xref: /openbmc/linux/mm/mmu_gather.c (revision f97769fd)
1 #include <linux/gfp.h>
2 #include <linux/highmem.h>
3 #include <linux/kernel.h>
4 #include <linux/mmdebug.h>
5 #include <linux/mm_types.h>
6 #include <linux/pagemap.h>
7 #include <linux/rcupdate.h>
8 #include <linux/smp.h>
9 #include <linux/swap.h>
10 
11 #include <asm/pgalloc.h>
12 #include <asm/tlb.h>
13 
14 #ifndef CONFIG_MMU_GATHER_NO_GATHER
15 
16 static bool tlb_next_batch(struct mmu_gather *tlb)
17 {
18 	struct mmu_gather_batch *batch;
19 
20 	batch = tlb->active;
21 	if (batch->next) {
22 		tlb->active = batch->next;
23 		return true;
24 	}
25 
26 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
27 		return false;
28 
29 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
30 	if (!batch)
31 		return false;
32 
33 	tlb->batch_count++;
34 	batch->next = NULL;
35 	batch->nr   = 0;
36 	batch->max  = MAX_GATHER_BATCH;
37 
38 	tlb->active->next = batch;
39 	tlb->active = batch;
40 
41 	return true;
42 }
43 
44 static void tlb_batch_pages_flush(struct mmu_gather *tlb)
45 {
46 	struct mmu_gather_batch *batch;
47 
48 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
49 		free_pages_and_swap_cache(batch->pages, batch->nr);
50 		batch->nr = 0;
51 	}
52 	tlb->active = &tlb->local;
53 }
54 
55 static void tlb_batch_list_free(struct mmu_gather *tlb)
56 {
57 	struct mmu_gather_batch *batch, *next;
58 
59 	for (batch = tlb->local.next; batch; batch = next) {
60 		next = batch->next;
61 		free_pages((unsigned long)batch, 0);
62 	}
63 	tlb->local.next = NULL;
64 }
65 
66 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
67 {
68 	struct mmu_gather_batch *batch;
69 
70 	VM_BUG_ON(!tlb->end);
71 
72 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
73 	VM_WARN_ON(tlb->page_size != page_size);
74 #endif
75 
76 	batch = tlb->active;
77 	/*
78 	 * Add the page and check if we are full. If so
79 	 * force a flush.
80 	 */
81 	batch->pages[batch->nr++] = page;
82 	if (batch->nr == batch->max) {
83 		if (!tlb_next_batch(tlb))
84 			return true;
85 		batch = tlb->active;
86 	}
87 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
88 
89 	return false;
90 }
91 
92 #endif /* MMU_GATHER_NO_GATHER */
93 
94 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
95 
96 static void __tlb_remove_table_free(struct mmu_table_batch *batch)
97 {
98 	int i;
99 
100 	for (i = 0; i < batch->nr; i++)
101 		__tlb_remove_table(batch->tables[i]);
102 
103 	free_page((unsigned long)batch);
104 }
105 
106 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
107 
108 /*
109  * Semi RCU freeing of the page directories.
110  *
111  * This is needed by some architectures to implement software pagetable walkers.
112  *
113  * gup_fast() and other software pagetable walkers do a lockless page-table
114  * walk and therefore needs some synchronization with the freeing of the page
115  * directories. The chosen means to accomplish that is by disabling IRQs over
116  * the walk.
117  *
118  * Architectures that use IPIs to flush TLBs will then automagically DTRT,
119  * since we unlink the page, flush TLBs, free the page. Since the disabling of
120  * IRQs delays the completion of the TLB flush we can never observe an already
121  * freed page.
122  *
123  * Architectures that do not have this (PPC) need to delay the freeing by some
124  * other means, this is that means.
125  *
126  * What we do is batch the freed directory pages (tables) and RCU free them.
127  * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
128  * holds off grace periods.
129  *
130  * However, in order to batch these pages we need to allocate storage, this
131  * allocation is deep inside the MM code and can thus easily fail on memory
132  * pressure. To guarantee progress we fall back to single table freeing, see
133  * the implementation of tlb_remove_table_one().
134  *
135  */
136 
137 static void tlb_remove_table_smp_sync(void *arg)
138 {
139 	/* Simply deliver the interrupt */
140 }
141 
142 static void tlb_remove_table_sync_one(void)
143 {
144 	/*
145 	 * This isn't an RCU grace period and hence the page-tables cannot be
146 	 * assumed to be actually RCU-freed.
147 	 *
148 	 * It is however sufficient for software page-table walkers that rely on
149 	 * IRQ disabling.
150 	 */
151 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
152 }
153 
154 static void tlb_remove_table_rcu(struct rcu_head *head)
155 {
156 	__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
157 }
158 
159 static void tlb_remove_table_free(struct mmu_table_batch *batch)
160 {
161 	call_rcu(&batch->rcu, tlb_remove_table_rcu);
162 }
163 
164 #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
165 
166 static void tlb_remove_table_sync_one(void) { }
167 
168 static void tlb_remove_table_free(struct mmu_table_batch *batch)
169 {
170 	__tlb_remove_table_free(batch);
171 }
172 
173 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
174 
175 /*
176  * If we want tlb_remove_table() to imply TLB invalidates.
