1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/mmu_notifier.c 4 * 5 * Copyright (C) 2008 Qumranet, Inc. 6 * Copyright (C) 2008 SGI 7 * Christoph Lameter <cl@linux.com> 8 */ 9 10 #include <linux/rculist.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/export.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/interval_tree.h> 16 #include <linux/srcu.h> 17 #include <linux/rcupdate.h> 18 #include <linux/sched.h> 19 #include <linux/sched/mm.h> 20 #include <linux/slab.h> 21 22 /* global SRCU for all MMs */ 23 DEFINE_STATIC_SRCU(srcu); 24 25 #ifdef CONFIG_LOCKDEP 26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = { 27 .name = "mmu_notifier_invalidate_range_start" 28 }; 29 #endif 30 31 /* 32 * The mmu notifier_mm structure is allocated and installed in 33 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected 34 * critical section and it's released only when mm_count reaches zero 35 * in mmdrop(). 36 */ 37 struct mmu_notifier_mm { 38 /* all mmu notifiers registered in this mm are queued in this list */ 39 struct hlist_head list; 40 bool has_itree; 41 /* to serialize the list modifications and hlist_unhashed */ 42 spinlock_t lock; 43 unsigned long invalidate_seq; 44 unsigned long active_invalidate_ranges; 45 struct rb_root_cached itree; 46 wait_queue_head_t wq; 47 struct hlist_head deferred_list; 48 }; 49 50 /* 51 * This is a collision-retry read-side/write-side 'lock', a lot like a 52 * seqcount, however this allows multiple write-sides to hold it at 53 * once. Conceptually the write side is protecting the values of the PTEs in 54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any 55 * writer exists. 56 * 57 * Note that the core mm creates nested invalidate_range_start()/end() regions 58 * within the same thread, and runs invalidate_range_start()/end() in parallel 59 * on multiple CPUs. This is designed to not reduce concurrency or block 60 * progress on the mm side. 61 * 62 * As a secondary function, holding the full write side also serves to prevent 63 * writers for the itree, this is an optimization to avoid extra locking 64 * during invalidate_range_start/end notifiers. 65 * 66 * The write side has two states, fully excluded: 67 * - mm->active_invalidate_ranges != 0 68 * - mnn->invalidate_seq & 1 == True (odd) 69 * - some range on the mm_struct is being invalidated 70 * - the itree is not allowed to change 71 * 72 * And partially excluded: 73 * - mm->active_invalidate_ranges != 0 74 * - mnn->invalidate_seq & 1 == False (even) 75 * - some range on the mm_struct is being invalidated 76 * - the itree is allowed to change 77 * 78 * Operations on mmu_notifier_mm->invalidate_seq (under spinlock): 79 * seq |= 1 # Begin writing 80 * seq++ # Release the writing state 81 * seq & 1 # True if a writer exists 82 * 83 * The later state avoids some expensive work on inv_end in the common case of 84 * no mni monitoring the VA. 85 */ 86 static bool mn_itree_is_invalidating(struct mmu_notifier_mm *mmn_mm) 87 { 88 lockdep_assert_held(&mmn_mm->lock); 89 return mmn_mm->invalidate_seq & 1; 90 } 91 92 static struct mmu_interval_notifier * 93 mn_itree_inv_start_range(struct mmu_notifier_mm *mmn_mm, 94 const struct mmu_notifier_range *range, 95 unsigned long *seq) 96 { 97 struct interval_tree_node *node; 98 struct mmu_interval_notifier *res = NULL; 99 100 spin_lock(&mmn_mm->lock); 101 mmn_mm->active_invalidate_ranges++; 102 node = interval_tree_iter_first(&mmn_mm->itree, range->start, 103 range->end - 1); 104 if (node) { 105 mmn_mm->invalidate_seq |= 1; 106 res = container_of(node, struct mmu_interval_notifier, 107 interval_tree); 108 } 109 110 *seq = mmn_mm->invalidate_seq; 111 spin_unlock(&mmn_mm->lock); 112 return res; 113 } 114 115 static struct mmu_interval_notifier * 116 mn_itree_inv_next(struct mmu_interval_notifier *mni, 117 const struct mmu_notifier_range *range) 118 { 119 struct interval_tree_node *node; 120 121 node = interval_tree_iter_next(&mni->interval_tree, range->start, 122 range->end - 1); 123 if (!node) 124 return NULL; 125 return container_of(node, struct mmu_interval_notifier, interval_tree); 126 } 127 128 static void mn_itree_inv_end(struct mmu_notifier_mm *mmn_mm) 129 { 130 struct mmu_interval_notifier *mni; 131 struct hlist_node *next; 132 133 spin_lock(&mmn_mm->lock); 134 if (--mmn_mm->active_invalidate_ranges || 135 !mn_itree_is_invalidating(mmn_mm)) { 136 spin_unlock(&mmn_mm->lock); 137 return; 138 } 139 140 /* Make invalidate_seq even */ 141 mmn_mm->invalidate_seq++; 142 143 /* 144 * The inv_end incorporates a deferred mechanism like rtnl_unlock(). 