1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/backing-dev.h> 14 #include <linux/mm.h> 15 #include <linux/vmacache.h> 16 #include <linux/shm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/syscalls.h> 21 #include <linux/capability.h> 22 #include <linux/init.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/hugetlb.h> 28 #include <linux/profile.h> 29 #include <linux/export.h> 30 #include <linux/mount.h> 31 #include <linux/mempolicy.h> 32 #include <linux/rmap.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/mmdebug.h> 35 #include <linux/perf_event.h> 36 #include <linux/audit.h> 37 #include <linux/khugepaged.h> 38 #include <linux/uprobes.h> 39 #include <linux/rbtree_augmented.h> 40 #include <linux/sched/sysctl.h> 41 #include <linux/notifier.h> 42 #include <linux/memory.h> 43 #include <linux/printk.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/cacheflush.h> 47 #include <asm/tlb.h> 48 #include <asm/mmu_context.h> 49 50 #include "internal.h" 51 52 #ifndef arch_mmap_check 53 #define arch_mmap_check(addr, len, flags) (0) 54 #endif 55 56 #ifndef arch_rebalance_pgtables 57 #define arch_rebalance_pgtables(addr, len) (addr) 58 #endif 59 60 static void unmap_region(struct mm_struct *mm, 61 struct vm_area_struct *vma, struct vm_area_struct *prev, 62 unsigned long start, unsigned long end); 63 64 /* description of effects of mapping type and prot in current implementation. 65 * this is due to the limited x86 page protection hardware. The expected 66 * behavior is in parens: 67 * 68 * map_type prot 69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (yes) yes w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 75 * w: (no) no w: (no) no w: (copy) copy w: (no) no 76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 77 * 78 */ 79 pgprot_t protection_map[16] = { 80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 82 }; 83 84 pgprot_t vm_get_page_prot(unsigned long vm_flags) 85 { 86 return __pgprot(pgprot_val(protection_map[vm_flags & 87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 88 pgprot_val(arch_vm_get_page_prot(vm_flags))); 89 } 90 EXPORT_SYMBOL(vm_get_page_prot); 91 92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 93 { 94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 95 } 96 97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */ 98 void vma_set_page_prot(struct vm_area_struct *vma) 99 { 100 unsigned long vm_flags = vma->vm_flags; 101 102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 103 if (vma_wants_writenotify(vma)) { 104 vm_flags &= ~VM_SHARED; 105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 106 vm_flags); 107 } 108 } 109 110 111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 113 unsigned long sysctl_overcommit_kbytes __read_mostly; 114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 117 /* 118 * Make sure vm_committed_as in one cacheline and not cacheline shared with 119 * other variables. It can be updated by several CPUs frequently. 120 */ 121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 122 123 /* 124 * The global memory commitment made in the system can be a metric 125 * that can be used to drive ballooning decisions when Linux is hosted 126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 127 * balancing memory across competing virtual machines that are hosted. 128 * Several metrics drive this policy engine including the guest reported 129 * memory commitment. 130 */ 131 unsigned long vm_memory_committed(void) 132 { 133 return percpu_counter_read_positive(&vm_committed_as); 134 } 135 EXPORT_SYMBOL_GPL(vm_memory_committed); 136 137 /* 138 * Check that a process has enough memory to allocate a new virtual 139 * mapping. 0 means there is enough memory for the allocation to 140 * succeed and -ENOMEM implies there is not. 141 * 142 * We currently support three overcommit policies, which are set via the 143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 144 * 145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 146 * Additional code 2002 Jul 20 by Robert Love. 147 * 148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 149 * 150 * Note this is a helper function intended to be used by LSMs which 151 * wish to use this logic. 