1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/mmu_notifier.c 4 * 5 * Copyright (C) 2008 Qumranet, Inc. 6 * Copyright (C) 2008 SGI 7 * Christoph Lameter <cl@linux.com> 8 */ 9 10 #include <linux/rculist.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/export.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/interval_tree.h> 16 #include <linux/srcu.h> 17 #include <linux/rcupdate.h> 18 #include <linux/sched.h> 19 #include <linux/sched/mm.h> 20 #include <linux/slab.h> 21 22 /* global SRCU for all MMs */ 23 DEFINE_STATIC_SRCU(srcu); 24 25 #ifdef CONFIG_LOCKDEP 26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = { 27 .name = "mmu_notifier_invalidate_range_start" 28 }; 29 #endif 30 31 /* 32 * The mmu_notifier_subscriptions structure is allocated and installed in 33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected 34 * critical section and it's released only when mm_count reaches zero 35 * in mmdrop(). 36 */ 37 struct mmu_notifier_subscriptions { 38 /* all mmu notifiers registered in this mm are queued in this list */ 39 struct hlist_head list; 40 bool has_itree; 41 /* to serialize the list modifications and hlist_unhashed */ 42 spinlock_t lock; 43 unsigned long invalidate_seq; 44 unsigned long active_invalidate_ranges; 45 struct rb_root_cached itree; 46 wait_queue_head_t wq; 47 struct hlist_head deferred_list; 48 }; 49 50 /* 51 * This is a collision-retry read-side/write-side 'lock', a lot like a 52 * seqcount, however this allows multiple write-sides to hold it at 53 * once. Conceptually the write side is protecting the values of the PTEs in 54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any 55 * writer exists. 56 * 57 * Note that the core mm creates nested invalidate_range_start()/end() regions 58 * within the same thread, and runs invalidate_range_start()/end() in parallel 59 * on multiple CPUs. This is designed to not reduce concurrency or block 60 * progress on the mm side. 61 * 62 * As a secondary function, holding the full write side also serves to prevent 63 * writers for the itree, this is an optimization to avoid extra locking 64 * during invalidate_range_start/end notifiers. 65 * 66 * The write side has two states, fully excluded: 67 * - mm->active_invalidate_ranges != 0 68 * - subscriptions->invalidate_seq & 1 == True (odd) 69 * - some range on the mm_struct is being invalidated 70 * - the itree is not allowed to change 71 * 72 * And partially excluded: 73 * - mm->active_invalidate_ranges != 0 74 * - subscriptions->invalidate_seq & 1 == False (even) 75 * - some range on the mm_struct is being invalidated 76 * - the itree is allowed to change 77 * 78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock): 79 * seq |= 1 # Begin writing 80 * seq++ # Release the writing state 81 * seq & 1 # True if a writer exists 82 * 83 * The later state avoids some expensive work on inv_end in the common case of 84 * no mmu_interval_notifier monitoring the VA. 85 */ 86 static bool 87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions) 88 { 89 lockdep_assert_held(&subscriptions->lock); 90 return subscriptions->invalidate_seq & 1; 91 } 92 93 static struct mmu_interval_notifier * 94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions, 95 const struct mmu_notifier_range *range, 96 unsigned long *seq) 97 { 98 struct interval_tree_node *node; 99 struct mmu_interval_notifier *res = NULL; 100 101 spin_lock(&subscriptions->lock); 102 subscriptions->active_invalidate_ranges++; 103 node = interval_tree_iter_first(&subscriptions->itree, range->start, 104 range->end - 1); 105 if (node) { 106 subscriptions->invalidate_seq |= 1; 107 res = container_of(node, struct mmu_interval_notifier, 108 interval_tree); 109 } 110 111 *seq = subscriptions->invalidate_seq; 112 spin_unlock(&subscriptions->lock); 113 return res; 114 } 115 116 static struct mmu_interval_notifier * 117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub, 118 const struct mmu_notifier_range *range) 119 { 120 struct interval_tree_node *node; 121 122 node = interval_tree_iter_next(&interval_sub->interval_tree, 123 range->start, range->end - 1); 124 if (!node) 125 return NULL; 126 return container_of(node, struct mmu_interval_notifier, interval_tree); 127 } 128 129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions) 130 { 131 struct mmu_interval_notifier *interval_sub; 132 struct hlist_node *next; 133 134 spin_lock(&subscriptions->lock); 135 if (--subscriptions->active_invalidate_ranges || 136 !mn_itree_is_invalidating(subscriptions)) { 137 spin_unlock(&subscriptions->lock); 138 return; 139 } 140 141 /* Make invalidate_seq even */ 142 subscriptions->invalidate_seq++; 143 144 /* 145 * The inv_end incorporates a deferred mechanism like rtnl_unlock(). 