145 * Adds and removes are queued until the final inv_end happens then 146 * they are progressed. This arrangement for tree updates is used to 147 * avoid using a blocking lock during invalidate_range_start. 148 */ 149 hlist_for_each_entry_safe(mni, next, &mmn_mm->deferred_list, 150 deferred_item) { 151 if (RB_EMPTY_NODE(&mni->interval_tree.rb)) 152 interval_tree_insert(&mni->interval_tree, 153 &mmn_mm->itree); 154 else 155 interval_tree_remove(&mni->interval_tree, 156 &mmn_mm->itree); 157 hlist_del(&mni->deferred_item); 158 } 159 spin_unlock(&mmn_mm->lock); 160 161 wake_up_all(&mmn_mm->wq); 162 } 163 164 /** 165 * mmu_interval_read_begin - Begin a read side critical section against a VA 166 * range 167 * mni: The range to use 168 * 169 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a 170 * collision-retry scheme similar to seqcount for the VA range under mni. If 171 * the mm invokes invalidation during the critical section then 172 * mmu_interval_read_retry() will return true. 173 * 174 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs 175 * require a blocking context. The critical region formed by this can sleep, 176 * and the required 'user_lock' can also be a sleeping lock. 177 * 178 * The caller is required to provide a 'user_lock' to serialize both teardown 179 * and setup. 180 * 181 * The return value should be passed to mmu_interval_read_retry(). 182 */ 183 unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni) 184 { 185 struct mmu_notifier_mm *mmn_mm = mni->mm->mmu_notifier_mm; 186 unsigned long seq; 187 bool is_invalidating; 188 189 /* 190 * If the mni has a different seq value under the user_lock than we 191 * started with then it has collided. 192 * 193 * If the mni currently has the same seq value as the mmn_mm seq, then 194 * it is currently between invalidate_start/end and is colliding. 195 * 196 * The locking looks broadly like this: 197 * mn_tree_invalidate_start(): mmu_interval_read_begin(): 198 * spin_lock 199 * seq = READ_ONCE(mni->invalidate_seq); 200 * seq == mmn_mm->invalidate_seq 201 * spin_unlock 202 * spin_lock 203 * seq = ++mmn_mm->invalidate_seq 204 * spin_unlock 205 * op->invalidate_range(): 206 * user_lock 207 * mmu_interval_set_seq() 208 * mni->invalidate_seq = seq 209 * user_unlock 210 * 211 * [Required: mmu_interval_read_retry() == true] 212 * 213 * mn_itree_inv_end(): 214 * spin_lock 215 * seq = ++mmn_mm->invalidate_seq 216 * spin_unlock 217 * 218 * user_lock 219 * mmu_interval_read_retry(): 220 * mni->invalidate_seq != seq 221 * user_unlock 222 * 223 * Barriers are not needed here as any races here are closed by an 224 * eventual mmu_interval_read_retry(), which provides a barrier via the 225 * user_lock. 226 */ 227 spin_lock(&mmn_mm->lock); 228 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 229 seq = READ_ONCE(mni->invalidate_seq); 230 is_invalidating = seq == mmn_mm->invalidate_seq; 231 spin_unlock(&mmn_mm->lock); 232 233 /* 234 * mni->invalidate_seq must always be set to an odd value via 235 * mmu_interval_set_seq() using the provided cur_seq from 236 * mn_itree_inv_start_range(). This ensures that if seq does wrap we 237 * will always clear the below sleep in some reasonable time as 238 * mmn_mm->invalidate_seq is even in the idle state. 239 */ 240 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 241 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 242 if (is_invalidating) 243 wait_event(mmn_mm->wq, 244 READ_ONCE(mmn_mm->invalidate_seq) != seq); 245 246 /* 247 * Notice that mmu_interval_read_retry() can already be true at this 248 * point, avoiding loops here allows the caller to provide a global 249 * time bound. 