1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/mmu_notifier.c 4 * 5 * Copyright (C) 2008 Qumranet, Inc. 6 * Copyright (C) 2008 SGI 7 * Christoph Lameter <cl@linux.com> 8 */ 9 10 #include <linux/rculist.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/export.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/interval_tree.h> 16 #include <linux/srcu.h> 17 #include <linux/rcupdate.h> 18 #include <linux/sched.h> 19 #include <linux/sched/mm.h> 20 #include <linux/slab.h> 21 22 /* global SRCU for all MMs */ 23 DEFINE_STATIC_SRCU(srcu); 24 25 #ifdef CONFIG_LOCKDEP 26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = { 27 .name = "mmu_notifier_invalidate_range_start" 28 }; 29 #endif 30 31 /* 32 * The mmu_notifier_subscriptions structure is allocated and installed in 33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected 34 * critical section and it's released only when mm_count reaches zero 35 * in mmdrop(). 36 */ 37 struct mmu_notifier_subscriptions { 38 /* all mmu notifiers registered in this mm are queued in this list */ 39 struct hlist_head list; 40 bool has_itree; 41 /* to serialize the list modifications and hlist_unhashed */ 42 spinlock_t lock; 43 unsigned long invalidate_seq; 44 unsigned long active_invalidate_ranges; 45 struct rb_root_cached itree; 46 wait_queue_head_t wq; 47 struct hlist_head deferred_list; 48 }; 49 50 /* 51 * This is a collision-retry read-side/write-side 'lock', a lot like a 52 * seqcount, however this allows multiple write-sides to hold it at 53 * once. Conceptually the write side is protecting the values of the PTEs in 54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any 55 * writer exists. 56 * 57 * Note that the core mm creates nested invalidate_range_start()/end() regions 58 * within the same thread, and runs invalidate_range_start()/end() in parallel 59 * on multiple CPUs. This is designed to not reduce concurrency or block 60 * progress on the mm side. 61 * 62 * As a secondary function, holding the full write side also serves to prevent 63 * writers for the itree, this is an optimization to avoid extra locking 64 * during invalidate_range_start/end notifiers. 65 * 66 * The write side has two states, fully excluded: 67 * - mm->active_invalidate_ranges != 0 68 * - subscriptions->invalidate_seq & 1 == True (odd) 69 * - some range on the mm_struct is being invalidated 70 * - the itree is not allowed to change 71 * 72 * And partially excluded: 73 * - mm->active_invalidate_ranges != 0 74 * - subscriptions->invalidate_seq & 1 == False (even) 75 * - some range on the mm_struct is being invalidated 76 * - the itree is allowed to change 77 * 78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock): 79 * seq |= 1 # Begin writing 80 * seq++ # Release the writing state 81 * seq & 1 # True if a writer exists 82 * 83 * The later state avoids some expensive work on inv_end in the common case of 84 * no mmu_interval_notifier monitoring the VA. 85 */ 86 static bool 87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions) 88 { 89 lockdep_assert_held(&subscriptions->lock); 90 return subscriptions->invalidate_seq & 1; 91 } 92 93 static struct mmu_interval_notifier * 94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions, 95 const struct mmu_notifier_range *range, 96 unsigned long *seq) 97 { 98 struct interval_tree_node *node; 99 struct mmu_interval_notifier *res = NULL; 100 101 spin_lock(&subscriptions->lock); 102 subscriptions->active_invalidate_ranges++; 103 node = interval_tree_iter_first(&subscriptions->itree, range->start, 104 range->end - 1); 105 if (node) { 106 subscriptions->invalidate_seq |= 1; 107 res = container_of(node, struct mmu_interval_notifier, 108 interval_tree); 109 } 110 111 *seq = subscriptions->invalidate_seq; 112 spin_unlock(&subscriptions->lock); 113 return res; 114 } 115 116 static struct mmu_interval_notifier * 117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub, 118 const struct mmu_notifier_range *range) 119 { 120 struct interval_tree_node *node; 121 122 node = interval_tree_iter_next(&interval_sub->interval_tree, 123 range->start, range->end - 1); 124 if (!node) 125 return NULL; 126 return container_of(node, struct mmu_interval_notifier, interval_tree); 127 } 128 129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions) 130 { 131 struct mmu_interval_notifier *interval_sub; 132 struct hlist_node *next; 133 134 spin_lock(&subscriptions->lock); 135 if (--subscriptions->active_invalidate_ranges || 136 !mn_itree_is_invalidating(subscriptions)) { 137 spin_unlock(&subscriptions->lock); 138 return; 139 } 140 141 /* Make invalidate_seq even */ 142 subscriptions->invalidate_seq++; 143 144 /* 145 * The inv_end incorporates a deferred mechanism like rtnl_unlock(). 