152 */ 153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 154 { 155 unsigned long free, allowed, reserve; 156 157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 158 -(s64)vm_committed_as_batch * num_online_cpus(), 159 "memory commitment underflow"); 160 161 vm_acct_memory(pages); 162 163 /* 164 * Sometimes we want to use more memory than we have 165 */ 166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 167 return 0; 168 169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 170 free = global_page_state(NR_FREE_PAGES); 171 free += global_page_state(NR_FILE_PAGES); 172 173 /* 174 * shmem pages shouldn't be counted as free in this 175 * case, they can't be purged, only swapped out, and 176 * that won't affect the overall amount of available 177 * memory in the system. 178 */ 179 free -= global_page_state(NR_SHMEM); 180 181 free += get_nr_swap_pages(); 182 183 /* 184 * Any slabs which are created with the 185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 186 * which are reclaimable, under pressure. The dentry 187 * cache and most inode caches should fall into this 188 */ 189 free += global_page_state(NR_SLAB_RECLAIMABLE); 190 191 /* 192 * Leave reserved pages. The pages are not for anonymous pages. 193 */ 194 if (free <= totalreserve_pages) 195 goto error; 196 else 197 free -= totalreserve_pages; 198 199 /* 200 * Reserve some for root 201 */ 202 if (!cap_sys_admin) 203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 204 205 if (free > pages) 206 return 0; 207 208 goto error; 209 } 210 211 allowed = vm_commit_limit(); 212 /* 213 * Reserve some for root 214 */ 215 if (!cap_sys_admin) 216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 217 218 /* 219 * Don't let a single process grow so big a user can't recover 220 */ 221 if (mm) { 222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 223 allowed -= min(mm->total_vm / 32, reserve); 224 } 225 226 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 227 return 0; 228 error: 229 vm_unacct_memory(pages); 230 231 return -ENOMEM; 232 } 233 234 /* 235 * Requires inode->i_mapping->i_mmap_rwsem 236 */ 237 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 238 struct file *file, struct address_space *mapping) 239 { 240 if (vma->vm_flags & VM_DENYWRITE) 241 atomic_inc(&file_inode(file)->i_writecount); 242 if (vma->vm_flags & VM_SHARED) 243 mapping_unmap_writable(mapping); 244 245 flush_dcache_mmap_lock(mapping); 246 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 247 list_del_init(&vma->shared.nonlinear); 248 else 249 vma_interval_tree_remove(vma, &mapping->i_mmap); 250 flush_dcache_mmap_unlock(mapping); 251 } 252 253 /* 254 * Unlink a file-based vm structure from its interval tree, to hide 255 * vma from rmap and vmtruncate before freeing its page tables. 256 */ 257 void unlink_file_vma(struct vm_area_struct *vma) 258 { 259 struct file *file = vma->vm_file; 260 261 if (file) { 262 struct address_space *mapping = file->f_mapping; 263 i_mmap_lock_write(mapping); 264 __remove_shared_vm_struct(vma, file, mapping); 265 i_mmap_unlock_write(mapping); 266 } 267 } 268 269 /* 270 * Close a vm structure and free it, returning the next. 271 */ 272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 273 { 274 struct vm_area_struct *next = vma->vm_next; 275 276 might_sleep(); 277 if (vma->vm_ops && vma->vm_ops->close) 278 vma->vm_ops->close(vma); 279 if (vma->vm_file) 280 fput(vma->vm_file); 281 mpol_put(vma_policy(vma)); 282 kmem_cache_free(vm_area_cachep, vma); 283 return next; 284 } 285 286 static unsigned long do_brk(unsigned long addr, unsigned long len); 287 288 SYSCALL_DEFINE1(brk, unsigned long, brk) 289 { 290 unsigned long retval; 291 unsigned long newbrk, oldbrk; 292 struct mm_struct *mm = current->mm; 293 unsigned long min_brk; 294 bool populate; 295 296 down_write(&mm->mmap_sem); 297 298 #ifdef CONFIG_COMPAT_BRK 299 /* 300 * CONFIG_COMPAT_BRK can still be overridden by setting 301 * randomize_va_space to 2, which will still cause mm->start_brk 302 * to be arbitrarily shifted 303 */ 304 if (current->brk_randomized) 305 min_brk = mm->start_brk; 306 else 307 min_brk = mm->end_data; 308 #else 309 min_brk = mm->start_brk; 310 #endif 311 if (brk < min_brk) 312 goto out; 313 314 /* 315 * Check against rlimit here. If this check is done later after the test 316 * of oldbrk with newbrk then it can escape the test and let the data 