250 */ 251 252 return seq; 253 } 254 EXPORT_SYMBOL_GPL(mmu_interval_read_begin); 255 256 static void mn_itree_release(struct mmu_notifier_mm *mmn_mm, 257 struct mm_struct *mm) 258 { 259 struct mmu_notifier_range range = { 260 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, 261 .event = MMU_NOTIFY_RELEASE, 262 .mm = mm, 263 .start = 0, 264 .end = ULONG_MAX, 265 }; 266 struct mmu_interval_notifier *mni; 267 unsigned long cur_seq; 268 bool ret; 269 270 for (mni = mn_itree_inv_start_range(mmn_mm, &range, &cur_seq); mni; 271 mni = mn_itree_inv_next(mni, &range)) { 272 ret = mni->ops->invalidate(mni, &range, cur_seq); 273 WARN_ON(!ret); 274 } 275 276 mn_itree_inv_end(mmn_mm); 277 } 278 279 /* 280 * This function can't run concurrently against mmu_notifier_register 281 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 282 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 283 * in parallel despite there being no task using this mm any more, 284 * through the vmas outside of the exit_mmap context, such as with 285 * vmtruncate. This serializes against mmu_notifier_unregister with 286 * the mmu_notifier_mm->lock in addition to SRCU and it serializes 287 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm 288 * can't go away from under us as exit_mmap holds an mm_count pin 289 * itself. 290 */ 291 static void mn_hlist_release(struct mmu_notifier_mm *mmn_mm, 292 struct mm_struct *mm) 293 { 294 struct mmu_notifier *mn; 295 int id; 296 297 /* 298 * SRCU here will block mmu_notifier_unregister until 299 * ->release returns. 300 */ 301 id = srcu_read_lock(&srcu); 302 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) 303 /* 304 * If ->release runs before mmu_notifier_unregister it must be 305 * handled, as it's the only way for the driver to flush all 306 * existing sptes and stop the driver from establishing any more 307 * sptes before all the pages in the mm are freed. 308 */ 309 if (mn->ops->release) 310 mn->ops->release(mn, mm); 311 312 spin_lock(&mmn_mm->lock); 313 while (unlikely(!hlist_empty(&mmn_mm->list))) { 314 mn = hlist_entry(mmn_mm->list.first, struct mmu_notifier, 315 hlist); 316 /* 317 * We arrived before mmu_notifier_unregister so 318 * mmu_notifier_unregister will do nothing other than to wait 319 * for ->release to finish and for mmu_notifier_unregister to 320 * return. 321 */ 322 hlist_del_init_rcu(&mn->hlist); 323 } 324 spin_unlock(&mmn_mm->lock); 325 srcu_read_unlock(&srcu, id); 326 327 /* 328 * synchronize_srcu here prevents mmu_notifier_release from returning to 329 * exit_mmap (which would proceed with freeing all pages in the mm) 330 * until the ->release method returns, if it was invoked by 331 * mmu_notifier_unregister. 332 * 333 * The mmu_notifier_mm can't go away from under us because one mm_count 334 * is held by exit_mmap. 335 */ 336 synchronize_srcu(&srcu); 337 } 338 339 void __mmu_notifier_release(struct mm_struct *mm) 340 { 341 struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm; 342 343 if (mmn_mm->has_itree) 344 mn_itree_release(mmn_mm, mm); 345 346 if (!hlist_empty(&mmn_mm->list)) 347 mn_hlist_release(mmn_mm, mm); 348 } 349 350 /* 351 * If no young bitflag is supported by the hardware, ->clear_flush_young can 352 * unmap the address and return 1 or 0 depending if the mapping previously 353 * existed or not. 354 */ 355 int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 356 unsigned long start, 357 unsigned long end) 358 { 359 struct mmu_notifier *mn; 360 int young = 0, id; 361 362 id = srcu_read_lock(&srcu); 363 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 364 if (mn->ops->clear_flush_young) 365 young |= mn->ops->clear_flush_young(mn, mm, start, end); 366 } 367 srcu_read_unlock(&srcu, id); 368 369 return young; 370 } 371 372 int __mmu_notifier_clear_young(struct mm_struct *mm, 373 unsigned long start, 374 unsigned long end) 375 { 376 struct mmu_notifier *mn; 377 int young = 0, id; 378 379 id = srcu_read_lock(&srcu); 380 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 381 if (mn->ops->clear_young) 382 young |= mn->ops->clear_young(mn, mm, start, end); 383 } 384 srcu_read_unlock(&srcu, id); 385 386 return young; 387 } 388 389 int __mmu_notifier_test_young(struct mm_struct *mm, 390 unsigned long address) 391 { 392 struct mmu_notifier *mn; 393 int young = 0, id; 394 395 id = srcu_read_lock(&srcu); 396 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 397 if (mn->ops->test_young) { 398 young = mn->ops->test_young(mn, mm, address); 399 if (young) 400 break; 401 } 402 } 403 srcu_read_unlock(&srcu, id); 404 405 return young; 406 } 407 408 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, 409 pte_t pte) 410 { 411 struct mmu_notifier *mn; 412 int id; 413 414 id = srcu_read_lock(&srcu); 415 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 416 if (mn->ops->change_pte) 417 mn->ops->change_pte(mn, mm, address, pte); 418 } 419 srcu_read_unlock(&srcu, id); 420 } 421 422 static int mn_itree_invalidate(struct mmu_notifier_mm *mmn_mm, 423 const struct mmu_notifier_range *range) 424 { 425 struct mmu_interval_notifier *mni; 426 unsigned long cur_seq; 427 428 for (mni = mn_itree_inv_start_range(mmn_mm, range, &cur_seq); mni; 429 mni = mn_itree_inv_next(mni, range)) { 430 bool ret; 431 432 ret = mni->ops->invalidate(mni, range, cur_seq); 433 if (!ret) { 434 if (WARN_ON(mmu_notifier_range_blockable(range))) 435 continue; 436 goto out_would_block; 437 } 438 } 439 return 0; 440 441 out_would_block: 442 /* 443 * On -EAGAIN the non-blocking caller is not allowed to call 444 * invalidate_range_end() 445 */ 446 mn_itree_inv_end(mmn_mm); 447 return -EAGAIN; 448 } 449 450 static int mn_hlist_invalidate_range_start(struct mmu_notifier_mm *mmn_mm, 451 struct mmu_notifier_range *range) 452 { 453 struct mmu_notifier *mn; 454 int ret = 0; 455 int id; 456 457 id = srcu_read_lock(&srcu); 458 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) { 459 if (mn->ops->invalidate_range_start) { 460 int _ret; 461 462 if (!mmu_notifier_range_blockable(range)) 463 non_block_start(); 464 _ret = mn->ops->invalidate_range_start(mn, range); 465 if (!mmu_notifier_range_blockable(range)) 466 non_block_end(); 467 if (_ret) { 468 pr_info("%pS callback failed with %d in %sblockable context.\n", 469 mn->ops->invalidate_range_start, _ret, 470 !mmu_notifier_range_blockable(range) ? "non-" : ""); 471 WARN_ON(mmu_notifier_range_blockable(range) || 472 _ret != -EAGAIN); 473 ret = _ret; 474 } 475 } 476 } 477 srcu_read_unlock(&srcu, id); 478 479 return ret; 480 } 481 482 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 483 { 484 struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm; 485 int ret; 486 487 if (mmn_mm->has_itree) { 488 ret = mn_itree_invalidate(mmn_mm, range); 489 if (ret) 490 return ret; 491 } 492 if (!hlist_empty(&mmn_mm->list)) 493 return mn_hlist_invalidate_range_start(mmn_mm, range); 494 return 0; 495 } 496 497 static void mn_hlist_invalidate_end(struct mmu_notifier_mm *mmn_mm, 498 struct mmu_notifier_range *range, 499 bool only_end) 500 { 501 struct mmu_notifier *mn; 502 int id; 503 504 id = srcu_read_lock(&srcu); 505 hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) { 506 /* 507 * Call invalidate_range here too to avoid the need for the 508 * subsystem of having to register an invalidate_range_end 509 * call-back when there is invalidate_range already. Usually a 510 * subsystem registers either invalidate_range_start()/end() or 511 * invalidate_range(), so this will be no additional overhead 512 * (besides the pointer check). 513 * 514 * We skip call to invalidate_range() if we know it is safe ie 515 * call site use mmu_notifier_invalidate_range_only_end() which 516 * is safe to do when we know that a call to invalidate_range() 517 * already happen under page table lock. 518 */ 519 if (!only_end && mn->ops->invalidate_range) 520 mn->ops->invalidate_range(mn, range->mm, 521 range->start, 522 range->end); 523 if (mn->ops->invalidate_range_end) { 524 if (!mmu_notifier_range_blockable(range)) 525 non_block_start(); 526 mn->ops->invalidate_range_end(mn, range); 527 if (!mmu_notifier_range_blockable(range)) 528 non_block_end(); 529 } 530 } 531 srcu_read_unlock(&srcu, id); 532 } 533 534 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, 535 bool only_end) 536 { 537 struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm; 538 539 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 540 if (mmn_mm->has_itree) 541 mn_itree_inv_end(mmn_mm); 542 543 if (!hlist_empty(&mmn_mm->list)) 544 mn_hlist_invalidate_end(mmn_mm, range, only_end); 545 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 546 } 547 548 void __mmu_notifier_invalidate_range(struct