146 * Adds and removes are queued until the final inv_end happens then 147 * they are progressed. This arrangement for tree updates is used to 148 * avoid using a blocking lock during invalidate_range_start. 149 */ 150 hlist_for_each_entry_safe(interval_sub, next, 151 &subscriptions->deferred_list, 152 deferred_item) { 153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) 154 interval_tree_insert(&interval_sub->interval_tree, 155 &subscriptions->itree); 156 else 157 interval_tree_remove(&interval_sub->interval_tree, 158 &subscriptions->itree); 159 hlist_del(&interval_sub->deferred_item); 160 } 161 spin_unlock(&subscriptions->lock); 162 163 wake_up_all(&subscriptions->wq); 164 } 165 166 /** 167 * mmu_interval_read_begin - Begin a read side critical section against a VA 168 * range 169 * @interval_sub: The interval subscription 170 * 171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a 172 * collision-retry scheme similar to seqcount for the VA range under 173 * subscription. If the mm invokes invalidation during the critical section 174 * then mmu_interval_read_retry() will return true. 175 * 176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs 177 * require a blocking context. The critical region formed by this can sleep, 178 * and the required 'user_lock' can also be a sleeping lock. 179 * 180 * The caller is required to provide a 'user_lock' to serialize both teardown 181 * and setup. 182 * 183 * The return value should be passed to mmu_interval_read_retry(). 184 */ 185 unsigned long 186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub) 187 { 188 struct mmu_notifier_subscriptions *subscriptions = 189 interval_sub->mm->notifier_subscriptions; 190 unsigned long seq; 191 bool is_invalidating; 192 193 /* 194 * If the subscription has a different seq value under the user_lock 195 * than we started with then it has collided. 196 * 197 * If the subscription currently has the same seq value as the 198 * subscriptions seq, then it is currently between 199 * invalidate_start/end and is colliding. 200 * 201 * The locking looks broadly like this: 202 * mn_tree_invalidate_start(): mmu_interval_read_begin(): 203 * spin_lock 204 * seq = READ_ONCE(interval_sub->invalidate_seq); 205 * seq == subs->invalidate_seq 206 * spin_unlock 207 * spin_lock 208 * seq = ++subscriptions->invalidate_seq 209 * spin_unlock 210 * op->invalidate_range(): 211 * user_lock 212 * mmu_interval_set_seq() 213 * interval_sub->invalidate_seq = seq 214 * user_unlock 215 * 216 * [Required: mmu_interval_read_retry() == true] 217 * 218 * mn_itree_inv_end(): 219 * spin_lock 220 * seq = ++subscriptions->invalidate_seq 221 * spin_unlock 222 * 223 * user_lock 224 * mmu_interval_read_retry(): 225 * interval_sub->invalidate_seq != seq 226 * user_unlock 227 * 228 * Barriers are not needed here as any races here are closed by an 229 * eventual mmu_interval_read_retry(), which provides a barrier via the 230 * user_lock. 231 */ 232 spin_lock(&subscriptions->lock); 233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 234 seq = READ_ONCE(interval_sub->invalidate_seq); 235 is_invalidating = seq == subscriptions->invalidate_seq; 236 spin_unlock(&subscriptions->lock); 237 238 /* 239 * interval_sub->invalidate_seq must always be set to an odd value via 240 * mmu_interval_set_seq() using the provided cur_seq from 241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we 242 * will always clear the below sleep in some reasonable time as 243 * subscriptions->invalidate_seq is even in the idle state. 244 */ 245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 246 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 247 if (is_invalidating) 248 wait_event(subscriptions->wq, 249 READ_ONCE(subscriptions->invalidate_seq) != seq); 250 251 /* 252 * Notice that mmu_interval_read_retry() can already be true at this 253 * point, avoiding loops here allows the caller to provide a global 254 * time bound. 