146 * Adds and removes are queued until the final inv_end happens then 147 * they are progressed. This arrangement for tree updates is used to 148 * avoid using a blocking lock during invalidate_range_start. 149 */ 150 hlist_for_each_entry_safe(interval_sub, next, 151 &subscriptions->deferred_list, 152 deferred_item) { 153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) 154 interval_tree_insert(&interval_sub->interval_tree, 155 &subscriptions->itree); 156 else 157 interval_tree_remove(&interval_sub->interval_tree, 158 &subscriptions->itree); 159 hlist_del(&interval_sub->deferred_item); 160 } 161 spin_unlock(&subscriptions->lock); 162 163 wake_up_all(&subscriptions->wq); 164 } 165 166 /** 167 * mmu_interval_read_begin - Begin a read side critical section against a VA 168 * range 169 * interval_sub: The interval subscription 170 * 171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a 172 * collision-retry scheme similar to seqcount for the VA range under 173 * subscription. If the mm invokes invalidation during the critical section 174 * then mmu_interval_read_retry() will return true. 175 * 176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs 177 * require a blocking context. The critical region formed by this can sleep, 178 * and the required 'user_lock' can also be a sleeping lock. 179 * 180 * The caller is required to provide a 'user_lock' to serialize both teardown 181 * and setup. 182 * 183 * The return value should be passed to mmu_interval_read_retry(). 184 */ 185 unsigned long 186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub) 187 { 188 struct mmu_notifier_subscriptions *subscriptions = 189 interval_sub->mm->notifier_subscriptions; 190 unsigned long seq; 191 bool is_invalidating; 192 193 /* 194 * If the subscription has a different seq value under the user_lock 195 * than we started with then it has collided. 196 * 197 * If the subscription currently has the same seq value as the 198 * subscriptions seq, then it is currently between 199 * invalidate_start/end and is colliding. 200 * 201 * The locking looks broadly like this: 202 * mn_tree_invalidate_start(): mmu_interval_read_begin(): 203 * spin_lock 204 * seq = READ_ONCE(interval_sub->invalidate_seq); 205 * seq == subs->invalidate_seq 206 * spin_unlock 207 * spin_lock 208 * seq = ++subscriptions->invalidate_seq 209 * spin_unlock 210 * op->invalidate_range(): 211 * user_lock 212 * mmu_interval_set_seq() 213 * interval_sub->invalidate_seq = seq 214 * user_unlock 215 * 216 * [Required: mmu_interval_read_retry() == true] 217 * 218 * mn_itree_inv_end(): 219 * spin_lock 220 * seq = ++subscriptions->invalidate_seq 221 * spin_unlock 222 * 223 * user_lock 224 * mmu_interval_read_retry(): 225 * interval_sub->invalidate_seq != seq 226 * user_unlock 227 * 228 * Barriers are not needed here as any races here are closed by an 229 * eventual mmu_interval_read_retry(), which provides a barrier via the 230 * user_lock. 231 */ 232 spin_lock(&subscriptions->lock); 233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 234 seq = READ_ONCE(interval_sub->invalidate_seq); 235 is_invalidating = seq == subscriptions->invalidate_seq; 236 spin_unlock(&subscriptions->lock); 237 238 /* 239 * interval_sub->invalidate_seq must always be set to an odd value via 240 * mmu_interval_set_seq() using the provided cur_seq from 241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we 242 * will always clear the below sleep in some reasonable time as 243 * subscriptions->invalidate_seq is even in the idle state. 244 */ 245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 246 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 247 if (is_invalidating) 248 wait_event(subscriptions->wq, 249 READ_ONCE(subscriptions->invalidate_seq) != seq); 250 251 /* 252 * Notice that mmu_interval_read_retry() can already be true at this 253 * point, avoiding loops here allows the caller to provide a global 254 * time bound. 