mm_struct *mm, 549 unsigned long start, unsigned long end) 550 { 551 struct mmu_notifier *mn; 552 int id; 553 554 id = srcu_read_lock(&srcu); 555 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { 556 if (mn->ops->invalidate_range) 557 mn->ops->invalidate_range(mn, mm, start, end); 558 } 559 srcu_read_unlock(&srcu, id); 560 } 561 562 /* 563 * Same as mmu_notifier_register but here the caller must hold the mmap_sem in 564 * write mode. A NULL mn signals the notifier is being registered for itree 565 * mode. 566 */ 567 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) 568 { 569 struct mmu_notifier_mm *mmu_notifier_mm = NULL; 570 int ret; 571 572 lockdep_assert_held_write(&mm->mmap_sem); 573 BUG_ON(atomic_read(&mm->mm_users) <= 0); 574 575 if (IS_ENABLED(CONFIG_LOCKDEP)) { 576 fs_reclaim_acquire(GFP_KERNEL); 577 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 578 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 579 fs_reclaim_release(GFP_KERNEL); 580 } 581 582 if (!mm->mmu_notifier_mm) { 583 /* 584 * kmalloc cannot be called under mm_take_all_locks(), but we 585 * know that mm->mmu_notifier_mm can't change while we hold 586 * the write side of the mmap_sem. 587 */ 588 mmu_notifier_mm = 589 kzalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL); 590 if (!mmu_notifier_mm) 591 return -ENOMEM; 592 593 INIT_HLIST_HEAD(&mmu_notifier_mm->list); 594 spin_lock_init(&mmu_notifier_mm->lock); 595 mmu_notifier_mm->invalidate_seq = 2; 596 mmu_notifier_mm->itree = RB_ROOT_CACHED; 597 init_waitqueue_head(&mmu_notifier_mm->wq); 598 INIT_HLIST_HEAD(&mmu_notifier_mm->deferred_list); 599 } 600 601 ret = mm_take_all_locks(mm); 602 if (unlikely(ret)) 603 goto out_clean; 604 605 /* 606 * Serialize the update against mmu_notifier_unregister. A 607 * side note: mmu_notifier_release can't run concurrently with 608 * us because we hold the mm_users pin (either implicitly as 609 * current->mm or explicitly with get_task_mm() or similar). 610 * We can't race against any other mmu notifier method either 611 * thanks to mm_take_all_locks(). 612 * 613 * release semantics on the initialization of the mmu_notifier_mm's 614 * contents are provided for unlocked readers. acquire can only be 615 * used while holding the mmgrab or mmget, and is safe because once 616 * created the mmu_notififer_mm is not freed until the mm is 617 * destroyed. As above, users holding the mmap_sem or one of the 618 * mm_take_all_locks() do not need to use acquire semantics. 619 */ 620 if (mmu_notifier_mm) 621 smp_store_release(&mm->mmu_notifier_mm, mmu_notifier_mm); 622 623 if (mn) { 624 /* Pairs with the mmdrop in mmu_notifier_unregister_* */ 625 mmgrab(mm); 626 mn->mm = mm; 627 mn->users = 1; 628 629 spin_lock(&mm->mmu_notifier_mm->lock); 630 hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list); 631 spin_unlock(&mm->mmu_notifier_mm->lock); 632 } else 633 mm->mmu_notifier_mm->has_itree = true; 634 635 mm_drop_all_locks(mm); 636 BUG_ON(atomic_read(&mm->mm_users) <= 0); 637 return 0; 638 639 out_clean: 640 kfree(mmu_notifier_mm); 641 return ret; 642 } 643 EXPORT_SYMBOL_GPL(__mmu_notifier_register); 644 645 /** 646 * mmu_notifier_register - Register a notifier on a mm 647 * @mn: The notifier to attach 648 * @mm: The mm to attach the notifier to 649 * 650 * Must not hold mmap_sem nor any other VM related lock when calling 651 * this registration function. Must also ensure mm_users can't go down 652 * to zero while this runs to avoid races with mmu_notifier_release, 653 * so mm has to be current->mm or the mm should be pinned safely such 654 * as with get_task_mm(). If the mm is not current->mm, the mm_users 655 * pin should be released by calling mmput after mmu_notifier_register 656 * returns. 657 * 658 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to 659 * unregister the notifier. 660 * 661 * While the caller has a mmu_notifier get the mn->mm pointer will remain 662 * valid, and can be converted to an active mm pointer via mmget_not_zero(). 