xref: /openbmc/linux/mm/mmu_notifier.c (revision 8781e5df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/mmu_notifier.c
4  *
5  *  Copyright (C) 2008  Qumranet, Inc.
6  *  Copyright (C) 2008  SGI
7  *             Christoph Lameter <cl@linux.com>
8  */
9 
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/srcu.h>
16 #include <linux/rcupdate.h>
17 #include <linux/sched.h>
18 #include <linux/sched/mm.h>
19 #include <linux/slab.h>
20 
21 /* global SRCU for all MMs */
22 DEFINE_STATIC_SRCU(srcu);
23 
24 #ifdef CONFIG_LOCKDEP
25 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
26 	.name = "mmu_notifier_invalidate_range_start"
27 };
28 #endif
29 
30 /*
31  * This function can't run concurrently against mmu_notifier_register
32  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
33  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
34  * in parallel despite there being no task using this mm any more,
35  * through the vmas outside of the exit_mmap context, such as with
36  * vmtruncate. This serializes against mmu_notifier_unregister with
37  * the mmu_notifier_mm->lock in addition to SRCU and it serializes
38  * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
39  * can't go away from under us as exit_mmap holds an mm_count pin
40  * itself.
41  */
42 void __mmu_notifier_release(struct mm_struct *mm)
43 {
44 	struct mmu_notifier *mn;
45 	int id;
46 
47 	/*
48 	 * SRCU here will block mmu_notifier_unregister until
49 	 * ->release returns.
50 	 */
51 	id = srcu_read_lock(&srcu);
52 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
53 		/*
54 		 * If ->release runs before mmu_notifier_unregister it must be
55 		 * handled, as it's the only way for the driver to flush all
56 		 * existing sptes and stop the driver from establishing any more
57 		 * sptes before all the pages in the mm are freed.
58 		 */
59 		if (mn->ops->release)
60 			mn->ops->release(mn, mm);
61 
62 	spin_lock(&mm->mmu_notifier_mm->lock);
63 	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
64 		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
65 				 struct mmu_notifier,
66 				 hlist);
67 		/*
68 		 * We arrived before mmu_notifier_unregister so
69 		 * mmu_notifier_unregister will do nothing other than to wait
70 		 * for ->release to finish and for mmu_notifier_unregister to
71 		 * return.
72 		 */
73 		hlist_del_init_rcu(&mn->hlist);
74 	}
75 	spin_unlock(&mm->mmu_notifier_mm->lock);
76 	srcu_read_unlock(&srcu, id);
77 
78 	/*
79 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
80 	 * exit_mmap (which would proceed with freeing all pages in the mm)
81 	 * until the ->release method returns, if it was invoked by
82 	 * mmu_notifier_unregister.
83 	 *
84 	 * The mmu_notifier_mm can't go away from under us because one mm_count
85 	 * is held by exit_mmap.
86 	 */
87 	synchronize_srcu(&srcu);
88 }
89 
90 /*
91  * If no young bitflag is supported by the hardware, ->clear_flush_young can
92  * unmap the address and return 1 or 0 depending if the mapping previously
93  * existed or not.
94  */
95 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
96 					unsigned long start,
97 					unsigned long end)
98 {
99 	struct mmu_notifier *mn;
100 	int young = 0, id;
101 
102 	id = srcu_read_lock(&srcu);
103 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
104 		if (mn->ops->clear_flush_young)
105 			young |= mn->ops->clear_flush_young(mn, mm, start, end);
106 	}
107 	srcu_read_unlock(&srcu, id);
108 
109 	return young;
110 }
111 
112 int __mmu_notifier_clear_young(struct mm_struct *mm,
113 			       unsigned long start,
114 			       unsigned long end)
115 {
116 	struct mmu_notifier *mn;
117 	int young = 0, id;
118 
119 	id = srcu_read_lock(&srcu);
120 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
121 		if (mn->ops->clear_young)
122 			young |= mn->ops->clear_young(mn, mm, start, end);
123 	}
124 	srcu_read_unlock(&srcu, id);
125 
126 	return young;
127 }
128 
129 int __mmu_notifier_test_young(struct mm_struct *mm,
130 			      unsigned long address)
131 {
132 	struct mmu_notifier *mn;
133 	int young = 0, id;
134 
135 	id = srcu_read_lock(&srcu);
136 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