255 */ 256 257 return seq; 258 } 259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin); 260 261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions, 262 struct mm_struct *mm) 263 { 264 struct mmu_notifier_range range = { 265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, 266 .event = MMU_NOTIFY_RELEASE, 267 .mm = mm, 268 .start = 0, 269 .end = ULONG_MAX, 270 }; 271 struct mmu_interval_notifier *interval_sub; 272 unsigned long cur_seq; 273 bool ret; 274 275 for (interval_sub = 276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq); 277 interval_sub; 278 interval_sub = mn_itree_inv_next(interval_sub, &range)) { 279 ret = interval_sub->ops->invalidate(interval_sub, &range, 280 cur_seq); 281 WARN_ON(!ret); 282 } 283 284 mn_itree_inv_end(subscriptions); 285 } 286 287 /* 288 * This function can't run concurrently against mmu_notifier_register 289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 291 * in parallel despite there being no task using this mm any more, 292 * through the vmas outside of the exit_mmap context, such as with 293 * vmtruncate. This serializes against mmu_notifier_unregister with 294 * the notifier_subscriptions->lock in addition to SRCU and it serializes 295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions 296 * can't go away from under us as exit_mmap holds an mm_count pin 297 * itself. 298 */ 299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions, 300 struct mm_struct *mm) 301 { 302 struct mmu_notifier *subscription; 303 int id; 304 305 /* 306 * SRCU here will block mmu_notifier_unregister until 307 * ->release returns. 308 */ 309 id = srcu_read_lock(&srcu); 310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist) 311 /* 312 * If ->release runs before mmu_notifier_unregister it must be 313 * handled, as it's the only way for the driver to flush all 314 * existing sptes and stop the driver from establishing any more 315 * sptes before all the pages in the mm are freed. 316 */ 317 if (subscription->ops->release) 318 subscription->ops->release(subscription, mm); 319 320 spin_lock(&subscriptions->lock); 321 while (unlikely(!hlist_empty(&subscriptions->list))) { 322 subscription = hlist_entry(subscriptions->list.first, 323 struct mmu_notifier, hlist); 324 /* 325 * We arrived before mmu_notifier_unregister so 326 * mmu_notifier_unregister will do nothing other than to wait 327 * for ->release to finish and for mmu_notifier_unregister to 328 * return. 329 */ 330 hlist_del_init_rcu(&subscription->hlist); 331 } 332 spin_unlock(&subscriptions->lock); 333 srcu_read_unlock(&srcu, id); 334 335 /* 336 * synchronize_srcu here prevents mmu_notifier_release from returning to 337 * exit_mmap (which would proceed with freeing all pages in the mm) 338 * until the ->release method returns, if it was invoked by 339 * mmu_notifier_unregister. 340 * 341 * The notifier_subscriptions can't go away from under us because 342 * one mm_count is held by exit_mmap. 343 */ 344 synchronize_srcu(&srcu); 345 } 346 347 void __mmu_notifier_release(struct mm_struct *mm) 348 { 349 struct mmu_notifier_subscriptions *subscriptions = 350 mm->notifier_subscriptions; 351 352 if (subscriptions->has_itree) 353 mn_itree_release(subscriptions, mm); 354 355 if (!hlist_empty(&subscriptions->list)) 356 mn_hlist_release(subscriptions, mm); 357 } 358 359 /* 360 * If no young bitflag is supported by the hardware, ->clear_flush_young can 361 * unmap the address and return 1 or 0 depending if the mapping previously 362 * existed or not. 363 */ 364 int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 365 unsigned long start, 366 unsigned long end) 367 { 368 struct mmu_notifier *subscription; 369 int young = 0, id; 370 371 id = srcu_read_lock(&srcu); 372 hlist_for_each_entry_rcu(subscription, 373 &mm->notifier_subscriptions->list, hlist) { 374 if (subscription->ops->clear_flush_young) 375 young |= subscription->ops->clear_flush_young( 376 subscription, mm, start, end); 377 } 378 srcu_read_unlock(&srcu, id); 379 380 return young; 381 } 382 383 int __mmu_notifier_clear_young(struct mm_struct *mm, 384 unsigned long start, 385 unsigned long end) 386 { 387 struct mmu_notifier *subscription; 388 int young = 0, id; 389 390 id = srcu_read_lock(&srcu); 391 hlist_for_each_entry_rcu(subscription, 392 &mm->notifier_subscriptions->list, hlist) { 393 if (subscription->ops->clear_young) 394 young |= subscription->ops->clear_young(subscription, 395 mm, start, end); 396 } 397 srcu_read_unlock(&srcu, id); 398 399 return young; 400 } 401 402 int __mmu_notifier_test_young(struct mm_struct *mm, 403 unsigned long address) 404 { 405 struct mmu_notifier *subscription; 406 int young = 0, id; 407 408 id = srcu_read_lock(&srcu); 409 hlist_for_each_entry_rcu(subscription, 410 &mm->notifier_subscriptions->list, hlist) { 411 if (subscription->ops->test_young) { 412 young = subscription->ops->test_young(subscription, mm, 413 address); 414 if (young) 415 break; 416 } 417 } 418 srcu_read_unlock(&srcu, id); 