663 */ 664 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) 665 { 666 int ret; 667 668 down_write(&mm->mmap_sem); 669 ret = __mmu_notifier_register(mn, mm); 670 up_write(&mm->mmap_sem); 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(mmu_notifier_register); 674 675 static struct mmu_notifier * 676 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) 677 { 678 struct mmu_notifier *mn; 679 680 spin_lock(&mm->mmu_notifier_mm->lock); 681 hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) { 682 if (mn->ops != ops) 683 continue; 684 685 if (likely(mn->users != UINT_MAX)) 686 mn->users++; 687 else 688 mn = ERR_PTR(-EOVERFLOW); 689 spin_unlock(&mm->mmu_notifier_mm->lock); 690 return mn; 691 } 692 spin_unlock(&mm->mmu_notifier_mm->lock); 693 return NULL; 694 } 695 696 /** 697 * mmu_notifier_get_locked - Return the single struct mmu_notifier for 698 * the mm & ops 699 * @ops: The operations struct being subscribe with 700 * @mm : The mm to attach notifiers too 701 * 702 * This function either allocates a new mmu_notifier via 703 * ops->alloc_notifier(), or returns an already existing notifier on the 704 * list. The value of the ops pointer is used to determine when two notifiers 705 * are the same. 706 * 707 * Each call to mmu_notifier_get() must be paired with a call to 708 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem. 709 * 710 * While the caller has a mmu_notifier get the mm pointer will remain valid, 711 * and can be converted to an active mm pointer via mmget_not_zero(). 712 */ 713 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 714 struct mm_struct *mm) 715 { 716 struct mmu_notifier *mn; 717 int ret; 718 719 lockdep_assert_held_write(&mm->mmap_sem); 720 721 if (mm->mmu_notifier_mm) { 722 mn = find_get_mmu_notifier(mm, ops); 723 if (mn) 724 return mn; 725 } 726 727 mn = ops->alloc_notifier(mm); 728 if (IS_ERR(mn)) 729 return mn; 730 mn->ops = ops; 731 ret = __mmu_notifier_register(mn, mm); 732 if (ret) 733 goto out_free; 734 return mn; 735 out_free: 736 mn->ops->free_notifier(mn); 737 return ERR_PTR(ret); 738 } 739 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); 740 741 /* this is called after the last mmu_notifier_unregister() returned */ 742 void __mmu_notifier_mm_destroy(struct mm_struct *mm) 743 { 744 BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list)); 745 kfree(mm->mmu_notifier_mm); 746 mm->mmu_notifier_mm = LIST_POISON1; /* debug */ 747 } 748 749 /* 750 * This releases the mm_count pin automatically and frees the mm 751 * structure if it was the last user of it. It serializes against 752 * running mmu notifiers with SRCU and against mmu_notifier_unregister 753 * with the unregister lock + SRCU. All sptes must be dropped before 754 * calling mmu_notifier_unregister. ->release or any other notifier 755 * method may be invoked concurrently with mmu_notifier_unregister, 756 * and only after mmu_notifier_unregister returned we're guaranteed 757 * that ->release or any other method can't run anymore. 758 */ 759 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) 760 { 761 BUG_ON(atomic_read(&mm->mm_count) <= 0); 762 763 if (!hlist_unhashed(&mn->hlist)) { 764 /* 765 * SRCU here will force exit_mmap to wait for ->release to 766 * finish before freeing the pages. 767 */ 768 int id; 769 770 id = srcu_read_lock(&srcu); 771 /* 772 * exit_mmap will block in mmu_notifier_release to guarantee 773 * that ->release is called before freeing the pages. 774 */ 775 if (mn->ops->release) 776 mn->ops->release(mn, mm); 777 srcu_read_unlock(&srcu, id); 778 779 spin_lock(&mm->mmu_notifier_mm->lock); 780 /* 781 * Can not use list_del_rcu() since __mmu_notifier_release 782 * can delete it before we hold the lock. 783 */ 784 hlist_del_init_rcu(&mn->hlist); 785 spin_unlock(&mm->mmu_notifier_mm->lock); 786 } 787 788 /* 789 * Wait for any running method to finish, of course including 790 * ->release if it was run by mmu_notifier_release instead of us. 791 */ 792 synchronize_srcu(&srcu); 793 794 BUG_ON(atomic_read(&mm->mm_count) <= 0); 795 796 mmdrop(mm); 797 } 798 EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 799 800 static void mmu_notifier_free_rcu(struct rcu_head *rcu) 801 { 802 struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu); 803 struct mm_struct *mm = mn->mm; 804 805 mn->ops->free_notifier(mn); 806 /* Pairs with the get in __mmu_notifier_register() */ 807 mmdrop(mm); 808 } 809 810 /** 811 * mmu_notifier_put - Release the reference on the notifier 812 * @mn: The notifier to act on 813 * 814 * This function must be paired with each mmu_notifier_get(), it releases the 815 * reference obtained by the get. If this is the last reference then process 816 * to free the notifier will be run asynchronously. 