1 #include <linux/gfp.h> 2 #include <linux/highmem.h> 3 #include <linux/kernel.h> 4 #include <linux/kmsan-checks.h> 5 #include <linux/mmdebug.h> 6 #include <linux/mm_types.h> 7 #include <linux/mm_inline.h> 8 #include <linux/pagemap.h> 9 #include <linux/rcupdate.h> 10 #include <linux/smp.h> 11 #include <linux/swap.h> 12 13 #include <asm/pgalloc.h> 14 #include <asm/tlb.h> 15 16 #ifndef CONFIG_MMU_GATHER_NO_GATHER 17 18 static bool tlb_next_batch(struct mmu_gather *tlb) 19 { 20 struct mmu_gather_batch *batch; 21 22 batch = tlb->active; 23 if (batch->next) { 24 tlb->active = batch->next; 25 return true; 26 } 27 28 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 29 return false; 30 31 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 32 if (!batch) 33 return false; 34 35 tlb->batch_count++; 36 batch->next = NULL; 37 batch->nr = 0; 38 batch->max = MAX_GATHER_BATCH; 39 40 tlb->active->next = batch; 41 tlb->active = batch; 42 43 return true; 44 } 45 46 static void tlb_batch_pages_flush(struct mmu_gather *tlb) 47 { 48 struct mmu_gather_batch *batch; 49 50 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 51 struct page **pages = batch->pages; 52 53 do { 54 /* 55 * limit free batch count when PAGE_SIZE > 4K 56 */ 57 unsigned int nr = min(512U, batch->nr); 58 59 free_pages_and_swap_cache(pages, nr); 60 pages += nr; 61 batch->nr -= nr; 62 63 cond_resched(); 64 } while (batch->nr); 65 } 66 tlb->active = &tlb->local; 67 } 68 69 static void tlb_batch_list_free(struct mmu_gather *tlb) 70 { 71 struct mmu_gather_batch *batch, *next; 72 73 for (batch = tlb->local.next; batch; batch = next) { 74 next = batch->next; 75 free_pages((unsigned long)batch, 0); 76 } 77 tlb->local.next = NULL; 78 } 79 80 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 81 { 82 struct mmu_gather_batch *batch; 83 84 VM_BUG_ON(!tlb->end); 85 86 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 87 VM_WARN_ON(tlb->page_size != page_size); 88 #endif 89 90 batch = tlb->active; 91 /* 92 * Add the page and check if we are full. If so 93 * force a flush. 94 */ 95 batch->pages[batch->nr++] = page; 96 if (batch->nr == batch->max) { 97 if (!tlb_next_batch(tlb)) 98 return true; 99 batch = tlb->active; 100 } 101 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 102 103 return false; 104 } 105 106 #endif /* MMU_GATHER_NO_GATHER */ 107 108 #ifdef CONFIG_MMU_GATHER_TABLE_FREE 109 110 static void __tlb_remove_table_free(struct mmu_table_batch *batch) 111 { 112 int i; 113 114 for (i = 0; i < batch->nr; i++) 115 __tlb_remove_table(batch->tables[i]); 116 117 free_page((unsigned long)batch); 118 } 119 120 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE 121 122 /* 123 * Semi RCU freeing of the page directories. 124 * 125 * This is needed by some architectures to implement software pagetable walkers. 126 * 127 * gup_fast() and other software pagetable walkers do a lockless page-table 128 * walk and therefore needs some synchronization with the freeing of the page 129 * directories. The chosen means to accomplish that is by disabling IRQs over 130 * the walk. 131 * 132 * Architectures that use IPIs to flush TLBs will then automagically DTRT, 133 * since we unlink the page, flush TLBs, free the page. Since the disabling of 134 * IRQs delays the completion of the TLB flush we can never observe an already 135 * freed page. 136 * 137 * Architectures that do not have this (PPC) need to delay the freeing by some 138 * other means, this is that means. 139 * 140 * What we do is batch the freed directory pages (tables) and RCU free them. 141 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling 142 * holds off grace periods. 143 * 144 * However, in order to batch these pages we need to allocate storage, this 145 * allocation is deep inside the MM code and can thus easily fail on memory 146 * pressure. To guarantee progress we fall back to single table freeing, see 147 * the implementation of tlb_remove_table_one(). 148 * 149 */ 150 151 static void tlb_remove_table_smp_sync(void *arg) 152 { 153 /* Simply deliver the interrupt */ 154 } 155 156 static void tlb_remove_table_sync_one(void) 157 { 158 /* 159 * This isn't an RCU grace period and hence the page-tables cannot be 160 * assumed to be actually RCU-freed. 161 * 162 * It is however sufficient for software page-table walkers that rely on 163 * IRQ disabling. 164 */ 165 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 166 } 167 168 static void tlb_remove_table_rcu(struct rcu_head *head) 169 { 170 __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu)); 171 } 172 173 static void tlb_remove_table_free(struct mmu_table_batch *batch) 174 { 175 call_rcu(&batch->rcu, tlb_remove_table_rcu); 176 } 177 178 #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 179 180 static void tlb_remove_table_sync_one(void) { } 181 182 static void tlb_remove_table_free(struct mmu_table_batch *batch) 183 { 184 __tlb_remove_table_free(batch); 185 } 186 187 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ 188 189 /* 190 * If we want tlb_remove_table() to imply TLB invalidates. 