_notifier_mm *mmn_mm,
498 				    struct mmu_notifier_range *range,
499 				    bool only_end)
500 {
501 	struct mmu_notifier *mn;
502 	int id;
503 
504 	id = srcu_read_lock(&srcu);
505 	hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
506 		/*
507 		 * Call invalidate_range here too to avoid the need for the
508 		 * subsystem of having to register an invalidate_range_end
509 		 * call-back when there is invalidate_range already. Usually a
510 		 * subsystem registers either invalidate_range_start()/end() or
511 		 * invalidate_range(), so this will be no additional overhead
512 		 * (besides the pointer check).
513 		 *
514 		 * We skip call to invalidate_range() if we know it is safe ie
515 		 * call site use mmu_notifier_invalidate_range_only_end() which
516 		 * is safe to do when we know that a call to invalidate_range()
517 		 * already happen under page table lock.
518 		 */
519 		if (!only_end && mn->ops->invalidate_range)
520 			mn->ops->invalidate_range(mn, range->mm,
521 						  range->start,
522 						  range->end);
523 		if (mn->ops->invalidate_range_end) {
524 			if (!mmu_notifier_range_blockable(range))
525 				non_block_start();
526 			mn->ops->invalidate_range_end(mn, range);
527 			if (!mmu_notifier_range_blockable(range))
528 				non_block_end();
529 		}
530 	}
531 	srcu_read_unlock(&srcu, id);
532 }
533 
534 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
535 					 bool only_end)
536 {
537 	struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
538 
539 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
540 	if (mmn_mm->has_itree)
541 		mn_itree_inv_end(mmn_mm);
542 
543 	if (!hlist_empty(&mmn_mm->list))
544 		mn_hlist_invalidate_end(mmn_mm, range, only_end);
545 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
546 }
547 
548 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
549 				  unsigned long start, unsigned long end)
550 {
551 	struct mmu_notifier *mn;
552 	int id;
553 
554 	id = srcu_read_lock(&srcu);
555 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
556 		if (mn->ops->invalidate_range)
557 			mn->ops->invalidate_range(mn, mm, start, end);
558 	}
559 	srcu_read_unlock(&srcu, id);
560 }
561 
562 /*
563  * Same as mmu_notifier_register but here the caller must hold the mmap_sem in
564  * write mode. A NULL mn signals the notifier is being registered for itree
565  * mode.
566  */
567 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
568 {
569 	struct mmu_notifier_mm *mmu_notifier_mm = NULL;
570 	int ret;
571 
572 	lockdep_assert_held_write(&mm->mmap_sem);
573 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
574 
575 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
576 		fs_reclaim_acquire(GFP_KERNEL);
577 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
578 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
579 		fs_reclaim_release(GFP_KERNEL);
580 	}
581 
582 	if (!mm->mmu_notifier_mm) {
583 		/*
584 		 * kmalloc cannot be called under mm_take_all_locks(), but we
585 		 * know that mm->mmu_notifier_mm can't change while we hold
586 		 * the write side of the mmap_sem.
587 		 */
588 		mmu_notifier_mm =
589 			kzalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
590 		if (!mmu_notifier_mm)
591 			return -ENOMEM;
592 
593 		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
594 		spin_lock_init(&mmu_notifier_mm->lock);
595 		mmu_notifier_mm->invalidate_seq = 2;
596 		mmu_notifier_mm->itree = RB_ROOT_CACHED;
597 		init_waitqueue_head(&mmu_notifier_mm->wq);
598 		INIT_HLIST_HEAD(&mmu_notifier_mm->deferred_list);
599 	}
600 
601 	ret = mm_take_all_locks(mm);
602 	if (unlikely(ret))
603 		goto out_clean;
604 
605 	/*
606 	 * Serialize the update against mmu_notifier_unregister. A
607 	 * side note: mmu_notifier_release can't run concurrently with
608 	 * us because we hold the mm_users pin (either implicitly as
609 	 * current->mm or explicitly with get_task_mm() or similar).