419 420 return young; 421 } 422 423 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, 424 pte_t pte) 425 { 426 struct mmu_notifier *subscription; 427 int id; 428 429 id = srcu_read_lock(&srcu); 430 hlist_for_each_entry_rcu(subscription, 431 &mm->notifier_subscriptions->list, hlist) { 432 if (subscription->ops->change_pte) 433 subscription->ops->change_pte(subscription, mm, address, 434 pte); 435 } 436 srcu_read_unlock(&srcu, id); 437 } 438 439 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions, 440 const struct mmu_notifier_range *range) 441 { 442 struct mmu_interval_notifier *interval_sub; 443 unsigned long cur_seq; 444 445 for (interval_sub = 446 mn_itree_inv_start_range(subscriptions, range, &cur_seq); 447 interval_sub; 448 interval_sub = mn_itree_inv_next(interval_sub, range)) { 449 bool ret; 450 451 ret = interval_sub->ops->invalidate(interval_sub, range, 452 cur_seq); 453 if (!ret) { 454 if (WARN_ON(mmu_notifier_range_blockable(range))) 455 continue; 456 goto out_would_block; 457 } 458 } 459 return 0; 460 461 out_would_block: 462 /* 463 * On -EAGAIN the non-blocking caller is not allowed to call 464 * invalidate_range_end() 465 */ 466 mn_itree_inv_end(subscriptions); 467 return -EAGAIN; 468 } 469 470 static int mn_hlist_invalidate_range_start( 471 struct mmu_notifier_subscriptions *subscriptions, 472 struct mmu_notifier_range *range) 473 { 474 struct mmu_notifier *subscription; 475 int ret = 0; 476 int id; 477 478 id = srcu_read_lock(&srcu); 479 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist) { 480 const struct mmu_notifier_ops *ops = subscription->ops; 481 482 if (ops->invalidate_range_start) { 483 int _ret; 484 485 if (!mmu_notifier_range_blockable(range)) 486 non_block_start(); 487 _ret = ops->invalidate_range_start(subscription, range); 488 if (!mmu_notifier_range_blockable(range)) 489 non_block_end(); 490 if (_ret) { 491 pr_info("%pS callback failed with %d in %sblockable context.\n", 492 ops->invalidate_range_start, _ret, 493 !mmu_notifier_range_blockable(range) ? 494 "non-" : 495 ""); 496 WARN_ON(mmu_notifier_range_blockable(range) || 497 _ret != -EAGAIN); 498 ret = _ret; 499 } 500 } 501 } 502 srcu_read_unlock(&srcu, id); 503 504 return ret; 505 } 506 507 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 508 { 509 struct mmu_notifier_subscriptions *subscriptions = 510 range->mm->notifier_subscriptions; 511 int ret; 512 513 if (subscriptions->has_itree) { 514 ret = mn_itree_invalidate(subscriptions, range); 515 if (ret) 516 return ret; 517 } 518 if (!hlist_empty(&subscriptions->list)) 519 return mn_hlist_invalidate_range_start(subscriptions, range); 520 return 0; 521 } 522 523 static void 524 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions, 525 struct mmu_notifier_range *range, bool only_end) 526 { 527 struct mmu_notifier *subscription; 528 int id; 529 530 id = srcu_read_lock(&srcu); 531 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist) { 532 /* 533 * Call invalidate_range here too to avoid the need for the 534 * subsystem of having to register an invalidate_range_end 535 * call-back when there is invalidate_range already. Usually a 536 * subsystem registers either invalidate_range_start()/end() or 537 * invalidate_range(), so this will be no additional overhead 538 * (besides the pointer check). 539 * 540 * We skip call to invalidate_range() if we know it is safe ie 541 * call site use mmu_notifier_invalidate_range_only_end() which 542 * is safe to do when we know that a call to invalidate_range() 543 * already happen under page table lock. 544 */ 545 if (!only_end && subscription->ops->invalidate_range) 546 subscription->ops->invalidate_range(subscription, 547 range->mm, 548 range->start, 549 range->end); 550 if (subscription->ops->invalidate_range_end) { 551 if (!mmu_notifier_range_blockable(range)) 552 non_block_start(); 553 subscription->ops->invalidate_range_end(subscription, 554 range); 555 if (!mmu_notifier_range_blockable(range)) 556 non_block_end(); 557 } 558 } 559 srcu_read_unlock(&srcu, id); 560 } 561 562 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, 563 bool only_end) 564 { 565 struct mmu_notifier_subscriptions *subscriptions = 566 range->mm->notifier_subscriptions; 567 568 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 569 if (subscriptions->has_itree) 570 mn_itree_inv_end(subscriptions); 571 572 if (!hlist_empty(&subscriptions->list)) 573 mn_hlist_invalidate_end(subscriptions, range, only_end); 574 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 575 } 576 