191 */ 192 static inline void tlb_table_invalidate(struct mmu_gather *tlb) 193 { 194 if (tlb_needs_table_invalidate()) { 195 /* 196 * Invalidate page-table caches used by hardware walkers. Then 197 * we still need to RCU-sched wait while freeing the pages 198 * because software walkers can still be in-flight. 199 */ 200 tlb_flush_mmu_tlbonly(tlb); 201 } 202 } 203 204 static void tlb_remove_table_one(void *table) 205 { 206 tlb_remove_table_sync_one(); 207 __tlb_remove_table(table); 208 } 209 210 static void tlb_table_flush(struct mmu_gather *tlb) 211 { 212 struct mmu_table_batch **batch = &tlb->batch; 213 214 if (*batch) { 215 tlb_table_invalidate(tlb); 216 tlb_remove_table_free(*batch); 217 *batch = NULL; 218 } 219 } 220 221 void tlb_remove_table(struct mmu_gather *tlb, void *table) 222 { 223 struct mmu_table_batch **batch = &tlb->batch; 224 225 if (*batch == NULL) { 226 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 227 if (*batch == NULL) { 228 tlb_table_invalidate(tlb); 229 tlb_remove_table_one(table); 230 return; 231 } 232 (*batch)->nr = 0; 233 } 234 235 (*batch)->tables[(*batch)->nr++] = table; 236 if ((*batch)->nr == MAX_TABLE_BATCH) 237 tlb_table_flush(tlb); 238 } 239 240 static inline void tlb_table_init(struct mmu_gather *tlb) 241 { 242 tlb->batch = NULL; 243 } 244 245 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */ 246 247 static inline void tlb_table_flush(struct mmu_gather *tlb) { } 248 static inline void tlb_table_init(struct mmu_gather *tlb) { } 249 250 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ 251 252 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 253 { 254 tlb_table_flush(tlb); 255 #ifndef CONFIG_MMU_GATHER_NO_GATHER 256 tlb_batch_pages_flush(tlb); 257 #endif 258 } 259 260 void tlb_flush_mmu(struct mmu_gather *tlb) 261 { 262 tlb_flush_mmu_tlbonly(tlb); 263 tlb_flush_mmu_free(tlb); 264 } 265 266 static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 267 bool fullmm) 268 { 269 /* 270 * struct mmu_gather contains 7 1-bit fields packed into a 32-bit 271 * unsigned int value. The remaining 25 bits remain uninitialized 272 * and are never used, but KMSAN updates the origin for them in 273 * zap_pXX_range() in mm/memory.c, thus creating very long origin 274 * chains. This is technically correct, but consumes too much memory. 275 * Unpoisoning the whole structure will prevent creating such chains. 276 */ 277 kmsan_unpoison_memory(tlb, sizeof(*tlb)); 278 tlb->mm = mm; 279 tlb->fullmm = fullmm; 280 281 #ifndef CONFIG_MMU_GATHER_NO_GATHER 282 tlb->need_flush_all = 0; 283 tlb->local.next = NULL; 284 tlb->local.nr = 0; 285 tlb->local.max = ARRAY_SIZE(tlb->__pages); 286 tlb->active = &tlb->local; 287 tlb->batch_count = 0; 288 #endif 289 290 tlb_table_init(tlb); 291 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE 292 tlb->page_size = 0; 293 #endif 294 295 __tlb_reset_range(tlb); 296 inc_tlb_flush_pending(tlb->mm); 297 } 298 299 /** 300 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 301 * @tlb: the mmu_gather structure to initialize 302 * @mm: the mm_struct of the target address space 303 * 304 * Called to initialize an (on-stack) mmu_gather structure for page-table 305 * tear-down from @mm. 306 */ 307 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm) 308 { 309 __tlb_gather_mmu(tlb, mm, false); 310 } 311 312 /** 313 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down 314 * @tlb: the mmu_gather structure to initialize 315 * @mm: the mm_struct of the target address space 316 * 317 * In this case, @mm is without users and we're going to destroy the 318 * full address space (exit/execve). 319 * 320 * Called to initialize an (on-stack) mmu_gather structure for page-table 321 * tear-down from @mm. 322 */ 323 void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm) 324 { 325 __tlb_gather_mmu(tlb, mm, true); 326 } 327 328 /** 329 * tlb_finish_mmu - finish an mmu_gather structure 330 * @tlb: the mmu_gather structure to finish 331 * 332 * Called at the end of the shootdown operation to free up any resources that 333 * were required. 334 */ 335 void tlb_finish_mmu(struct mmu_gather *tlb) 336 { 337 /* 338 * If there are parallel threads are doing PTE changes on same range 339 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB 340 * flush by batching, one thread may end up seeing inconsistent PTEs 341 * and result in having stale TLB entries. So flush TLB forcefully 342 * if we detect parallel PTE batching threads. 343 * 344 * However, some syscalls, e.g. munmap(), may free page tables, this 345 * needs force flush everything in the given range. Otherwise this 346 * may result in having stale TLB entries for some architectures, 347 * e.g. aarch64, that could specify flush what level TLB. 348 */ 349 if (mm_tlb_flush_nested(tlb->mm)) { 350 /* 351 * The aarch64 yields better performance with fullmm by 352 * avoiding multiple CPUs spamming TLBI messages at the 353 * same time. 354 * 355 * On x86 non-fullmm doesn't yield significant difference 356 * against fullmm. 357 */ 358 tlb->fullmm = 1; 359 __tlb_reset_range(tlb); 360 tlb->freed_tables = 1; 361 } 362 363 tlb_flush_mmu(tlb); 364 365 #ifndef CONFIG_MMU_GATHER_NO_GATHER 366 tlb_batch_list_free(tlb); 367 #endif 368 dec_tlb_flush_pending(tlb->mm); 369 } 370