xref: /openbmc/linux/mm/mmu_gather.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 #include <linux/gfp.h>
2 #include <linux/highmem.h>
3 #include <linux/kernel.h>
4 #include <linux/mmdebug.h>
5 #include <linux/mm_types.h>
6 #include <linux/mm_inline.h>
7 #include <linux/pagemap.h>
8 #include <linux/rcupdate.h>
9 #include <linux/smp.h>
10 #include <linux/swap.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 
15 #ifndef CONFIG_MMU_GATHER_NO_GATHER
16 
17 static bool tlb_next_batch(struct mmu_gather *tlb)
18 {
19 	struct mmu_gather_batch *batch;
20 
21 	batch = tlb->active;
22 	if (batch->next) {
23 		tlb->active = batch->next;
24 		return true;
25 	}
26 
27 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
28 		return false;
29 
30 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
31 	if (!batch)
32 		return false;
33 
34 	tlb->batch_count++;
35 	batch->next = NULL;
36 	batch->nr   = 0;
37 	batch->max  = MAX_GATHER_BATCH;
38 
39 	tlb->active->next = batch;
40 	tlb->active = batch;
41 
42 	return true;
43 }
44 
45 static void tlb_batch_pages_flush(struct mmu_gather *tlb)
46 {
47 	struct mmu_gather_batch *batch;
48 
49 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
50 		free_pages_and_swap_cache(batch->pages, batch->nr);
51 		batch->nr = 0;
52 	}
53 	tlb->active = &tlb->local;
54 }
55 
56 static void tlb_batch_list_free(struct mmu_gather *tlb)
57 {
58 	struct mmu_gather_batch *batch, *next;
59 
60 	for (batch = tlb->local.next; batch; batch = next) {
61 		next = batch->next;
62 		free_pages((unsigned long)batch, 0);
63 	}
64 	tlb->local.next = NULL;
65 }
66 
67 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
68 {
69 	struct mmu_gather_batch *batch;
70 
71 	VM_BUG_ON(!tlb->end);
72 
73 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
74 	VM_WARN_ON(tlb->page_size != page_size);
75 #endif
76 
77 	batch = tlb->active;
78 	/*
79 	 * Add the page and check if we are full. If so
80 	 * force a flush.
81 	 */
82 	batch->pages[batch->nr++] = page;
83 	if (batch->nr == batch->max) {
84 		if (!tlb_next_batch(tlb))
85 			return true;
86 		batch = tlb->active;
87 	}
88 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
89 
90 	return false;
91 }
92 
93 #endif /* MMU_GATHER_NO_GATHER */
94 
95 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
96 
97 static void __tlb_remove_table_free(struct mmu_table_batch *batch)
98 {
99 	int i;
100 
101 	for (i = 0; i < batch->nr; i++)
102 		__tlb_remove_table(batch->tables[i]);
103 
104 	free_page((unsigned long)batch);
105 }
106 
107 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
108 
109 /*
110  * Semi RCU freeing of the page directories.
111  *
112  * This is needed by some architectures to implement software pagetable walkers.
113  *
114  * gup_fast() and other software pagetable walkers do a lockless page-table
115  * walk and therefore needs some synchronization with the freeing of the page
116  * directories. The chosen means to accomplish that is by disabling IRQs over
117  * the walk.
118  *
119  * Architectures that use IPIs to flush TLBs will then automagically DTRT,
120  * since we unlink the page, flush TLBs, free the page. Since the disabling of
121  * IRQs delays the completion of the TLB flush we can never observe an already
122  * freed page.
123  *
124  * Architectures that do not have this (PPC) need to delay the freeing by some
125  * other means, this is that means.
126  *
127  * What we do is batch the freed directory pages (tables) and RCU free them.
128  * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
129  * holds off grace periods.
130  *
131  * However, in order to batch these pages we need to allocate storage, this
132  * allocation is deep inside the MM code and can thus easily fail on memory
133  * pressure. To guarantee progress we fall back to single table freeing, see
134  * the implementation of tlb_remove_table_one().
135  *
136  */
137 
138 static void tlb_remove_table_smp_sync(void *arg)
139 {
140 	/* Simply deliver the interrupt */
141 }
142 
143 static void tlb_remove_table_sync_one(void)
144 {
145 	/*
146 	 * This isn't an RCU grace period and hence the page-tables cannot be
147 	 * assumed to be actually RCU-freed.
148 	 *
149 	 * It is however sufficient for software page-table walkers that rely on
150 	 * IRQ disabling.
151 	 */
152 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
153 }
154 
155 static void tlb_remove_table_rcu(struct rcu_head *head)
156 {
157 	__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
158 }
159 
160 static void tlb_remove_table_free(struct mmu_table_batch *batch)
161 {
162 	call_rcu(&batch->rcu, tlb_remove_table_rcu);
163 }
164 
165 #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
166 
167 static void tlb_remove_table_sync_one(void) { }
168 
169 static void tlb_remove_table_free(struct mmu_table_batch *batch)
170 {
171 	__tlb_remove_table_free(batch);
172 }
173 
174 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
175 
176 /*
177  * If we want tlb_remove_table() to imply TLB invalidates.
178  */
179 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
180 {
181 	if (tlb_needs_table_invalidate()) {
182 		/*
183 		 * Invalidate page-table caches used by hardware walkers. Then
184 		 * we still need to RCU-sched wait while freeing the pages
185 		 * because software walkers can still be in-flight.