137 		if (mn->ops->test_young) {
138 			young = mn->ops->test_young(mn, mm, address);
139 			if (young)
140 				break;
141 		}
142 	}
143 	srcu_read_unlock(&srcu, id);
144 
145 	return young;
146 }
147 
148 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
149 			       pte_t pte)
150 {
151 	struct mmu_notifier *mn;
152 	int id;
153 
154 	id = srcu_read_lock(&srcu);
155 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
156 		if (mn->ops->change_pte)
157 			mn->ops->change_pte(mn, mm, address, pte);
158 	}
159 	srcu_read_unlock(&srcu, id);
160 }
161 
162 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
163 {
164 	struct mmu_notifier *mn;
165 	int ret = 0;
166 	int id;
167 
168 	id = srcu_read_lock(&srcu);
169 	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
170 		if (mn->ops->invalidate_range_start) {
171 			int _ret;
172 
173 			if (!mmu_notifier_range_blockable(range))
174 				non_block_start();
175 			_ret = mn->ops->invalidate_range_start(mn, range);
176 			if (!mmu_notifier_range_blockable(range))
177 				non_block_end();
178 			if (_ret) {
179 				pr_info("%pS callback failed with %d in %sblockable context.\n",
180 					mn->ops->invalidate_range_start, _ret,
181 					!mmu_notifier_range_blockable(range) ? "non-" : "");
182 				WARN_ON(mmu_notifier_range_blockable(range) ||
183 					ret != -EAGAIN);
184 				ret = _ret;
185 			}
186 		}
187 	}
188 	srcu_read_unlock(&srcu, id);
189 
190 	return ret;
191 }
192 
193 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
194 					 bool only_end)
195 {
196 	struct mmu_notifier *mn;
197 	int id;
198 
199 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
200 	id = srcu_read_lock(&srcu);
201 	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
202 		/*
203 		 * Call invalidate_range here too to avoid the need for the
204 		 * subsystem of having to register an invalidate_range_end
205 		 * call-back when there is invalidate_range already. Usually a
206 		 * subsystem registers either invalidate_range_start()/end() or
207 		 * invalidate_range(), so this will be no additional overhead
208 		 * (besides the pointer check).
209 		 *
210 		 * We skip call to invalidate_range() if we know it is safe ie
211 		 * call site use mmu_notifier_invalidate_range_only_end() which
212 		 * is safe to do when we know that a call to invalidate_range()
213 		 * already happen under page table lock.
214 		 */
215 		if (!only_end && mn->ops->invalidate_range)
216 			mn->ops->invalidate_range(mn, range->mm,
217 						  range->start,
218 						  range->end);
219 		if (mn->ops->invalidate_range_end) {
220 			if (!mmu_notifier_range_blockable(range))
221 				non_block_start();
222 			mn->ops->invalidate_range_end(mn, range);
223 			if (!mmu_notifier_range_blockable(range))
224 				non_block_end();
225 		}
226 	}
227 	srcu_read_unlock(&srcu, id);
228 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
229 }
230 
231 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
232 				  unsigned long start, unsigned long end)
233 {
234 	struct mmu_notifier *mn;
235 	int id;
236 
237 	id = srcu_read_lock(&srcu);
238 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
239 		if (mn->ops->invalidate_range)
240 			mn->ops->invalidate_range(mn, mm, start, end);
241 	}
242 	srcu_read_unlock(&srcu, id);
243 }
244 
245 /*
246  * Same as mmu_notifier_register but here the caller must hold the
247  * mmap_sem in write mode.
248  */
249 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
250 {
251 	struct mmu_notifier_mm *mmu_notifier_mm = NULL;
252 	int ret;
253 
254 	lockdep_assert_held_write(&mm->mmap_sem);
255 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
256 
257 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
258 		fs_reclaim_acquire(GFP_KERNEL);
259 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
260 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
261 		fs_reclaim_release(GFP_KERNEL);
262 	}
263 
264 	mn->mm = mm;
265 	mn->users = 1;
266 
267 	if (!mm->mmu_notifier_mm) {
268 		/*
269 		 * kmalloc cannot be called under mm_take_all_locks(), but we
270 		 * know that mm->mmu_notifier_mm can't change while we hold
271 		 * the write side of the mmap_sem.