255 */ 256 257 return seq; 258 } 259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin); 260 261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions, 262 struct mm_struct *mm) 263 { 264 struct mmu_notifier_range range = { 265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, 266 .event = MMU_NOTIFY_RELEASE, 267 .mm = mm, 268 .start = 0, 269 .end = ULONG_MAX, 270 }; 271 struct mmu_interval_notifier *interval_sub; 272 unsigned long cur_seq; 273 bool ret; 274 275 for (interval_sub = 276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq); 277 interval_sub; 278 interval_sub = mn_itree_inv_next(interval_sub, &range)) { 279 ret = interval_sub->ops->invalidate(interval_sub, &range, 280 cur_seq); 281 WARN_ON(!ret); 282 } 283 284 mn_itree_inv_end(subscriptions); 285 } 286 287 /* 288 * This function can't run concurrently against mmu_notifier_register 289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 291 * in parallel despite there being no task using this mm any more, 292 * through the vmas outside of the exit_mmap context, such as with 293 * vmtruncate. This serializes against mmu_notifier_unregister with 294 * the notifier_subscriptions->lock in addition to SRCU and it serializes 295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions 296 * can't go away from under us as exit_mmap holds an mm_count pin 297 * itself. 298 */ 299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions, 300 struct mm_struct *mm) 301 { 302 struct mmu_notifier *subscription; 303 int id; 304 305 /* 306 * SRCU here will block mmu_notifier_unregister until 307 * ->release returns. 308 */ 309 id = srcu_read_lock(&srcu); 310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 311 srcu_read_lock_held(&srcu)) 312 /* 313 * If ->release runs before mmu_notifier_unregister it must be 314 * handled, as it's the only way for the driver to flush all 315 * existing sptes and stop the driver from establishing any more 316 * sptes before all the pages in the mm are freed. 317 */ 318 if (subscription->ops->release) 319 subscription->ops->release(subscription, mm); 320 321 spin_lock(&subscriptions->lock); 322 while (unlikely(!hlist_empty(&subscriptions->list))) { 323 subscription = hlist_entry(subscriptions->list.first, 324 struct mmu_notifier, hlist); 325 /* 326 * We arrived before mmu_notifier_unregister so 327 * mmu_notifier_unregister will do nothing other than to wait 328 * for ->release to finish and for mmu_notifier_unregister to 329 * return. 330 */ 331 hlist_del_init_rcu(&subscription->hlist); 332 } 333 spin_unlock(&subscriptions->lock); 334 srcu_read_unlock(&srcu, id); 335 336 /* 337 * synchronize_srcu here prevents mmu_notifier_release from returning to 338 * exit_mmap (which would proceed with freeing all pages in the mm) 339 * until the ->release method returns, if it was invoked by 340 * mmu_notifier_unregister. 341 * 342 * The notifier_subscriptions can't go away from under us because 343 * one mm_count is held by exit_mmap. 344 */ 345 synchronize_srcu(&srcu); 346 } 347 348 void __mmu_notifier_release(struct mm_struct *mm) 349 { 350 struct mmu_notifier_subscriptions *subscriptions = 351 mm->notifier_subscriptions; 352 353 if (subscriptions->has_itree) 354 mn_itree_release(subscriptions, mm); 355 356 if (!hlist_empty(&subscriptions->list)) 357 mn_hlist_release(subscriptions, mm); 358 } 359 360 /* 361 * If no young bitflag is supported by the hardware, ->clear_flush_young can 362 * unmap the address and return 1 or 0 depending if the mapping previously 363 * existed or not. 364 */ 365 int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 366 unsigned long start, 367 unsigned long end) 368 { 369 struct mmu_notifier *subscription; 370 int young = 0, id; 371 372 id = srcu_read_lock(&srcu); 373 hlist_for_each_entry_rcu(subscription, 374 &mm->notifier_subscriptions->list, hlist, 375 srcu_read_lock_held(&srcu)) { 376 if (subscription->ops->clear_flush_young) 377 young |= subscription->ops->clear_flush_young( 378 subscription, mm, start, end); 379 } 380 srcu_read_unlock(&srcu, id); 381 382 return young; 383 } 384 385 int __mmu_notifier_clear_young(struct mm_struct *mm, 386 unsigned long start, 387 unsigned long end) 388 { 389 struct mmu_notifier *subscription; 390 int young = 0, id; 391 392 id = srcu_read_lock(&srcu); 393 hlist_for_each_entry_rcu(subscription, 394 &mm->notifier_subscriptions->list, hlist, 395 srcu_read_lock_held(&srcu)) { 396 if (subscription->ops->clear_young) 397 young |= subscription->ops->clear_young(subscription, 398 mm, start, end); 399 } 400 srcu_read_unlock(&srcu, id); 401 402 return young; 403 } 404 405 int __mmu_notifier_test_young(struct mm_struct *mm, 406 unsigned long address) 407 { 408 struct mmu_notifier *subscription; 409 int young = 0, id; 410 411 id = srcu_read_lock(&srcu); 412 hlist_for_each_entry_rcu(subscription, 413 &mm->notifier_subscriptions->list, hlist, 414 srcu_read_lock_held(&srcu)) { 415 if (subscription->ops->test_young) { 416 young = subscription->ops->test_young(subscription, mm, 417 address); 418 if (young) 419 break; 420 } 421 } 422 srcu_read_unlock(&srcu, id); 