610 	 * We can't race against any other mmu notifier method either
611 	 * thanks to mm_take_all_locks().
612 	 *
613 	 * release semantics on the initialization of the mmu_notifier_mm's
614 	 * contents are provided for unlocked readers.  acquire can only be
615 	 * used while holding the mmgrab or mmget, and is safe because once
616 	 * created the mmu_notififer_mm is not freed until the mm is
617 	 * destroyed.  As above, users holding the mmap_sem or one of the
618 	 * mm_take_all_locks() do not need to use acquire semantics.
619 	 */
620 	if (mmu_notifier_mm)
621 		smp_store_release(&mm->mmu_notifier_mm, mmu_notifier_mm);
622 
623 	if (mn) {
624 		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
625 		mmgrab(mm);
626 		mn->mm = mm;
627 		mn->users = 1;
628 
629 		spin_lock(&mm->mmu_notifier_mm->lock);
630 		hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
631 		spin_unlock(&mm->mmu_notifier_mm->lock);
632 	} else
633 		mm->mmu_notifier_mm->has_itree = true;
634 
635 	mm_drop_all_locks(mm);
636 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
637 	return 0;
638 
639 out_clean:
640 	kfree(mmu_notifier_mm);
641 	return ret;
642 }
643 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
644 
645 /**
646  * mmu_notifier_register - Register a notifier on a mm
647  * @mn: The notifier to attach
648  * @mm: The mm to attach the notifier to
649  *
650  * Must not hold mmap_sem nor any other VM related lock when calling
651  * this registration function. Must also ensure mm_users can't go down
652  * to zero while this runs to avoid races with mmu_notifier_release,
653  * so mm has to be current->mm or the mm should be pinned safely such
654  * as with get_task_mm(). If the mm is not current->mm, the mm_users
655  * pin should be released by calling mmput after mmu_notifier_register
656  * returns.
657  *
658  * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
659  * unregister the notifier.
660  *
661  * While the caller has a mmu_notifier get the mn->mm pointer will remain
662  * valid, and can be converted to an active mm pointer via mmget_not_zero().
663  */
664 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
665 {
666 	int ret;
667 
668 	down_write(&mm->mmap_sem);
669 	ret = __mmu_notifier_register(mn, mm);
670 	up_write(&mm->mmap_sem);
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(mmu_notifier_register);
674 
675 static struct mmu_notifier *
676 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
677 {
678 	struct mmu_notifier *mn;
679 
680 	spin_lock(&mm->mmu_notifier_mm->lock);
681 	hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
682 		if (mn->ops != ops)
683 			continue;
684 
685 		if (likely(mn->users != UINT_MAX))
686 			mn->users++;
687 		else
688 			mn = ERR_PTR(-EOVERFLOW);
689 		spin_unlock(&mm->mmu_notifier_mm->lock);
690 		return mn;
691 	}
692 	spin_unlock(&mm->mmu_notifier_mm->lock);
693 	return NULL;
694 }
695 
696 /**
697  * mmu_notifier_get_locked - Return the single struct mmu_notifier for
698  *                           the mm & ops
699  * @ops: The operations struct being subscribe with
700  * @mm : The mm to attach notifiers too
701  *
702  * This function either allocates a new mmu_notifier via
703  * ops->alloc_notifier(), or returns an already existing notifier on the
704  * list. The value of the ops pointer is used to determine when two notifiers
705  * are the same.
706  *
707  * Each call to mmu_notifier_get() must be paired with a call to
708  * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
709  *
710  * While the caller has a mmu_notifier get the mm pointer will remain valid,
711  * and can be converted to an active mm pointer via mmget_not_zero().