272 		 */
273 		mmu_notifier_mm =
274 			kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
275 		if (!mmu_notifier_mm)
276 			return -ENOMEM;
277 
278 		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
279 		spin_lock_init(&mmu_notifier_mm->lock);
280 	}
281 
282 	ret = mm_take_all_locks(mm);
283 	if (unlikely(ret))
284 		goto out_clean;
285 
286 	/* Pairs with the mmdrop in mmu_notifier_unregister_* */
287 	mmgrab(mm);
288 
289 	/*
290 	 * Serialize the update against mmu_notifier_unregister. A
291 	 * side note: mmu_notifier_release can't run concurrently with
292 	 * us because we hold the mm_users pin (either implicitly as
293 	 * current->mm or explicitly with get_task_mm() or similar).
294 	 * We can't race against any other mmu notifier method either
295 	 * thanks to mm_take_all_locks().
296 	 */
297 	if (mmu_notifier_mm)
298 		mm->mmu_notifier_mm = mmu_notifier_mm;
299 
300 	spin_lock(&mm->mmu_notifier_mm->lock);
301 	hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
302 	spin_unlock(&mm->mmu_notifier_mm->lock);
303 
304 	mm_drop_all_locks(mm);
305 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
306 	return 0;
307 
308 out_clean:
309 	kfree(mmu_notifier_mm);
310 	return ret;
311 }
312 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
313 
314 /**
315  * mmu_notifier_register - Register a notifier on a mm
316  * @mn: The notifier to attach
317  * @mm: The mm to attach the notifier to
318  *
319  * Must not hold mmap_sem nor any other VM related lock when calling
320  * this registration function. Must also ensure mm_users can't go down
321  * to zero while this runs to avoid races with mmu_notifier_release,
322  * so mm has to be current->mm or the mm should be pinned safely such
323  * as with get_task_mm(). If the mm is not current->mm, the mm_users
324  * pin should be released by calling mmput after mmu_notifier_register
325  * returns.
326  *
327  * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
328  * unregister the notifier.
329  *
330  * While the caller has a mmu_notifier get the mn->mm pointer will remain
331  * valid, and can be converted to an active mm pointer via mmget_not_zero().
332  */
333 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
334 {
335 	int ret;
336 
337 	down_write(&mm->mmap_sem);
338 	ret = __mmu_notifier_register(mn, mm);
339 	up_write(&mm->mmap_sem);
340 	return ret;
341 }
342 EXPORT_SYMBOL_GPL(mmu_notifier_register);
343 
344 static struct mmu_notifier *
345 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
346 {
347 	struct mmu_notifier *mn;
348 
349 	spin_lock(&mm->mmu_notifier_mm->lock);
350 	hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
351 		if (mn->ops != ops)
352 			continue;
353 
354 		if (likely(mn->users != UINT_MAX))
355 			mn->users++;
356 		else
357 			mn = ERR_PTR(-EOVERFLOW);
358 		spin_unlock(&mm->mmu_notifier_mm->lock);
359 		return mn;
360 	}
361 	spin_unlock(&mm->mmu_notifier_mm->lock);
362 	return NULL;
363 }
364 
365 /**
366  * mmu_notifier_get_locked - Return the single struct mmu_notifier for
367  *                           the mm & ops
368  * @ops: The operations struct being subscribe with
369  * @mm : The mm to attach notifiers too
370  *
371  * This function either allocates a new mmu_notifier via
372  * ops->alloc_notifier(), or returns an already existing notifier on the
373  * list. The value of the ops pointer is used to determine when two notifiers
374  * are the same.
375  *
376  * Each call to mmu_notifier_get() must be paired with a call to
377  * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
378  *
379  * While the caller has a mmu_notifier get the mm pointer will remain valid,
380  * and can be converted to an active mm pointer via mmget_not_zero().
381  */
382 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
383 					     struct mm_struct *mm)
384 {
385 	struct mmu_notifier *mn;
386 	int ret;
387 
388 	lockdep_assert_held_write(&mm->mmap_sem);
389 
390 	if (mm->mmu_notifier_mm) {
391 		mn = find_get_mmu_notifier(mm, ops);
392 		if (mn)
393 			return mn;
394 	}
395 
396 	mn = ops->alloc_notifier(mm);
397 	if (IS_ERR(mn))
398 		return mn;
399 	mn->ops = ops;
400 	ret = __mmu_notifier_register(mn, mm);
401 	if (ret)
402 		goto out_free;
403 	return mn;
404 out_free:
405 	mn->ops->free_notifier(mn);
406 	return ERR_PTR(ret);
407 }
408 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
409 
410 /* this is called after the last mmu_notifier_unregister() returned */
411 void __mmu_notifier_mm_destroy(struct mm_struct *mm)
412 {
413 	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
414 	kfree(mm->mmu_notifier_mm);
415 	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
416 }
417 
418 /*
419  * This releases the mm_count pin automatically and frees the mm
420  * structure if it was the last user of it. It serializes against
421  * running mmu notifiers with SRCU and against mmu_notifier_unregister
422  * with the unregister lock + SRCU. All sptes must be dropped before
423  * calling mmu_notifier_unregister. ->release or any other notifier
424  * method may be invoked concurrently with mmu_notifier_unregister,
425  * and only after mmu_notifier_unregister returned we're guaranteed
426  * that ->release or any other method can't run anymore.