423 424 return young; 425 } 426 427 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, 428 pte_t pte) 429 { 430 struct mmu_notifier *subscription; 431 int id; 432 433 id = srcu_read_lock(&srcu); 434 hlist_for_each_entry_rcu(subscription, 435 &mm->notifier_subscriptions->list, hlist, 436 srcu_read_lock_held(&srcu)) { 437 if (subscription->ops->change_pte) 438 subscription->ops->change_pte(subscription, mm, address, 439 pte); 440 } 441 srcu_read_unlock(&srcu, id); 442 } 443 444 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions, 445 const struct mmu_notifier_range *range) 446 { 447 struct mmu_interval_notifier *interval_sub; 448 unsigned long cur_seq; 449 450 for (interval_sub = 451 mn_itree_inv_start_range(subscriptions, range, &cur_seq); 452 interval_sub; 453 interval_sub = mn_itree_inv_next(interval_sub, range)) { 454 bool ret; 455 456 ret = interval_sub->ops->invalidate(interval_sub, range, 457 cur_seq); 458 if (!ret) { 459 if (WARN_ON(mmu_notifier_range_blockable(range))) 460 continue; 461 goto out_would_block; 462 } 463 } 464 return 0; 465 466 out_would_block: 467 /* 468 * On -EAGAIN the non-blocking caller is not allowed to call 469 * invalidate_range_end() 470 */ 471 mn_itree_inv_end(subscriptions); 472 return -EAGAIN; 473 } 474 475 static int mn_hlist_invalidate_range_start( 476 struct mmu_notifier_subscriptions *subscriptions, 477 struct mmu_notifier_range *range) 478 { 479 struct mmu_notifier *subscription; 480 int ret = 0; 481 int id; 482 483 id = srcu_read_lock(&srcu); 484 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 485 srcu_read_lock_held(&srcu)) { 486 const struct mmu_notifier_ops *ops = subscription->ops; 487 488 if (ops->invalidate_range_start) { 489 int _ret; 490 491 if (!mmu_notifier_range_blockable(range)) 492 non_block_start(); 493 _ret = ops->invalidate_range_start(subscription, range); 494 if (!mmu_notifier_range_blockable(range)) 495 non_block_end(); 496 if (_ret) { 497 pr_info("%pS callback failed with %d in %sblockable context.\n", 498 ops->invalidate_range_start, _ret, 499 !mmu_notifier_range_blockable(range) ? 500 "non-" : 501 ""); 502 WARN_ON(mmu_notifier_range_blockable(range) || 503 _ret != -EAGAIN); 504 ret = _ret; 505 } 506 } 507 } 508 srcu_read_unlock(&srcu, id); 509 510 return ret; 511 } 512 513 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 514 { 515 struct mmu_notifier_subscriptions *subscriptions = 516 range->mm->notifier_subscriptions; 517 int ret; 518 519 if (subscriptions->has_itree) { 520 ret = mn_itree_invalidate(subscriptions, range); 521 if (ret) 522 return ret; 523 } 524 if (!hlist_empty(&subscriptions->list)) 525 return mn_hlist_invalidate_range_start(subscriptions, range); 526 return 0; 527 } 528 529 static void 530 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions, 531 struct mmu_notifier_range *range, bool only_end) 532 { 533 struct mmu_notifier *subscription; 534 int id; 535 536 id = srcu_read_lock(&srcu); 537 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 538 srcu_read_lock_held(&srcu)) { 539 /* 540 * Call invalidate_range here too to avoid the need for the 541 * subsystem of having to register an invalidate_range_end 542 * call-back when there is invalidate_range already. Usually a 543 * subsystem registers either invalidate_range_start()/end() or 544 * invalidate_range(), so this will be no additional overhead 545 * (besides the pointer check). 546 * 547 * We skip call to invalidate_range() if we know it is safe ie 548 * call site use mmu_notifier_invalidate_range_only_end() which 549 * is safe to do when we know that a call to invalidate_range() 550 * already happen under page table lock. 551 */ 552 if (!only_end && subscription->ops->invalidate_range) 553 subscription->ops->invalidate_range(subscription, 554 range->mm, 555 range->start, 556 range->end); 557 if (subscription->ops->invalidate_range_end) { 558 if (!mmu_notifier_range_blockable(range)) 559 non_block_start(); 560 subscription->ops->invalidate_range_end(subscription, 561 range); 562 if (!mmu_notifier_range_blockable(range)) 563 non_block_end(); 564 } 565 } 566 srcu_read_unlock(&srcu, id); 567 } 568 569 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, 570 bool only_end) 571 { 572 struct mmu_notifier_subscriptions *subscriptions = 573 range->mm->notifier_subscriptions; 574 575 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 576 if (subscriptions->has_itree) 577 mn_itree_inv_end(subscriptions); 578 579 if (!hlist_empty(&subscriptions->list)) 580 mn_hlist_invalidate_end(subscriptions, range, only_end); 581 