186 		 */
187 		tlb_flush_mmu_tlbonly(tlb);
188 	}
189 }
190 
191 static void tlb_remove_table_one(void *table)
192 {
193 	tlb_remove_table_sync_one();
194 	__tlb_remove_table(table);
195 }
196 
197 static void tlb_table_flush(struct mmu_gather *tlb)
198 {
199 	struct mmu_table_batch **batch = &tlb->batch;
200 
201 	if (*batch) {
202 		tlb_table_invalidate(tlb);
203 		tlb_remove_table_free(*batch);
204 		*batch = NULL;
205 	}
206 }
207 
208 void tlb_remove_table(struct mmu_gather *tlb, void *table)
209 {
210 	struct mmu_table_batch **batch = &tlb->batch;
211 
212 	if (*batch == NULL) {
213 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
214 		if (*batch == NULL) {
215 			tlb_table_invalidate(tlb);
216 			tlb_remove_table_one(table);
217 			return;
218 		}
219 		(*batch)->nr = 0;
220 	}
221 
222 	(*batch)->tables[(*batch)->nr++] = table;
223 	if ((*batch)->nr == MAX_TABLE_BATCH)
224 		tlb_table_flush(tlb);
225 }
226 
227 static inline void tlb_table_init(struct mmu_gather *tlb)
228 {
229 	tlb->batch = NULL;
230 }
231 
232 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */
233 
234 static inline void tlb_table_flush(struct mmu_gather *tlb) { }
235 static inline void tlb_table_init(struct mmu_gather *tlb) { }
236 
237 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
238 
239 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
240 {
241 	tlb_table_flush(tlb);
242 #ifndef CONFIG_MMU_GATHER_NO_GATHER
243 	tlb_batch_pages_flush(tlb);
244 #endif
245 }
246 
247 void tlb_flush_mmu(struct mmu_gather *tlb)
248 {
249 	tlb_flush_mmu_tlbonly(tlb);
250 	tlb_flush_mmu_free(tlb);
251 }
252 
253 static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
254 			     bool fullmm)
255 {
256 	tlb->mm = mm;
257 	tlb->fullmm = fullmm;
258 
259 #ifndef CONFIG_MMU_GATHER_NO_GATHER
260 	tlb->need_flush_all = 0;
261 	tlb->local.next = NULL;
262 	tlb->local.nr   = 0;
263 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
264 	tlb->active     = &tlb->local;
265 	tlb->batch_count = 0;
266 #endif
267 
268 	tlb_table_init(tlb);
269 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
270 	tlb->page_size = 0;
271 #endif
272 
273 	__tlb_reset_range(tlb);
274 	inc_tlb_flush_pending(tlb->mm);
275 }
276 
277 /**
278  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
279  * @tlb: the mmu_gather structure to initialize
280  * @mm: the mm_struct of the target address space
281  *
282  * Called to initialize an (on-stack) mmu_gather structure for page-table
283  * tear-down from @mm.
284  */
285 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
286 {
287 	__tlb_gather_mmu(tlb, mm, false);
288 }
289 
290 /**
291  * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
292  * @tlb: the mmu_gather structure to initialize
293  * @mm: the mm_struct of the target address space
294  *
295  * In this case, @mm is without users and we're going to destroy the
296  * full address space (exit/execve).
297  *
298  * Called to initialize an (on-stack) mmu_gather structure for page-table
299  * tear-down from @mm.
300  */
301 void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
302 {
303 	__tlb_gather_mmu(tlb, mm, true);
304 }
305 
306 /**
307  * tlb_finish_mmu - finish an mmu_gather structure
308  * @tlb: the mmu_gather structure to finish
309  *
310  * Called at the end of the shootdown operation to free up any resources that
311  * were required.
312  */
313 void tlb_finish_mmu(struct mmu_gather *tlb)
314 {
315 	/*
316 	 * If there are parallel threads are doing PTE changes on same range
317 	 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
318 	 * flush by batching, one thread may end up seeing inconsistent PTEs
319 	 * and result in having stale TLB entries.  So flush TLB forcefully
320 	 * if we detect parallel PTE batching threads.
321 	 *
322 	 * However, some syscalls, e.g. munmap(), may free page tables, this
323 	 * needs force flush everything in the given range. Otherwise this
324 	 * may result in having stale TLB entries for some architectures,
325 	 * e.g. aarch64, that could specify flush what level TLB.
326 	 */
327 	if (mm_tlb_flush_nested(tlb->mm)) {
328 		/*
329 		 * The aarch64 yields better performance with fullmm by
330 		 * avoiding multiple CPUs spamming TLBI messages at the
331 		 * same time.
332 		 *
333 		 * On x86 non-fullmm doesn't yield significant difference
334 		 * against fullmm.
335 		 */
336 		tlb->fullmm = 1;
337 		__tlb_reset_range(tlb);
338 		tlb->freed_tables = 1;
339 	}
340 
341 	tlb_flush_mmu(tlb);
342 
343 #ifndef CONFIG_MMU_GATHER_NO_GATHER
344 	tlb_batch_list_free(tlb);
345 #endif
346 	dec_tlb_flush_pending(tlb->mm);
347 }
348