xref: /openbmc/linux/mm/mmu_notifier.c (revision 83268fa6)
1 /*
2  *  linux/mm/mmu_notifier.c
3  *
4  *  Copyright (C) 2008  Qumranet, Inc.
5  *  Copyright (C) 2008  SGI
6  *             Christoph Lameter <cl@linux.com>
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  */
11 
12 #include <linux/rculist.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/export.h>
15 #include <linux/mm.h>
16 #include <linux/err.h>
17 #include <linux/srcu.h>
18 #include <linux/rcupdate.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/slab.h>
22 
23 /* global SRCU for all MMs */
24 DEFINE_STATIC_SRCU(srcu);
25 
26 /*
27  * This function allows mmu_notifier::release callback to delay a call to
28  * a function that will free appropriate resources. The function must be
29  * quick and must not block.
30  */
31 void mmu_notifier_call_srcu(struct rcu_head *rcu,
32 			    void (*func)(struct rcu_head *rcu))
33 {
34 	call_srcu(&srcu, rcu, func);
35 }
36 EXPORT_SYMBOL_GPL(mmu_notifier_call_srcu);
37 
38 void mmu_notifier_synchronize(void)
39 {
40 	/* Wait for any running method to finish. */
41 	srcu_barrier(&srcu);
42 }
43 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
44 
45 /*
46  * This function can't run concurrently against mmu_notifier_register
47  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
48  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
49  * in parallel despite there being no task using this mm any more,
50  * through the vmas outside of the exit_mmap context, such as with
51  * vmtruncate. This serializes against mmu_notifier_unregister with
52  * the mmu_notifier_mm->lock in addition to SRCU and it serializes
53  * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
54  * can't go away from under us as exit_mmap holds an mm_count pin
55  * itself.
56  */
57 void __mmu_notifier_release(struct mm_struct *mm)
58 {
59 	struct mmu_notifier *mn;
60 	int id;
61 
62 	/*
63 	 * SRCU here will block mmu_notifier_unregister until
64 	 * ->release returns.
65 	 */
66 	id = srcu_read_lock(&srcu);
67 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
68 		/*
69 		 * If ->release runs before mmu_notifier_unregister it must be
70 		 * handled, as it's the only way for the driver to flush all
71 		 * existing sptes and stop the driver from establishing any more
72 		 * sptes before all the pages in the mm are freed.
73 		 */
74 		if (mn->ops->release)
75 			mn->ops->release(mn, mm);
76 
77 	spin_lock(&mm->mmu_notifier_mm->lock);
78 	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
79 		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
80 				 struct mmu_notifier,
81 				 hlist);
82 		/*
83 		 * We arrived before mmu_notifier_unregister so
84 		 * mmu_notifier_unregister will do nothing other than to wait
85 		 * for ->release to finish and for mmu_notifier_unregister to
86 		 * return.
87 		 */
88 		hlist_del_init_rcu(&mn->hlist);
89 	}
90 	spin_unlock(&mm->mmu_notifier_mm->lock);
91 	srcu_read_unlock(&srcu, id);
92 
93 	/*
94 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
95 	 * exit_mmap (which would proceed with freeing all pages in the mm)
96 	 * until the ->release method returns, if it was invoked by
97 	 * mmu_notifier_unregister.
98 	 *
99 	 * The mmu_notifier_mm can't go away from under us because one mm_count
100 	 * is held by exit_mmap.
101 	 */
102 	synchronize_srcu(&srcu);
103 }
104 
105 /*
106  * If no young bitflag is supported by the hardware, ->clear_flush_young can
107  * unmap the address and return 1 or 0 depending if the mapping previously
108  * existed or not.