712  */
713 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
714 					     struct mm_struct *mm)
715 {
716 	struct mmu_notifier *mn;
717 	int ret;
718 
719 	lockdep_assert_held_write(&mm->mmap_sem);
720 
721 	if (mm->mmu_notifier_mm) {
722 		mn = find_get_mmu_notifier(mm, ops);
723 		if (mn)
724 			return mn;
725 	}
726 
727 	mn = ops->alloc_notifier(mm);
728 	if (IS_ERR(mn))
729 		return mn;
730 	mn->ops = ops;
731 	ret = __mmu_notifier_register(mn, mm);
732 	if (ret)
733 		goto out_free;
734 	return mn;
735 out_free:
736 	mn->ops->free_notifier(mn);
737 	return ERR_PTR(ret);
738 }
739 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
740 
741 /* this is called after the last mmu_notifier_unregister() returned */
742 void __mmu_notifier_mm_destroy(struct mm_struct *mm)
743 {
744 	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
745 	kfree(mm->mmu_notifier_mm);
746 	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
747 }
748 
749 /*
750  * This releases the mm_count pin automatically and frees the mm
751  * structure if it was the last user of it. It serializes against
752  * running mmu notifiers with SRCU and against mmu_notifier_unregister
753  * with the unregister lock + SRCU. All sptes must be dropped before
754  * calling mmu_notifier_unregister. ->release or any other notifier
755  * method may be invoked concurrently with mmu_notifier_unregister,
756  * and only after mmu_notifier_unregister returned we're guaranteed
757  * that ->release or any other method can't run anymore.
758  */
759 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
760 {
761 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
762 
763 	if (!hlist_unhashed(&mn->hlist)) {
764 		/*
765 		 * SRCU here will force exit_mmap to wait for ->release to
766 		 * finish before freeing the pages.
767 		 */
768 		int id;
769 
770 		id = srcu_read_lock(&srcu);
771 		/*
772 		 * exit_mmap will block in mmu_notifier_release to guarantee
773 		 * that ->release is called before freeing the pages.
774 		 */
775 		if (mn->ops->release)
776 			mn->ops->release(mn, mm);
777 		srcu_read_unlock(&srcu, id);
778 
779 		spin_lock(&mm->mmu_notifier_mm->lock);
780 		/*
781 		 * Can not use list_del_rcu() since __mmu_notifier_release
782 		 * can delete it before we hold the lock.
783 		 */
784 		hlist_del_init_rcu(&mn->hlist);
785 		spin_unlock(&mm->mmu_notifier_mm->lock);
786 	}
787 
788 	/*
789 	 * Wait for any running method to finish, of course including
790 	 * ->release if it was run by mmu_notifier_release instead of us.
791 	 */
792 	synchronize_srcu(&srcu);
793 
794 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
795 
796 	mmdrop(mm);
797 }
798 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
799 
800 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
801 {
802 	struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
803 	struct mm_struct *mm = mn->mm;
804 
805 	mn->ops->free_notifier(mn);
806 	/* Pairs with the get in __mmu_notifier_register() */
807 	mmdrop(mm);
808 }
809 
810 /**
811  * mmu_notifier_put - Release the reference on the notifier
812  * @mn: The notifier to act on
813  *
814  * This function must be paired with each mmu_notifier_get(), it releases the
815  * reference obtained by the get. If this is the last reference then process
816  * to free the notifier will be run asynchronously.
817  *
818  * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
819  * when the mm_struct is destroyed. Instead free_notifier is always called to
820  * release any resources held by the user.
821  *
822  * As ops->release is not guaranteed to be called, the user must ensure that
823  * all sptes are dropped, and no new sptes can be established before
824  * mmu_notifier_put() is called.
825  *
826  * This function can be called from the ops->release callback, however the
827  * caller must still ensure it is called pairwise with mmu_notifier_get().
828  *
829  * Modules calling this function must call mmu_notifier_synchronize() in
830  * their __exit functions to ensure the async work is completed.