577 void __mmu_notifier_invalidate_range(struct mm_struct *mm, 578 unsigned long start, unsigned long end) 579 { 580 struct mmu_notifier *subscription; 581 int id; 582 583 id = srcu_read_lock(&srcu); 584 hlist_for_each_entry_rcu(subscription, 585 &mm->notifier_subscriptions->list, hlist) { 586 if (subscription->ops->invalidate_range) 587 subscription->ops->invalidate_range(subscription, mm, 588 start, end); 589 } 590 srcu_read_unlock(&srcu, id); 591 } 592 593 /* 594 * Same as mmu_notifier_register but here the caller must hold the mmap_sem in 595 * write mode. A NULL mn signals the notifier is being registered for itree 596 * mode. 597 */ 598 int __mmu_notifier_register(struct mmu_notifier *subscription, 599 struct mm_struct *mm) 600 { 601 struct mmu_notifier_subscriptions *subscriptions = NULL; 602 int ret; 603 604 lockdep_assert_held_write(&mm->mmap_sem); 605 BUG_ON(atomic_read(&mm->mm_users) <= 0); 606 607 if (IS_ENABLED(CONFIG_LOCKDEP)) { 608 fs_reclaim_acquire(GFP_KERNEL); 609 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 610 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 611 fs_reclaim_release(GFP_KERNEL); 612 } 613 614 if (!mm->notifier_subscriptions) { 615 /* 616 * kmalloc cannot be called under mm_take_all_locks(), but we 617 * know that mm->notifier_subscriptions can't change while we 618 * hold the write side of the mmap_sem. 619 */ 620 subscriptions = kzalloc( 621 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL); 622 if (!subscriptions) 623 return -ENOMEM; 624 625 INIT_HLIST_HEAD(&subscriptions->list); 626 spin_lock_init(&subscriptions->lock); 627 subscriptions->invalidate_seq = 2; 628 subscriptions->itree = RB_ROOT_CACHED; 629 init_waitqueue_head(&subscriptions->wq); 630 INIT_HLIST_HEAD(&subscriptions->deferred_list); 631 } 632 633 ret = mm_take_all_locks(mm); 634 if (unlikely(ret)) 635 goto out_clean; 636 637 /* 638 * Serialize the update against mmu_notifier_unregister. A 639 * side note: mmu_notifier_release can't run concurrently with 640 * us because we hold the mm_users pin (either implicitly as 641 * current->mm or explicitly with get_task_mm() or similar). 642 * We can't race against any other mmu notifier method either 643 * thanks to mm_take_all_locks(). 644 * 645 * release semantics on the initialization of the 646 * mmu_notifier_subscriptions's contents are provided for unlocked 647 * readers. acquire can only be used while holding the mmgrab or 648 * mmget, and is safe because once created the 649 * mmu_notifier_subscriptions is not freed until the mm is destroyed. 650 * As above, users holding the mmap_sem or one of the 651 * mm_take_all_locks() do not need to use acquire semantics. 652 */ 653 if (subscriptions) 654 smp_store_release(&mm->notifier_subscriptions, subscriptions); 655 656 if (subscription) { 657 /* Pairs with the mmdrop in mmu_notifier_unregister_* */ 658 mmgrab(mm); 659 subscription->mm = mm; 660 subscription->users = 1; 661 662 spin_lock(&mm->notifier_subscriptions->lock); 663 hlist_add_head_rcu(&subscription->hlist, 664 &mm->notifier_subscriptions->list); 665 spin_unlock(&mm->notifier_subscriptions->lock); 666 } else 667 mm->notifier_subscriptions->has_itree = true; 668 669 mm_drop_all_locks(mm); 670 BUG_ON(atomic_read(&mm->mm_users) <= 0); 671 return 0; 672 673 out_clean: 674 kfree(subscriptions); 675 return ret; 676 } 677 EXPORT_SYMBOL_GPL(__mmu_notifier_register); 678 679 /** 680 * mmu_notifier_register - Register a notifier on a mm 681 * @mn: The notifier to attach 682 * @mm: The mm to attach the notifier to 683 * 684 * Must not hold mmap_sem nor any other VM related lock when calling 685 * this registration function. Must also ensure mm_users can't go down 686 * to zero while this runs to avoid races with mmu_notifier_release, 687 * so mm has to be current->mm or the mm should be pinned safely such 688 * as with get_task_mm(). If the mm is not current->mm, the mm_users 689 * pin should be released by calling mmput after mmu_notifier_register 690 * returns. 691 * 692 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to 693 * unregister the notifier. 694 * 695 * While the caller has a mmu_notifier get the subscription->mm pointer will remain 696 * valid, and can be converted to an active mm pointer via mmget_not_zero(). 