109  */
110 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
111 					unsigned long start,
112 					unsigned long end)
113 {
114 	struct mmu_notifier *mn;
115 	int young = 0, id;
116 
117 	id = srcu_read_lock(&srcu);
118 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
119 		if (mn->ops->clear_flush_young)
120 			young |= mn->ops->clear_flush_young(mn, mm, start, end);
121 	}
122 	srcu_read_unlock(&srcu, id);
123 
124 	return young;
125 }
126 
127 int __mmu_notifier_clear_young(struct mm_struct *mm,
128 			       unsigned long start,
129 			       unsigned long end)
130 {
131 	struct mmu_notifier *mn;
132 	int young = 0, id;
133 
134 	id = srcu_read_lock(&srcu);
135 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
136 		if (mn->ops->clear_young)
137 			young |= mn->ops->clear_young(mn, mm, start, end);
138 	}
139 	srcu_read_unlock(&srcu, id);
140 
141 	return young;
142 }
143 
144 int __mmu_notifier_test_young(struct mm_struct *mm,
145 			      unsigned long address)
146 {
147 	struct mmu_notifier *mn;
148 	int young = 0, id;
149 
150 	id = srcu_read_lock(&srcu);
151 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
152 		if (mn->ops->test_young) {
153 			young = mn->ops->test_young(mn, mm, address);
154 			if (young)
155 				break;
156 		}
157 	}
158 	srcu_read_unlock(&srcu, id);
159 
160 	return young;
161 }
162 
163 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
164 			       pte_t pte)
165 {
166 	struct mmu_notifier *mn;
167 	int id;
168 
169 	id = srcu_read_lock(&srcu);
170 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
171 		if (mn->ops->change_pte)
172 			mn->ops->change_pte(mn, mm, address, pte);
173 	}
174 	srcu_read_unlock(&srcu, id);
175 }
176 
177 int __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
178 				  unsigned long start, unsigned long end,
179 				  bool blockable)
180 {
181 	struct mmu_notifier *mn;
182 	int ret = 0;
183 	int id;
184 
185 	id = srcu_read_lock(&srcu);
186 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
187 		if (mn->ops->invalidate_range_start) {
188 			int _ret = mn->ops->invalidate_range_start(mn, mm, start, end, blockable);
189 			if (_ret) {
190 				pr_info("%pS callback failed with %d in %sblockable context.\n",
191 						mn->ops->invalidate_range_start, _ret,
192 						!blockable ? "non-" : "");
193 				ret = _ret;
194 			}
195 		}
196 	}
197 	srcu_read_unlock(&srcu, id);
198 
199 	return ret;
200 }
201 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start);
202 
203 void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
204 					 unsigned long start,
205 					 unsigned long end,
206 					 bool only_end)
207 {
208 	struct mmu_notifier *mn;
209 	int id;
210 
211 	id = srcu_read_lock(&srcu);
212 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
213 		/*
214 		 * Call invalidate_range here too to avoid the need for the
215 		 * subsystem of having to register an invalidate_range_end
216 		 * call-back when there is invalidate_range already. Usually a
217 		 * subsystem registers either invalidate_range_start()/end() or
218 		 * invalidate_range(), so this will be no additional overhead
219 		 * (besides the pointer check).
220 		 *
221 		 * We skip call to invalidate_range() if we know it is safe ie
222 		 * call site use mmu_notifier_invalidate_range_only_end() which
223 		 * is safe to do when we know that a call to invalidate_range()
224 		 * already happen under page table lock.
225 		 */
226 		if (!only_end && mn->ops->invalidate_range)
227 			mn->ops->invalidate_range(mn, mm, start, end);
228 		if (mn->ops->invalidate_range_end)
229 			mn->ops->invalidate_range_end(mn, mm, start, end);
230 	}
231 	srcu_read_unlock(&srcu, id);
232 }
233 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end);
234 
235 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
236 				  unsigned long start, unsigned long end)
237 {
238 	struct mmu_notifier *mn;
239 	int id;
240 
241 	id = srcu_read_lock(&srcu);
242 	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
243 		if (mn->ops->invalidate_range)
244 			mn->ops->invalidate_range(mn, mm, start, end);
245 	}
246 	srcu_read_unlock(&srcu, id);
247 }
248 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range);
249 
250 static int do_mmu_notifier_register(struct mmu_notifier *mn,
251 				    struct mm_struct *mm,
252 				    int take_mmap_sem)
253 {
254 	struct mmu_notifier_mm *mmu_notifier_mm;
255 	int ret;
256 
257 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
258 
259 	ret = -ENOMEM;
260 	mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
261 	if (unlikely(!mmu_notifier_mm))
262 		goto out;
263 
264 	if (take_mmap_sem)
265 		down_write(&mm->mmap_sem);
266 	ret = mm_take_all_locks(mm);
267 	if (unlikely(ret))
268 		goto out_clean;
269 
270 	if (!mm_has_notifiers(mm)) {
271 		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
272 		spin_lock_init(&mmu_notifier_mm->lock);
273 
274 		mm->mmu_notifier_mm = mmu_notifier_mm;
275 		mmu_notifier_mm = NULL;
276 	}
277 	mmgrab(mm);
278 
279 	/*
280 	 * Serialize the update against mmu_notifier_unregister. A
281 	 * side note: mmu_notifier_release can't run concurrently with
282 	 * us because we hold the mm_users pin (either implicitly as
283 	 * current->mm or explicitly with get_task_mm() or similar).