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 582 } 583 584 void __mmu_notifier_invalidate_range(struct mm_struct *mm, 585 unsigned long start, unsigned long end) 586 { 587 struct mmu_notifier *subscription; 588 int id; 589 590 id = srcu_read_lock(&srcu); 591 hlist_for_each_entry_rcu(subscription, 592 &mm->notifier_subscriptions->list, hlist, 593 srcu_read_lock_held(&srcu)) { 594 if (subscription->ops->invalidate_range) 595 subscription->ops->invalidate_range(subscription, mm, 596 start, end); 597 } 598 srcu_read_unlock(&srcu, id); 599 } 600 601 /* 602 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in 603 * write mode. A NULL mn signals the notifier is being registered for itree 604 * mode. 605 */ 606 int __mmu_notifier_register(struct mmu_notifier *subscription, 607 struct mm_struct *mm) 608 { 609 struct mmu_notifier_subscriptions *subscriptions = NULL; 610 int ret; 611 612 mmap_assert_write_locked(mm); 613 BUG_ON(atomic_read(&mm->mm_users) <= 0); 614 615 if (IS_ENABLED(CONFIG_LOCKDEP)) { 616 fs_reclaim_acquire(GFP_KERNEL); 617 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 618 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 619 fs_reclaim_release(GFP_KERNEL); 620 } 621 622 if (!mm->notifier_subscriptions) { 623 /* 624 * kmalloc cannot be called under mm_take_all_locks(), but we 625 * know that mm->notifier_subscriptions can't change while we 626 * hold the write side of the mmap_lock. 627 */ 628 subscriptions = kzalloc( 629 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL); 630 if (!subscriptions) 631 return -ENOMEM; 632 633 INIT_HLIST_HEAD(&subscriptions->list); 634 spin_lock_init(&subscriptions->lock); 635 subscriptions->invalidate_seq = 2; 636 subscriptions->itree = RB_ROOT_CACHED; 637 init_waitqueue_head(&subscriptions->wq); 638 INIT_HLIST_HEAD(&subscriptions->deferred_list); 639 } 640 641 ret = mm_take_all_locks(mm); 642 if (unlikely(ret)) 643 goto out_clean; 644 645 /* 646 * Serialize the update against mmu_notifier_unregister. A 647 * side note: mmu_notifier_release can't run concurrently with 648 * us because we hold the mm_users pin (either implicitly as 649 * current->mm or explicitly with get_task_mm() or similar). 650 * We can't race against any other mmu notifier method either 651 * thanks to mm_take_all_locks(). 652 * 653 * release semantics on the initialization of the 654 * mmu_notifier_subscriptions's contents are provided for unlocked 655 * readers. acquire can only be used while holding the mmgrab or 656 * mmget, and is safe because once created the 657 * mmu_notifier_subscriptions is not freed until the mm is destroyed. 658 * As above, users holding the mmap_lock or one of the 659 * mm_take_all_locks() do not need to use acquire semantics. 660 */ 661 if (subscriptions) 662 smp_store_release(&mm->notifier_subscriptions, subscriptions); 663 664 if (subscription) { 665 /* Pairs with the mmdrop in mmu_notifier_unregister_* */ 666 mmgrab(mm); 667 subscription->mm = mm; 668 subscription->users = 1; 669 670 spin_lock(&mm->notifier_subscriptions->lock); 671 hlist_add_head_rcu(&subscription->hlist, 672 &mm->notifier_subscriptions->list); 673 spin_unlock(&mm->notifier_subscriptions->lock); 674 } else 675 mm->notifier_subscriptions->has_itree = true; 676 677 mm_drop_all_locks(mm); 678 BUG_ON(atomic_read(&mm->mm_users) <= 0); 679 return 0; 680 681 out_clean: 682 kfree(subscriptions); 683 return ret; 684 } 685 EXPORT_SYMBOL_GPL(__mmu_notifier_register); 686 687 /** 688 * mmu_notifier_register - Register a notifier on a mm 689 * @subscription: The notifier to attach 690 * @mm: The mm to attach the notifier to 691 * 692 * Must not hold mmap_lock nor any other VM related lock when calling 693 * this registration function. Must also ensure mm_users can't go down 694 * to zero while this runs to avoid races with mmu_notifier_release, 695 * so mm has to be current->mm or the mm should be pinned safely such 696 * as with get_task_mm(). If the mm is not current->mm, the mm_users 697 * pin should be released by calling mmput after mmu_notifier_register 698 * returns. 699 * 700 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to 701 * unregister the notifier. 702 * 703 * While the caller has a mmu_notifier get the subscription->mm pointer will remain 704 * valid, and can be converted to an active mm pointer via mmget_not_zero(). 