697 */ 698 int mmu_notifier_register(struct mmu_notifier *subscription, 699 struct mm_struct *mm) 700 { 701 int ret; 702 703 down_write(&mm->mmap_sem); 704 ret = __mmu_notifier_register(subscription, mm); 705 up_write(&mm->mmap_sem); 706 return ret; 707 } 708 EXPORT_SYMBOL_GPL(mmu_notifier_register); 709 710 static struct mmu_notifier * 711 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) 712 { 713 struct mmu_notifier *subscription; 714 715 spin_lock(&mm->notifier_subscriptions->lock); 716 hlist_for_each_entry_rcu(subscription, 717 &mm->notifier_subscriptions->list, hlist) { 718 if (subscription->ops != ops) 719 continue; 720 721 if (likely(subscription->users != UINT_MAX)) 722 subscription->users++; 723 else 724 subscription = ERR_PTR(-EOVERFLOW); 725 spin_unlock(&mm->notifier_subscriptions->lock); 726 return subscription; 727 } 728 spin_unlock(&mm->notifier_subscriptions->lock); 729 return NULL; 730 } 731 732 /** 733 * mmu_notifier_get_locked - Return the single struct mmu_notifier for 734 * the mm & ops 735 * @ops: The operations struct being subscribe with 736 * @mm : The mm to attach notifiers too 737 * 738 * This function either allocates a new mmu_notifier via 739 * ops->alloc_notifier(), or returns an already existing notifier on the 740 * list. The value of the ops pointer is used to determine when two notifiers 741 * are the same. 742 * 743 * Each call to mmu_notifier_get() must be paired with a call to 744 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem. 745 * 746 * While the caller has a mmu_notifier get the mm pointer will remain valid, 747 * and can be converted to an active mm pointer via mmget_not_zero(). 748 */ 749 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 750 struct mm_struct *mm) 751 { 752 struct mmu_notifier *subscription; 753 int ret; 754 755 lockdep_assert_held_write(&mm->mmap_sem); 756 757 if (mm->notifier_subscriptions) { 758 subscription = find_get_mmu_notifier(mm, ops); 759 if (subscription) 760 return subscription; 761 } 762 763 subscription = ops->alloc_notifier(mm); 764 if (IS_ERR(subscription)) 765 return subscription; 766 subscription->ops = ops; 767 ret = __mmu_notifier_register(subscription, mm); 768 if (ret) 769 goto out_free; 770 return subscription; 771 out_free: 772 subscription->ops->free_notifier(subscription); 773 return ERR_PTR(ret); 774 } 775 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); 776 777 /* this is called after the last mmu_notifier_unregister() returned */ 778 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 779 { 780 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list)); 781 kfree(mm->notifier_subscriptions); 782 mm->notifier_subscriptions = LIST_POISON1; /* debug */ 783 } 784 785 /* 786 * This releases the mm_count pin automatically and frees the mm 787 * structure if it was the last user of it. It serializes against 788 * running mmu notifiers with SRCU and against mmu_notifier_unregister 789 * with the unregister lock + SRCU. All sptes must be dropped before 790 * calling mmu_notifier_unregister. ->release or any other notifier 791 * method may be invoked concurrently with mmu_notifier_unregister, 792 * and only after mmu_notifier_unregister returned we're guaranteed 793 * that ->release or any other method can't run anymore. 794 */ 795 void mmu_notifier_unregister(struct mmu_notifier *subscription, 796 struct mm_struct *mm) 797 { 798 BUG_ON(atomic_read(&mm->mm_count) <= 0); 799 800 if (!hlist_unhashed(&subscription->hlist)) { 801 /* 802 * SRCU here will force exit_mmap to wait for ->release to 803 * finish before freeing the pages. 804 */ 805 int id; 806 807 id = srcu_read_lock(&srcu); 808 /* 809 * exit_mmap will block in mmu_notifier_release to guarantee 810 * that ->release is called before freeing the pages. 811 */ 812 if (subscription->ops->release) 813 subscription->ops->release(subscription, mm); 814 srcu_read_unlock(&srcu, id); 815 816 spin_lock(&mm->notifier_subscriptions->lock); 817 /* 818 * Can not use list_del_rcu() since __mmu_notifier_release 819 * can delete it before we hold the lock. 820 */ 821 hlist_del_init_rcu(&subscription->hlist); 822 spin_unlock(&mm->notifier_subscriptions->lock); 823 } 824 825 /* 826 * Wait for any running method to finish, of course including 827 * ->release if it was run by mmu_notifier_release instead of us. 828 */ 829 synchronize_srcu(&srcu); 830 831 BUG_ON(atomic_read(&mm->mm_count) <= 0); 832 833 mmdrop(mm); 834 } 835 EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 836 837 static void mmu_notifier_free_rcu(struct rcu_head *rcu) 838 { 839 struct mmu_notifier *subscription = 840 container_of(rcu, struct mmu_notifier, rcu); 841 struct mm_struct *mm = subscription->mm; 842 843 subscription->ops->free_notifier(subscription); 844 /* Pairs with the get in __mmu_notifier_register() */ 845 mmdrop(mm); 846 } 847 848 /** 849 * mmu_notifier_put - Release the reference on the notifier 850 * @mn: The notifier to act on 851 * 852 * This function must be paired with each mmu_notifier_get(), it releases the 853 * reference obtained by the get. If this is the last reference then process 854 * to free the notifier will be run asynchronously. 