831  */
832 void mmu_notifier_put(struct mmu_notifier *mn)
833 {
834 	struct mm_struct *mm = mn->mm;
835 
836 	spin_lock(&mm->mmu_notifier_mm->lock);
837 	if (WARN_ON(!mn->users) || --mn->users)
838 		goto out_unlock;
839 	hlist_del_init_rcu(&mn->hlist);
840 	spin_unlock(&mm->mmu_notifier_mm->lock);
841 
842 	call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
843 	return;
844 
845 out_unlock:
846 	spin_unlock(&mm->mmu_notifier_mm->lock);
847 }
848 EXPORT_SYMBOL_GPL(mmu_notifier_put);
849 
850 static int __mmu_interval_notifier_insert(
851 	struct mmu_interval_notifier *mni, struct mm_struct *mm,
852 	struct mmu_notifier_mm *mmn_mm, unsigned long start,
853 	unsigned long length, const struct mmu_interval_notifier_ops *ops)
854 {
855 	mni->mm = mm;
856 	mni->ops = ops;
857 	RB_CLEAR_NODE(&mni->interval_tree.rb);
858 	mni->interval_tree.start = start;
859 	/*
860 	 * Note that the representation of the intervals in the interval tree
861 	 * considers the ending point as contained in the interval.
862 	 */
863 	if (length == 0 ||
864 	    check_add_overflow(start, length - 1, &mni->interval_tree.last))
865 		return -EOVERFLOW;
866 
867 	/* Must call with a mmget() held */
868 	if (WARN_ON(atomic_read(&mm->mm_count) <= 0))
869 		return -EINVAL;
870 
871 	/* pairs with mmdrop in mmu_interval_notifier_remove() */
872 	mmgrab(mm);
873 
874 	/*
875 	 * If some invalidate_range_start/end region is going on in parallel
876 	 * we don't know what VA ranges are affected, so we must assume this
877 	 * new range is included.
878 	 *
879 	 * If the itree is invalidating then we are not allowed to change
880 	 * it. Retrying until invalidation is done is tricky due to the
881 	 * possibility for live lock, instead defer the add to
882 	 * mn_itree_inv_end() so this algorithm is deterministic.
883 	 *
884 	 * In all cases the value for the mni->invalidate_seq should be
885 	 * odd, see mmu_interval_read_begin()
886 	 */
887 	spin_lock(&mmn_mm->lock);
888 	if (mmn_mm->active_invalidate_ranges) {
889 		if (mn_itree_is_invalidating(mmn_mm))
890 			hlist_add_head(&mni->deferred_item,
891 				       &mmn_mm->deferred_list);
892 		else {
893 			mmn_mm->invalidate_seq |= 1;
894 			interval_tree_insert(&mni->interval_tree,
895 					     &mmn_mm->itree);
896 		}
897 		mni->invalidate_seq = mmn_mm->invalidate_seq;
898 	} else {
899 		WARN_ON(mn_itree_is_invalidating(mmn_mm));
900 		/*
901 		 * The starting seq for a mni not under invalidation should be
902 		 * odd, not equal to the current invalidate_seq and
903 		 * invalidate_seq should not 'wrap' to the new seq any time
904 		 * soon.
905 		 */
906 		mni->invalidate_seq = mmn_mm->invalidate_seq - 1;
907 		interval_tree_insert(&mni->interval_tree, &mmn_mm->itree);
908 	}
909 	spin_unlock(&mmn_mm->lock);
910 	return 0;
911 }
912 
913 /**
914  * mmu_interval_notifier_insert - Insert an interval notifier
915  * @mni: Interval notifier to register
916  * @start: Starting virtual address to monitor
917  * @length: Length of the range to monitor
918  * @mm : mm_struct to attach to
919  *
920  * This function subscribes the interval notifier for notifications from the
921  * mm.  Upon return the ops related to mmu_interval_notifier will be called
922  * whenever an event that intersects with the given range occurs.
923  *
924  * Upon return the range_notifier may not be present in the interval tree yet.
925  * The caller must use the normal interval notifier read flow via
926  * mmu_interval_read_begin() to establish SPTEs for this range.