705 */ 706 int mmu_notifier_register(struct mmu_notifier *subscription, 707 struct mm_struct *mm) 708 { 709 int ret; 710 711 mmap_write_lock(mm); 712 ret = __mmu_notifier_register(subscription, mm); 713 mmap_write_unlock(mm); 714 return ret; 715 } 716 EXPORT_SYMBOL_GPL(mmu_notifier_register); 717 718 static struct mmu_notifier * 719 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) 720 { 721 struct mmu_notifier *subscription; 722 723 spin_lock(&mm->notifier_subscriptions->lock); 724 hlist_for_each_entry_rcu(subscription, 725 &mm->notifier_subscriptions->list, hlist, 726 lockdep_is_held(&mm->notifier_subscriptions->lock)) { 727 if (subscription->ops != ops) 728 continue; 729 730 if (likely(subscription->users != UINT_MAX)) 731 subscription->users++; 732 else 733 subscription = ERR_PTR(-EOVERFLOW); 734 spin_unlock(&mm->notifier_subscriptions->lock); 735 return subscription; 736 } 737 spin_unlock(&mm->notifier_subscriptions->lock); 738 return NULL; 739 } 740 741 /** 742 * mmu_notifier_get_locked - Return the single struct mmu_notifier for 743 * the mm & ops 744 * @ops: The operations struct being subscribe with 745 * @mm : The mm to attach notifiers too 746 * 747 * This function either allocates a new mmu_notifier via 748 * ops->alloc_notifier(), or returns an already existing notifier on the 749 * list. The value of the ops pointer is used to determine when two notifiers 750 * are the same. 751 * 752 * Each call to mmu_notifier_get() must be paired with a call to 753 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock. 754 * 755 * While the caller has a mmu_notifier get the mm pointer will remain valid, 756 * and can be converted to an active mm pointer via mmget_not_zero(). 757 */ 758 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 759 struct mm_struct *mm) 760 { 761 struct mmu_notifier *subscription; 762 int ret; 763 764 mmap_assert_write_locked(mm); 765 766 if (mm->notifier_subscriptions) { 767 subscription = find_get_mmu_notifier(mm, ops); 768 if (subscription) 769 return subscription; 770 } 771 772 subscription = ops->alloc_notifier(mm); 773 if (IS_ERR(subscription)) 774 return subscription; 775 subscription->ops = ops; 776 ret = __mmu_notifier_register(subscription, mm); 777 if (ret) 778 goto out_free; 779 return subscription; 780 out_free: 781 subscription->ops->free_notifier(subscription); 782 return ERR_PTR(ret); 783 } 784 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); 785 786 /* this is called after the last mmu_notifier_unregister() returned */ 787 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 788 { 789 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list)); 790 kfree(mm->notifier_subscriptions); 791 mm->notifier_subscriptions = LIST_POISON1; /* debug */ 792 } 793 794 /* 795 * This releases the mm_count pin automatically and frees the mm 796 * structure if it was the last user of it. It serializes against 797 * running mmu notifiers with SRCU and against mmu_notifier_unregister 798 * with the unregister lock + SRCU. All sptes must be dropped before 799 * calling mmu_notifier_unregister. ->release or any other notifier 800 * method may be invoked concurrently with mmu_notifier_unregister, 801 * and only after mmu_notifier_unregister returned we're guaranteed 802 * that ->release or any other method can't run anymore. 803 */ 804 void mmu_notifier_unregister(struct mmu_notifier *subscription, 805 struct mm_struct *mm) 806 { 807 BUG_ON(atomic_read(&mm->mm_count) <= 0); 808 809 if (!hlist_unhashed(&subscription->hlist)) { 810 /* 811 * SRCU here will force exit_mmap to wait for ->release to 812 * finish before freeing the pages. 813 */ 814 int id; 815 816 id = srcu_read_lock(&srcu); 817 /* 818 * exit_mmap will block in mmu_notifier_release to guarantee 819 * that ->release is called before freeing the pages. 820 */ 821 if (subscription->ops->release) 822 subscription->ops->release(subscription, mm); 823 srcu_read_unlock(&srcu, id); 824 825 spin_lock(&mm->notifier_subscriptions->lock); 826 /* 827 * Can not use list_del_rcu() since __mmu_notifier_release 828 * can delete it before we hold the lock. 829 */ 830 hlist_del_init_rcu(&subscription->hlist); 831 spin_unlock(&mm->notifier_subscriptions->lock); 832 } 833 834 /* 835 * Wait for any running method to finish, of course including 836 * ->release if it was run by mmu_notifier_release instead of us. 837 */ 838 synchronize_srcu(&srcu); 839 840 BUG_ON(atomic_read(&mm->mm_count) <= 0); 841 842 mmdrop(mm); 843 } 844 EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 845 846 static void mmu_notifier_free_rcu(struct rcu_head *rcu) 847 { 848 struct mmu_notifier *subscription = 849 container_of(rcu, struct mmu_notifier, rcu); 850 struct mm_struct *mm = subscription->mm; 851 852 subscription->ops->free_notifier(subscription); 853 /* Pairs with the get in __mmu_notifier_register() */ 854 mmdrop(mm); 855 } 856 857 /** 858 * mmu_notifier_put - Release the reference on the notifier 859 * @subscription: The notifier to act on 860 * 861 * This function must be paired with each mmu_notifier_get(), it releases the 862 * reference obtained by the get. If this is the last reference then process 863 * to free the notifier will be run asynchronously. 