855 * 856 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release 857 * when the mm_struct is destroyed. Instead free_notifier is always called to 858 * release any resources held by the user. 859 * 860 * As ops->release is not guaranteed to be called, the user must ensure that 861 * all sptes are dropped, and no new sptes can be established before 862 * mmu_notifier_put() is called. 863 * 864 * This function can be called from the ops->release callback, however the 865 * caller must still ensure it is called pairwise with mmu_notifier_get(). 866 * 867 * Modules calling this function must call mmu_notifier_synchronize() in 868 * their __exit functions to ensure the async work is completed. 869 */ 870 void mmu_notifier_put(struct mmu_notifier *subscription) 871 { 872 struct mm_struct *mm = subscription->mm; 873 874 spin_lock(&mm->notifier_subscriptions->lock); 875 if (WARN_ON(!subscription->users) || --subscription->users) 876 goto out_unlock; 877 hlist_del_init_rcu(&subscription->hlist); 878 spin_unlock(&mm->notifier_subscriptions->lock); 879 880 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu); 881 return; 882 883 out_unlock: 884 spin_unlock(&mm->notifier_subscriptions->lock); 885 } 886 EXPORT_SYMBOL_GPL(mmu_notifier_put); 887 888 static int __mmu_interval_notifier_insert( 889 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 890 struct mmu_notifier_subscriptions *subscriptions, unsigned long start, 891 unsigned long length, const struct mmu_interval_notifier_ops *ops) 892 { 893 interval_sub->mm = mm; 894 interval_sub->ops = ops; 895 RB_CLEAR_NODE(&interval_sub->interval_tree.rb); 896 interval_sub->interval_tree.start = start; 897 /* 898 * Note that the representation of the intervals in the interval tree 899 * considers the ending point as contained in the interval. 900 */ 901 if (length == 0 || 902 check_add_overflow(start, length - 1, 903 &interval_sub->interval_tree.last)) 904 return -EOVERFLOW; 905 906 /* Must call with a mmget() held */ 907 if (WARN_ON(atomic_read(&mm->mm_count) <= 0)) 908 return -EINVAL; 909 910 /* pairs with mmdrop in mmu_interval_notifier_remove() */ 911 mmgrab(mm); 912 913 /* 914 * If some invalidate_range_start/end region is going on in parallel 915 * we don't know what VA ranges are affected, so we must assume this 916 * new range is included. 917 * 918 * If the itree is invalidating then we are not allowed to change 919 * it. Retrying until invalidation is done is tricky due to the 920 * possibility for live lock, instead defer the add to 921 * mn_itree_inv_end() so this algorithm is deterministic. 922 * 923 * In all cases the value for the interval_sub->invalidate_seq should be 924 * odd, see mmu_interval_read_begin() 925 */ 926 spin_lock(&subscriptions->lock); 927 if (subscriptions->active_invalidate_ranges) { 928 if (mn_itree_is_invalidating(subscriptions)) 929 hlist_add_head(&interval_sub->deferred_item, 930 &subscriptions->deferred_list); 931 else { 932 subscriptions->invalidate_seq |= 1; 933 interval_tree_insert(&interval_sub->interval_tree, 934 &subscriptions->itree); 935 } 936 interval_sub->invalidate_seq = subscriptions->invalidate_seq; 937 } else { 938 WARN_ON(mn_itree_is_invalidating(subscriptions)); 939 /* 940 * The starting seq for a subscription not under invalidation 941 * should be odd, not equal to the current invalidate_seq and 942 * invalidate_seq should not 'wrap' to the new seq any time 943 * soon. 944 */ 945 interval_sub->invalidate_seq = 946 subscriptions->invalidate_seq - 1; 947 interval_tree_insert(&interval_sub->interval_tree, 948 &subscriptions->itree); 949 } 950 spin_unlock(&subscriptions->lock); 951 return 0; 952 } 953 954 /** 955 * mmu_interval_notifier_insert - Insert an interval notifier 956 * @interval_sub: Interval subscription to register 957 * @start: Starting virtual address to monitor 958 * @length: Length of the range to monitor 959 * @mm : mm_struct to attach to 960 * 961 * This function subscribes the interval notifier for notifications from the 962 * mm. Upon return the ops related to mmu_interval_notifier will be called 963 * whenever an event that intersects with the given range occurs. 