284 	 * We can't race against any other mmu notifier method either
285 	 * thanks to mm_take_all_locks().
286 	 */
287 	spin_lock(&mm->mmu_notifier_mm->lock);
288 	hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
289 	spin_unlock(&mm->mmu_notifier_mm->lock);
290 
291 	mm_drop_all_locks(mm);
292 out_clean:
293 	if (take_mmap_sem)
294 		up_write(&mm->mmap_sem);
295 	kfree(mmu_notifier_mm);
296 out:
297 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
298 	return ret;
299 }
300 
301 /*
302  * Must not hold mmap_sem nor any other VM related lock when calling
303  * this registration function. Must also ensure mm_users can't go down
304  * to zero while this runs to avoid races with mmu_notifier_release,
305  * so mm has to be current->mm or the mm should be pinned safely such
306  * as with get_task_mm(). If the mm is not current->mm, the mm_users
307  * pin should be released by calling mmput after mmu_notifier_register
308  * returns. mmu_notifier_unregister must be always called to
309  * unregister the notifier. mm_count is automatically pinned to allow
310  * mmu_notifier_unregister to safely run at any time later, before or
311  * after exit_mmap. ->release will always be called before exit_mmap
312  * frees the pages.
313  */
314 int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
315 {
316 	return do_mmu_notifier_register(mn, mm, 1);
317 }
318 EXPORT_SYMBOL_GPL(mmu_notifier_register);
319 
320 /*
321  * Same as mmu_notifier_register but here the caller must hold the
322  * mmap_sem in write mode.
323  */
324 int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
325 {
326 	return do_mmu_notifier_register(mn, mm, 0);
327 }
328 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
329 
330 /* this is called after the last mmu_notifier_unregister() returned */
331 void __mmu_notifier_mm_destroy(struct mm_struct *mm)
332 {
333 	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
334 	kfree(mm->mmu_notifier_mm);
335 	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
336 }
337 
338 /*
339  * This releases the mm_count pin automatically and frees the mm
340  * structure if it was the last user of it. It serializes against
341  * running mmu notifiers with SRCU and against mmu_notifier_unregister
342  * with the unregister lock + SRCU. All sptes must be dropped before
343  * calling mmu_notifier_unregister. ->release or any other notifier
344  * method may be invoked concurrently with mmu_notifier_unregister,
345  * and only after mmu_notifier_unregister returned we're guaranteed
346  * that ->release or any other method can't run anymore.
347  */
348 void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
349 {
350 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
351 
352 	if (!hlist_unhashed(&mn->hlist)) {
353 		/*
354 		 * SRCU here will force exit_mmap to wait for ->release to
355 		 * finish before freeing the pages.
356 		 */
357 		int id;
358 
359 		id = srcu_read_lock(&srcu);
360 		/*
361 		 * exit_mmap will block in mmu_notifier_release to guarantee
362 		 * that ->release is called before freeing the pages.
363 		 */
364 		if (mn->ops->release)
365 			mn->ops->release(mn, mm);
366 		srcu_read_unlock(&srcu, id);
367 
368 		spin_lock(&mm->mmu_notifier_mm->lock);
369 		/*
370 		 * Can not use list_del_rcu() since __mmu_notifier_release
371 		 * can delete it before we hold the lock.
372 		 */
373 		hlist_del_init_rcu(&mn->hlist);
374 		spin_unlock(&mm->mmu_notifier_mm->lock);
375 	}
376 
377 	/*
378 	 * Wait for any running method to finish, of course including
379 	 * ->release if it was run by mmu_notifier_release instead of us.
380 	 */
381 	synchronize_srcu(&srcu);
382 
383 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
384 
385 	mmdrop(mm);
386 }
387 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
388 
389 /*
390  * Same as mmu_notifier_unregister but no callback and no srcu synchronization.
391  */
392 void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
393 					struct mm_struct *mm)
394 {
395 	spin_lock(&mm->mmu_notifier_mm->lock);
396 	/*
397 	 * Can not use list_del_rcu() since __mmu_notifier_release
398 	 * can delete it before we hold the lock.
399 	 */
400 	hlist_del_init_rcu(&mn->hlist);
401 	spin_unlock(&mm->mmu_notifier_mm->lock);
402 
403 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
404 	mmdrop(mm);
405 }
406 EXPORT_SYMBOL_GPL(mmu_notifier_unregister_no_release);
407