927  */
928 int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni,
929 				 struct mm_struct *mm, unsigned long start,
930 				 unsigned long length,
931 				 const struct mmu_interval_notifier_ops *ops)
932 {
933 	struct mmu_notifier_mm *mmn_mm;
934 	int ret;
935 
936 	might_lock(&mm->mmap_sem);
937 
938 	mmn_mm = smp_load_acquire(&mm->mmu_notifier_mm);
939 	if (!mmn_mm || !mmn_mm->has_itree) {
940 		ret = mmu_notifier_register(NULL, mm);
941 		if (ret)
942 			return ret;
943 		mmn_mm = mm->mmu_notifier_mm;
944 	}
945 	return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
946 					      ops);
947 }
948 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
949 
950 int mmu_interval_notifier_insert_locked(
951 	struct mmu_interval_notifier *mni, struct mm_struct *mm,
952 	unsigned long start, unsigned long length,
953 	const struct mmu_interval_notifier_ops *ops)
954 {
955 	struct mmu_notifier_mm *mmn_mm;
956 	int ret;
957 
958 	lockdep_assert_held_write(&mm->mmap_sem);
959 
960 	mmn_mm = mm->mmu_notifier_mm;
961 	if (!mmn_mm || !mmn_mm->has_itree) {
962 		ret = __mmu_notifier_register(NULL, mm);
963 		if (ret)
964 			return ret;
965 		mmn_mm = mm->mmu_notifier_mm;
966 	}
967 	return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
968 					      ops);
969 }
970 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
971 
972 /**
973  * mmu_interval_notifier_remove - Remove a interval notifier
974  * @mni: Interval notifier to unregister
975  *
976  * This function must be paired with mmu_interval_notifier_insert(). It cannot
977  * be called from any ops callback.
978  *
979  * Once this returns ops callbacks are no longer running on other CPUs and
980  * will not be called in future.
981  */
982 void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni)
983 {
984 	struct mm_struct *mm = mni->mm;
985 	struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
986 	unsigned long seq = 0;
987 
988 	might_sleep();
989 
990 	spin_lock(&mmn_mm->lock);
991 	if (mn_itree_is_invalidating(mmn_mm)) {
992 		/*
993 		 * remove is being called after insert put this on the
994 		 * deferred list, but before the deferred list was processed.
995 		 */
996 		if (RB_EMPTY_NODE(&mni->interval_tree.rb)) {
997 			hlist_del(&mni->deferred_item);
998 		} else {
999 			hlist_add_head(&mni->deferred_item,
1000 				       &mmn_mm->deferred_list);
1001 			seq = mmn_mm->invalidate_seq;
1002 		}
1003 	} else {
1004 		WARN_ON(RB_EMPTY_NODE(&mni->interval_tree.rb));
1005 		interval_tree_remove(&mni->interval_tree, &mmn_mm->itree);
1006 	}
1007 	spin_unlock(&mmn_mm->lock);
1008 
1009 	/*
1010 	 * The possible sleep on progress in the invalidation requires the
1011 	 * caller not hold any locks held by invalidation callbacks.
1012 	 */
1013 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1014 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1015 	if (seq)
1016 		wait_event(mmn_mm->wq,
1017 			   READ_ONCE(mmn_mm->invalidate_seq) != seq);
1018 
1019 	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1020 	mmdrop(mm);
1021 }
1022 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1023 
1024 /**
1025  * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1026  *
1027  * This function ensures that all outstanding async SRU work from
1028  * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1029  * associated with an unused mmu_notifier will no longer be called.
1030  *
1031  * Before using the caller must ensure that all of its mmu_notifiers have been
1032  * fully released via mmu_notifier_put().
1033  *
1034  * Modules using the mmu_notifier_put() API should call this in their __exit
1035  * function to avoid module unloading races.
1036  */
1037 void mmu_notifier_synchronize(void)
1038 {
1039 	synchronize_srcu(&srcu);
1040 }
1041 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1042 
1043 bool
1044 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1045 {
1046 	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1047 		return false;
1048 	/* Return true if the vma still have the read flag set. */
1049 	return range->vma->vm_flags & VM_READ;
1050 }
1051 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1052