964 * 965 * Upon return the range_notifier may not be present in the interval tree yet. 966 * The caller must use the normal interval notifier read flow via 967 * mmu_interval_read_begin() to establish SPTEs for this range. 968 */ 969 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 970 struct mm_struct *mm, unsigned long start, 971 unsigned long length, 972 const struct mmu_interval_notifier_ops *ops) 973 { 974 struct mmu_notifier_subscriptions *subscriptions; 975 int ret; 976 977 might_lock(&mm->mmap_sem); 978 979 subscriptions = smp_load_acquire(&mm->notifier_subscriptions); 980 if (!subscriptions || !subscriptions->has_itree) { 981 ret = mmu_notifier_register(NULL, mm); 982 if (ret) 983 return ret; 984 subscriptions = mm->notifier_subscriptions; 985 } 986 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 987 start, length, ops); 988 } 989 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); 990 991 int mmu_interval_notifier_insert_locked( 992 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 993 unsigned long start, unsigned long length, 994 const struct mmu_interval_notifier_ops *ops) 995 { 996 struct mmu_notifier_subscriptions *subscriptions = 997 mm->notifier_subscriptions; 998 int ret; 999 1000 lockdep_assert_held_write(&mm->mmap_sem); 1001 1002 if (!subscriptions || !subscriptions->has_itree) { 1003 ret = __mmu_notifier_register(NULL, mm); 1004 if (ret) 1005 return ret; 1006 subscriptions = mm->notifier_subscriptions; 1007 } 1008 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 1009 start, length, ops); 1010 } 1011 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); 1012 1013 /** 1014 * mmu_interval_notifier_remove - Remove a interval notifier 1015 * @interval_sub: Interval subscription to unregister 1016 * 1017 * This function must be paired with mmu_interval_notifier_insert(). It cannot 1018 * be called from any ops callback. 1019 * 1020 * Once this returns ops callbacks are no longer running on other CPUs and 1021 * will not be called in future. 1022 */ 1023 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub) 1024 { 1025 struct mm_struct *mm = interval_sub->mm; 1026 struct mmu_notifier_subscriptions *subscriptions = 1027 mm->notifier_subscriptions; 1028 unsigned long seq = 0; 1029 1030 might_sleep(); 1031 1032 spin_lock(&subscriptions->lock); 1033 if (mn_itree_is_invalidating(subscriptions)) { 1034 /* 1035 * remove is being called after insert put this on the 1036 * deferred list, but before the deferred list was processed. 1037 */ 1038 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) { 1039 hlist_del(&interval_sub->deferred_item); 1040 } else { 1041 hlist_add_head(&interval_sub->deferred_item, 1042 &subscriptions->deferred_list); 1043 seq = subscriptions->invalidate_seq; 1044 } 1045 } else { 1046 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb)); 1047 interval_tree_remove(&interval_sub->interval_tree, 1048 &subscriptions->itree); 1049 } 1050 spin_unlock(&subscriptions->lock); 1051 1052 /* 1053 * The possible sleep on progress in the invalidation requires the 1054 * caller not hold any locks held by invalidation callbacks. 1055 */ 1056 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 1057 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 1058 if (seq) 1059 wait_event(subscriptions->wq, 1060 READ_ONCE(subscriptions->invalidate_seq) != seq); 1061 1062 /* pairs with mmgrab in mmu_interval_notifier_insert() */ 1063 mmdrop(mm); 1064 } 1065 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); 1066 1067 /** 1068 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed 1069 * 1070 * This function ensures that all outstanding async SRU work from 1071 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops 1072 * associated with an unused mmu_notifier will no longer be called. 1073 * 1074 * Before using the caller must ensure that all of its mmu_notifiers have been 1075 * fully released via mmu_notifier_put(). 1076 * 1077 * Modules using the mmu_notifier_put() API should call this in their __exit 1078 * function to avoid module unloading races. 1079 */ 1080 void mmu_notifier_synchronize(void) 1081 { 1082 synchronize_srcu(&srcu); 1083 } 1084 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 1085 1086 bool 1087 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) 1088 { 1089 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) 1090 return false; 1091 /* Return true if the vma still have the read flag set. */ 1092 return range->vma->vm_flags & VM_READ; 1093 } 1094 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only); 1095