864 * 865 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release 866 * when the mm_struct is destroyed. Instead free_notifier is always called to 867 * release any resources held by the user. 868 * 869 * As ops->release is not guaranteed to be called, the user must ensure that 870 * all sptes are dropped, and no new sptes can be established before 871 * mmu_notifier_put() is called. 872 * 873 * This function can be called from the ops->release callback, however the 874 * caller must still ensure it is called pairwise with mmu_notifier_get(). 875 * 876 * Modules calling this function must call mmu_notifier_synchronize() in 877 * their __exit functions to ensure the async work is completed. 878 */ 879 void mmu_notifier_put(struct mmu_notifier *subscription) 880 { 881 struct mm_struct *mm = subscription->mm; 882 883 spin_lock(&mm->notifier_subscriptions->lock); 884 if (WARN_ON(!subscription->users) || --subscription->users) 885 goto out_unlock; 886 hlist_del_init_rcu(&subscription->hlist); 887 spin_unlock(&mm->notifier_subscriptions->lock); 888 889 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu); 890 return; 891 892 out_unlock: 893 spin_unlock(&mm->notifier_subscriptions->lock); 894 } 895 EXPORT_SYMBOL_GPL(mmu_notifier_put); 896 897 static int __mmu_interval_notifier_insert( 898 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 899 struct mmu_notifier_subscriptions *subscriptions, unsigned long start, 900 unsigned long length, const struct mmu_interval_notifier_ops *ops) 901 { 902 interval_sub->mm = mm; 903 interval_sub->ops = ops; 904 RB_CLEAR_NODE(&interval_sub->interval_tree.rb); 905 interval_sub->interval_tree.start = start; 906 /* 907 * Note that the representation of the intervals in the interval tree 908 * considers the ending point as contained in the interval. 909 */ 910 if (length == 0 || 911 check_add_overflow(start, length - 1, 912 &interval_sub->interval_tree.last)) 913 return -EOVERFLOW; 914 915 /* Must call with a mmget() held */ 916 if (WARN_ON(atomic_read(&mm->mm_users) <= 0)) 917 return -EINVAL; 918 919 /* pairs with mmdrop in mmu_interval_notifier_remove() */ 920 mmgrab(mm); 921 922 /* 923 * If some invalidate_range_start/end region is going on in parallel 924 * we don't know what VA ranges are affected, so we must assume this 925 * new range is included. 926 * 927 * If the itree is invalidating then we are not allowed to change 928 * it. Retrying until invalidation is done is tricky due to the 929 * possibility for live lock, instead defer the add to 930 * mn_itree_inv_end() so this algorithm is deterministic. 931 * 932 * In all cases the value for the interval_sub->invalidate_seq should be 933 * odd, see mmu_interval_read_begin() 934 */ 935 spin_lock(&subscriptions->lock); 936 if (subscriptions->active_invalidate_ranges) { 937 if (mn_itree_is_invalidating(subscriptions)) 938 hlist_add_head(&interval_sub->deferred_item, 939 &subscriptions->deferred_list); 940 else { 941 subscriptions->invalidate_seq |= 1; 942 interval_tree_insert(&interval_sub->interval_tree, 943 &subscriptions->itree); 944 } 945 interval_sub->invalidate_seq = subscriptions->invalidate_seq; 946 } else { 947 WARN_ON(mn_itree_is_invalidating(subscriptions)); 948 /* 949 * The starting seq for a subscription not under invalidation 950 * should be odd, not equal to the current invalidate_seq and 951 * invalidate_seq should not 'wrap' to the new seq any time 952 * soon. 953 */ 954 interval_sub->invalidate_seq = 955 subscriptions->invalidate_seq - 1; 956 interval_tree_insert(&interval_sub->interval_tree, 957 &subscriptions->itree); 958 } 959 spin_unlock(&subscriptions->lock); 960 return 0; 961 } 962 963 /** 964 * mmu_interval_notifier_insert - Insert an interval notifier 965 * @interval_sub: Interval subscription to register 966 * @start: Starting virtual address to monitor 967 * @length: Length of the range to monitor 968 * @mm: mm_struct to attach to 969 * @ops: Interval notifier operations to be called on matching events 970 * 971 * This function subscribes the interval notifier for notifications from the 972 * mm. Upon return the ops related to mmu_interval_notifier will be called 973 * whenever an event that intersects with the given range occurs. 