817 * 818 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release 819 * when the mm_struct is destroyed. Instead free_notifier is always called to 820 * release any resources held by the user. 821 * 822 * As ops->release is not guaranteed to be called, the user must ensure that 823 * all sptes are dropped, and no new sptes can be established before 824 * mmu_notifier_put() is called. 825 * 826 * This function can be called from the ops->release callback, however the 827 * caller must still ensure it is called pairwise with mmu_notifier_get(). 828 * 829 * Modules calling this function must call mmu_notifier_synchronize() in 830 * their __exit functions to ensure the async work is completed. 831 */ 832 void mmu_notifier_put(struct mmu_notifier *mn) 833 { 834 struct mm_struct *mm = mn->mm; 835 836 spin_lock(&mm->mmu_notifier_mm->lock); 837 if (WARN_ON(!mn->users) || --mn->users) 838 goto out_unlock; 839 hlist_del_init_rcu(&mn->hlist); 840 spin_unlock(&mm->mmu_notifier_mm->lock); 841 842 call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu); 843 return; 844 845 out_unlock: 846 spin_unlock(&mm->mmu_notifier_mm->lock); 847 } 848 EXPORT_SYMBOL_GPL(mmu_notifier_put); 849 850 static int __mmu_interval_notifier_insert( 851 struct mmu_interval_notifier *mni, struct mm_struct *mm, 852 struct mmu_notifier_mm *mmn_mm, unsigned long start, 853 unsigned long length, const struct mmu_interval_notifier_ops *ops) 854 { 855 mni->mm = mm; 856 mni->ops = ops; 857 RB_CLEAR_NODE(&mni->interval_tree.rb); 858 mni->interval_tree.start = start; 859 /* 860 * Note that the representation of the intervals in the interval tree 861 * considers the ending point as contained in the interval. 862 */ 863 if (length == 0 || 864 check_add_overflow(start, length - 1, &mni->interval_tree.last)) 865 return -EOVERFLOW; 866 867 /* Must call with a mmget() held */ 868 if (WARN_ON(atomic_read(&mm->mm_count) <= 0)) 869 return -EINVAL; 870 871 /* pairs with mmdrop in mmu_interval_notifier_remove() */ 872 mmgrab(mm); 873 874 /* 875 * If some invalidate_range_start/end region is going on in parallel 876 * we don't know what VA ranges are affected, so we must assume this 877 * new range is included. 878 * 879 * If the itree is invalidating then we are not allowed to change 880 * it. Retrying until invalidation is done is tricky due to the 881 * possibility for live lock, instead defer the add to 882 * mn_itree_inv_end() so this algorithm is deterministic. 883 * 884 * In all cases the value for the mni->invalidate_seq should be 885 * odd, see mmu_interval_read_begin() 886 */ 887 spin_lock(&mmn_mm->lock); 888 if (mmn_mm->active_invalidate_ranges) { 889 if (mn_itree_is_invalidating(mmn_mm)) 890 hlist_add_head(&mni->deferred_item, 891 &mmn_mm->deferred_list); 892 else { 893 mmn_mm->invalidate_seq |= 1; 894 interval_tree_insert(&mni->interval_tree, 895 &mmn_mm->itree); 896 } 897 mni->invalidate_seq = mmn_mm->invalidate_seq; 898 } else { 899 WARN_ON(mn_itree_is_invalidating(mmn_mm)); 900 /* 901 * The starting seq for a mni not under invalidation should be 902 * odd, not equal to the current invalidate_seq and 903 * invalidate_seq should not 'wrap' to the new seq any time 904 * soon. 905 */ 906 mni->invalidate_seq = mmn_mm->invalidate_seq - 1; 907 interval_tree_insert(&mni->interval_tree, &mmn_mm->itree); 908 } 909 spin_unlock(&mmn_mm->lock); 910 return 0; 911 } 912 913 /** 914 * mmu_interval_notifier_insert - Insert an interval notifier 915 * @mni: Interval notifier to register 916 * @start: Starting virtual address to monitor 917 * @length: Length of the range to monitor 918 * @mm : mm_struct to attach to 919 * 920 * This function subscribes the interval notifier for notifications from the 921 * mm. Upon return the ops related to mmu_interval_notifier will be called 922 * whenever an event that intersects with the given range occurs. 