427  */
428 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
429 {
430 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
431 
432 	if (!hlist_unhashed(&mn->hlist)) {
433 		/*
434 		 * SRCU here will force exit_mmap to wait for ->release to
435 		 * finish before freeing the pages.
436 		 */
437 		int id;
438 
439 		id = srcu_read_lock(&srcu);
440 		/*
441 		 * exit_mmap will block in mmu_notifier_release to guarantee
442 		 * that ->release is called before freeing the pages.
443 		 */
444 		if (mn->ops->release)
445 			mn->ops->release(mn, mm);
446 		srcu_read_unlock(&srcu, id);
447 
448 		spin_lock(&mm->mmu_notifier_mm->lock);
449 		/*
450 		 * Can not use list_del_rcu() since __mmu_notifier_release
451 		 * can delete it before we hold the lock.
452 		 */
453 		hlist_del_init_rcu(&mn->hlist);
454 		spin_unlock(&mm->mmu_notifier_mm->lock);
455 	}
456 
457 	/*
458 	 * Wait for any running method to finish, of course including
459 	 * ->release if it was run by mmu_notifier_release instead of us.
460 	 */
461 	synchronize_srcu(&srcu);
462 
463 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
464 
465 	mmdrop(mm);
466 }
467 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
468 
469 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
470 {
471 	struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
472 	struct mm_struct *mm = mn->mm;
473 
474 	mn->ops->free_notifier(mn);
475 	/* Pairs with the get in __mmu_notifier_register() */
476 	mmdrop(mm);
477 }
478 
479 /**
480  * mmu_notifier_put - Release the reference on the notifier
481  * @mn: The notifier to act on
482  *
483  * This function must be paired with each mmu_notifier_get(), it releases the
484  * reference obtained by the get. If this is the last reference then process
485  * to free the notifier will be run asynchronously.
486  *
487  * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
488  * when the mm_struct is destroyed. Instead free_notifier is always called to
489  * release any resources held by the user.
490  *
491  * As ops->release is not guaranteed to be called, the user must ensure that
492  * all sptes are dropped, and no new sptes can be established before
493  * mmu_notifier_put() is called.
494  *
495  * This function can be called from the ops->release callback, however the
496  * caller must still ensure it is called pairwise with mmu_notifier_get().
497  *
498  * Modules calling this function must call mmu_notifier_synchronize() in
499  * their __exit functions to ensure the async work is completed.
500  */
501 void mmu_notifier_put(struct mmu_notifier *mn)
502 {
503 	struct mm_struct *mm = mn->mm;
504 
505 	spin_lock(&mm->mmu_notifier_mm->lock);
506 	if (WARN_ON(!mn->users) || --mn->users)
507 		goto out_unlock;
508 	hlist_del_init_rcu(&mn->hlist);
509 	spin_unlock(&mm->mmu_notifier_mm->lock);
510 
511 	call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
512 	return;
513 
514 out_unlock:
515 	spin_unlock(&mm->mmu_notifier_mm->lock);
516 }
517 EXPORT_SYMBOL_GPL(mmu_notifier_put);
518 
519 /**
520  * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
521  *
522  * This function ensures that all outstanding async SRU work from
523  * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
524  * associated with an unused mmu_notifier will no longer be called.
525  *
526  * Before using the caller must ensure that all of its mmu_notifiers have been
527  * fully released via mmu_notifier_put().
528  *
529  * Modules using the mmu_notifier_put() API should call this in their __exit
530  * function to avoid module unloading races.
531  */
532 void mmu_notifier_synchronize(void)
533 {
534 	synchronize_srcu(&srcu);
535 }
536 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
537 
538 bool
539 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
540 {
541 	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
542 		return false;
543 	/* Return true if the vma still have the read flag set. */
544 	return range->vma->vm_flags & VM_READ;
545 }
546 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
547