177  */
178 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
179 {
180 	if (tlb_needs_table_invalidate()) {
181 		/*
182 		 * Invalidate page-table caches used by hardware walkers. Then
183 		 * we still need to RCU-sched wait while freeing the pages
184 		 * because software walkers can still be in-flight.
185 		 */
186 		tlb_flush_mmu_tlbonly(tlb);
187 	}
188 }
189 
190 static void tlb_remove_table_one(void *table)
191 {
192 	tlb_remove_table_sync_one();
193 	__tlb_remove_table(table);
194 }
195 
196 static void tlb_table_flush(struct mmu_gather *tlb)
197 {
198 	struct mmu_table_batch **batch = &tlb->batch;
199 
200 	if (*batch) {
201 		tlb_table_invalidate(tlb);
202 		tlb_remove_table_free(*batch);
203 		*batch = NULL;
204 	}
205 }
206 
207 void tlb_remove_table(struct mmu_gather *tlb, void *table)
208 {
209 	struct mmu_table_batch **batch = &tlb->batch;
210 
211 	if (*batch == NULL) {
212 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
213 		if (*batch == NULL) {
214 			tlb_table_invalidate(tlb);
215 			tlb_remove_table_one(table);
216 			return;
217 		}
218 		(*batch)->nr = 0;
219 	}
220 
221 	(*batch)->tables[(*batch)->nr++] = table;
222 	if ((*batch)->nr == MAX_TABLE_BATCH)
223 		tlb_table_flush(tlb);
224 }
225 
226 static inline void tlb_table_init(struct mmu_gather *tlb)
227 {
228 	tlb->batch = NULL;
229 }
230 
231 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */
232 
233 static inline void tlb_table_flush(struct mmu_gather *tlb) { }
234 static inline void tlb_table_init(struct mmu_gather *tlb) { }
235 
236 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
237 
238 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
239 {
240 	tlb_table_flush(tlb);
241 #ifndef CONFIG_MMU_GATHER_NO_GATHER
242 	tlb_batch_pages_flush(tlb);
243 #endif
244 }
245 
246 void tlb_flush_mmu(struct mmu_gather *tlb)
247 {
248 	tlb_flush_mmu_tlbonly(tlb);
249 	tlb_flush_mmu_free(tlb);
250 }
251 
252 /**
253  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
254  * @tlb: the mmu_gather structure to initialize
255  * @mm: the mm_struct of the target address space
256  * @start: start of the region that will be removed from the page-table
257  * @end: end of the region that will be removed from the page-table
258  *
259  * Called to initialize an (on-stack) mmu_gather structure for page-table
260  * tear-down from @mm. The @start and @end are set to 0 and -1
261  * respectively when @mm is without users and we're going to destroy
262  * the full address space (exit/execve).
263  */
264 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
265 			unsigned long start, unsigned long end)
266 {
267 	tlb->mm = mm;
268 
269 	/* Is it from 0 to ~0? */
270 	tlb->fullmm     = !(start | (end+1));
271 
272 #ifndef CONFIG_MMU_GATHER_NO_GATHER
273 	tlb->need_flush_all = 0;
274 	tlb->local.next = NULL;
275 	tlb->local.nr   = 0;
276 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
277 	tlb->active     = &tlb->local;
278 	tlb->batch_count = 0;
279 #endif
280 
281 	tlb_table_init(tlb);
282 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
283 	tlb->page_size = 0;
284 #endif
285 
286 	__tlb_reset_range(tlb);
287 	inc_tlb_flush_pending(tlb->mm);
288 }
289 
290 /**
291  * tlb_finish_mmu - finish an mmu_gather structure
292  * @tlb: the mmu_gather structure to finish
293  * @start: start of the region that will be removed from the page-table
294  * @end: end of the region that will be removed from the page-table
295  *
296  * Called at the end of the shootdown operation to free up any resources that
297  * were required.
298  */
299 void tlb_finish_mmu(struct mmu_gather *tlb,
300 		unsigned long start, unsigned long end)
301 {
302 	/*
303 	 * If there are parallel threads are doing PTE changes on same range
304 	 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
305 	 * flush by batching, one thread may end up seeing inconsistent PTEs
306 	 * and result in having stale TLB entries.  So flush TLB forcefully
307 	 * if we detect parallel PTE batching threads.
308 	 *
309 	 * However, some syscalls, e.g. munmap(), may free page tables, this
310 	 * needs force flush everything in the given range. Otherwise this
311 	 * may result in having stale TLB entries for some architectures,
312 	 * e.g. aarch64, that could specify flush what level TLB.
313 	 */
314 	if (mm_tlb_flush_nested(tlb->mm)) {
315 		/*
316 		 * The aarch64 yields better performance with fullmm by
317 		 * avoiding multiple CPUs spamming TLBI messages at the
318 		 * same time.
319 		 *
320 		 * On x86 non-fullmm doesn't yield significant difference
321 		 * against fullmm.
322 		 */
323 		tlb->fullmm = 1;
324 		__tlb_reset_range(tlb);
325 		tlb->freed_tables = 1;
326 	}
327 
328 	tlb_flush_mmu(tlb);
329 
330 #ifndef CONFIG_MMU_GATHER_NO_GATHER
331 	tlb_batch_list_free(tlb);
332 #endif
333 	dec_tlb_flush_pending(tlb->mm);
334 }
335