923 * 924 * Upon return the range_notifier may not be present in the interval tree yet. 925 * The caller must use the normal interval notifier read flow via 926 * mmu_interval_read_begin() to establish SPTEs for this range. 927 */ 928 int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni, 929 struct mm_struct *mm, unsigned long start, 930 unsigned long length, 931 const struct mmu_interval_notifier_ops *ops) 932 { 933 struct mmu_notifier_mm *mmn_mm; 934 int ret; 935 936 might_lock(&mm->mmap_sem); 937 938 mmn_mm = smp_load_acquire(&mm->mmu_notifier_mm); 939 if (!mmn_mm || !mmn_mm->has_itree) { 940 ret = mmu_notifier_register(NULL, mm); 941 if (ret) 942 return ret; 943 mmn_mm = mm->mmu_notifier_mm; 944 } 945 return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length, 946 ops); 947 } 948 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); 949 950 int mmu_interval_notifier_insert_locked( 951 struct mmu_interval_notifier *mni, struct mm_struct *mm, 952 unsigned long start, unsigned long length, 953 const struct mmu_interval_notifier_ops *ops) 954 { 955 struct mmu_notifier_mm *mmn_mm; 956 int ret; 957 958 lockdep_assert_held_write(&mm->mmap_sem); 959 960 mmn_mm = mm->mmu_notifier_mm; 961 if (!mmn_mm || !mmn_mm->has_itree) { 962 ret = __mmu_notifier_register(NULL, mm); 963 if (ret) 964 return ret; 965 mmn_mm = mm->mmu_notifier_mm; 966 } 967 return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length, 968 ops); 969 } 970 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); 971 972 /** 973 * mmu_interval_notifier_remove - Remove a interval notifier 974 * @mni: Interval notifier to unregister 975 * 976 * This function must be paired with mmu_interval_notifier_insert(). It cannot 977 * be called from any ops callback. 978 * 979 * Once this returns ops callbacks are no longer running on other CPUs and 980 * will not be called in future. 981 */ 982 void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni) 983 { 984 struct mm_struct *mm = mni->mm; 985 struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm; 986 unsigned long seq = 0; 987 988 might_sleep(); 989 990 spin_lock(&mmn_mm->lock); 991 if (mn_itree_is_invalidating(mmn_mm)) { 992 /* 993 * remove is being called after insert put this on the 994 * deferred list, but before the deferred list was processed. 995 */ 996 if (RB_EMPTY_NODE(&mni->interval_tree.rb)) { 997 hlist_del(&mni->deferred_item); 998 } else { 999 hlist_add_head(&mni->deferred_item, 1000 &mmn_mm->deferred_list); 1001 seq = mmn_mm->invalidate_seq; 1002 } 1003 } else { 1004 WARN_ON(RB_EMPTY_NODE(&mni->interval_tree.rb)); 1005 interval_tree_remove(&mni->interval_tree, &mmn_mm->itree); 1006 } 1007 spin_unlock(&mmn_mm->lock); 1008 1009 /* 1010 * The possible sleep on progress in the invalidation requires the 1011 * caller not hold any locks held by invalidation callbacks. 1012 */ 1013 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 1014 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 1015 if (seq) 1016 wait_event(mmn_mm->wq, 1017 READ_ONCE(mmn_mm->invalidate_seq) != seq); 1018 1019 /* pairs with mmgrab in mmu_interval_notifier_insert() */ 1020 mmdrop(mm); 1021 } 1022 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); 1023 1024 /** 1025 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed 1026 * 1027 * This function ensures that all outstanding async SRU work from 1028 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops 1029 * associated with an unused mmu_notifier will no longer be called. 1030 * 1031 * Before using the caller must ensure that all of its mmu_notifiers have been 1032 * fully released via mmu_notifier_put(). 1033 * 1034 * Modules using the mmu_notifier_put() API should call this in their __exit 1035 * function to avoid module unloading races. 1036 */ 1037 void mmu_notifier_synchronize(void) 1038 { 1039 synchronize_srcu(&srcu); 1040 } 1041 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 1042 1043 bool 1044 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) 1045 { 1046 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) 1047 return false; 1048 /* Return true if the vma still have the read flag set. */ 1049 return range->vma->vm_flags & VM_READ; 1050 } 1051 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only); 1052