974 * 975 * Upon return the range_notifier may not be present in the interval tree yet. 976 * The caller must use the normal interval notifier read flow via 977 * mmu_interval_read_begin() to establish SPTEs for this range. 978 */ 979 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 980 struct mm_struct *mm, unsigned long start, 981 unsigned long length, 982 const struct mmu_interval_notifier_ops *ops) 983 { 984 struct mmu_notifier_subscriptions *subscriptions; 985 int ret; 986 987 might_lock(&mm->mmap_lock); 988 989 subscriptions = smp_load_acquire(&mm->notifier_subscriptions); 990 if (!subscriptions || !subscriptions->has_itree) { 991 ret = mmu_notifier_register(NULL, mm); 992 if (ret) 993 return ret; 994 subscriptions = mm->notifier_subscriptions; 995 } 996 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 997 start, length, ops); 998 } 999 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); 1000 1001 int mmu_interval_notifier_insert_locked( 1002 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 1003 unsigned long start, unsigned long length, 1004 const struct mmu_interval_notifier_ops *ops) 1005 { 1006 struct mmu_notifier_subscriptions *subscriptions = 1007 mm->notifier_subscriptions; 1008 int ret; 1009 1010 mmap_assert_write_locked(mm); 1011 1012 if (!subscriptions || !subscriptions->has_itree) { 1013 ret = __mmu_notifier_register(NULL, mm); 1014 if (ret) 1015 return ret; 1016 subscriptions = mm->notifier_subscriptions; 1017 } 1018 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 1019 start, length, ops); 1020 } 1021 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); 1022 1023 /** 1024 * mmu_interval_notifier_remove - Remove a interval notifier 1025 * @interval_sub: Interval subscription to unregister 1026 * 1027 * This function must be paired with mmu_interval_notifier_insert(). It cannot 1028 * be called from any ops callback. 1029 * 1030 * Once this returns ops callbacks are no longer running on other CPUs and 1031 * will not be called in future. 1032 */ 1033 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub) 1034 { 1035 struct mm_struct *mm = interval_sub->mm; 1036 struct mmu_notifier_subscriptions *subscriptions = 1037 mm->notifier_subscriptions; 1038 unsigned long seq = 0; 1039 1040 might_sleep(); 1041 1042 spin_lock(&subscriptions->lock); 1043 if (mn_itree_is_invalidating(subscriptions)) { 1044 /* 1045 * remove is being called after insert put this on the 1046 * deferred list, but before the deferred list was processed. 1047 */ 1048 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) { 1049 hlist_del(&interval_sub->deferred_item); 1050 } else { 1051 hlist_add_head(&interval_sub->deferred_item, 1052 &subscriptions->deferred_list); 1053 seq = subscriptions->invalidate_seq; 1054 } 1055 } else { 1056 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb)); 1057 interval_tree_remove(&interval_sub->interval_tree, 1058 &subscriptions->itree); 1059 } 1060 spin_unlock(&subscriptions->lock); 1061 1062 /* 1063 * The possible sleep on progress in the invalidation requires the 1064 * caller not hold any locks held by invalidation callbacks. 1065 */ 1066 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 1067 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 1068 if (seq) 1069 wait_event(subscriptions->wq, 1070 READ_ONCE(subscriptions->invalidate_seq) != seq); 1071 1072 /* pairs with mmgrab in mmu_interval_notifier_insert() */ 1073 mmdrop(mm); 1074 } 1075 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); 1076 1077 /** 1078 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed 1079 * 1080 * This function ensures that all outstanding async SRU work from 1081 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops 1082 * associated with an unused mmu_notifier will no longer be called. 1083 * 1084 * Before using the caller must ensure that all of its mmu_notifiers have been 1085 * fully released via mmu_notifier_put(). 1086 * 1087 * Modules using the mmu_notifier_put() API should call this in their __exit 1088 * function to avoid module unloading races. 1089 */ 1090 void mmu_notifier_synchronize(void) 1091 { 1092 synchronize_srcu(&srcu); 1093 } 1094 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 1095 1096 bool 1097 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) 1098 { 1099 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) 1100 return false; 1101 /* Return true if the vma still have the read flag set. */ 1102 return range->vma->vm_flags & VM_READ; 1103 } 1104 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only); 1105