317 * segment grow beyond its set limit the in case where the limit is 318 * not page aligned -Ram Gupta 319 */ 320 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 321 mm->end_data, mm->start_data)) 322 goto out; 323 324 newbrk = PAGE_ALIGN(brk); 325 oldbrk = PAGE_ALIGN(mm->brk); 326 if (oldbrk == newbrk) 327 goto set_brk; 328 329 /* Always allow shrinking brk. */ 330 if (brk <= mm->brk) { 331 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 332 goto set_brk; 333 goto out; 334 } 335 336 /* Check against existing mmap mappings. */ 337 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 338 goto out; 339 340 /* Ok, looks good - let it rip. */ 341 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 342 goto out; 343 344 set_brk: 345 mm->brk = brk; 346 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 347 up_write(&mm->mmap_sem); 348 if (populate) 349 mm_populate(oldbrk, newbrk - oldbrk); 350 return brk; 351 352 out: 353 retval = mm->brk; 354 up_write(&mm->mmap_sem); 355 return retval; 356 } 357 358 static long vma_compute_subtree_gap(struct vm_area_struct *vma) 359 { 360 unsigned long max, subtree_gap; 361 max = vma->vm_start; 362 if (vma->vm_prev) 363 max -= vma->vm_prev->vm_end; 364 if (vma->vm_rb.rb_left) { 365 subtree_gap = rb_entry(vma->vm_rb.rb_left, 366 struct vm_area_struct, vm_rb)->rb_subtree_gap; 367 if (subtree_gap > max) 368 max = subtree_gap; 369 } 370 if (vma->vm_rb.rb_right) { 371 subtree_gap = rb_entry(vma->vm_rb.rb_right, 372 struct vm_area_struct, vm_rb)->rb_subtree_gap; 373 if (subtree_gap > max) 374 max = subtree_gap; 375 } 376 return max; 377 } 378 379 #ifdef CONFIG_DEBUG_VM_RB 380 static int browse_rb(struct rb_root *root) 381 { 382 int i = 0, j, bug = 0; 383 struct rb_node *nd, *pn = NULL; 384 unsigned long prev = 0, pend = 0; 385 386 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 387 struct vm_area_struct *vma; 388 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 389 if (vma->vm_start < prev) { 390 pr_emerg("vm_start %lx < prev %lx\n", 391 vma->vm_start, prev); 392 bug = 1; 393 } 394 if (vma->vm_start < pend) { 395 pr_emerg("vm_start %lx < pend %lx\n", 396 vma->vm_start, pend); 397 bug = 1; 398 } 399 if (vma->vm_start > vma->vm_end) { 400 pr_emerg("vm_start %lx > vm_end %lx\n", 401 vma->vm_start, vma->vm_end); 402 bug = 1; 403 } 404 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 405 pr_emerg("free gap %lx, correct %lx\n", 406 vma->rb_subtree_gap, 407 vma_compute_subtree_gap(vma)); 408 bug = 1; 409 } 410 i++; 411 pn = nd; 412 prev = vma->vm_start; 413 pend = vma->vm_end; 414 } 415 j = 0; 416 for (nd = pn; nd; nd = rb_prev(nd)) 417 j++; 418 if (i != j) { 419 pr_emerg("backwards %d, forwards %d\n", j, i); 420 bug = 1; 421 } 422 return bug ? -1 : i; 423 } 424 425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 426 { 427 struct rb_node *nd; 428 429 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 430 struct vm_area_struct *vma; 431 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 432 VM_BUG_ON_VMA(vma != ignore && 433 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 434 vma); 435 } 436 } 437 438 static void validate_mm(struct mm_struct *mm) 439 { 440 int bug = 0; 441 int i = 0; 442 unsigned long highest_address = 0; 443 struct vm_area_struct *vma = mm->mmap; 444 445 while (vma) { 446 struct anon_vma_chain *avc; 447 448 vma_lock_anon_vma(vma); 449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 450 anon_vma_interval_tree_verify(avc); 451 vma_unlock_anon_vma(vma); 452 highest_address = vma->vm_end; 453 vma = vma->vm_next; 454 i++; 455 } 456 if (i != mm->map_count) { 457 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 458 bug = 1; 459 } 460 if (highest_address != mm->highest_vm_end) { 461 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 462 mm->highest_vm_end, highest_address); 463 bug = 1; 464 } 465 i = browse_rb(&mm->mm_rb); 466 if (i != mm->map_count) { 467 if (i != -1) 468 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 469 bug = 1; 470 } 471 VM_BUG_ON_MM(bug, mm); 472 } 473 #else 474 #define validate_mm_rb(root, ignore) do { } while (0) 475 #define validate_mm(mm) do { } while (0) 476 #endif 477 478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 479 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 480 481 /* 482 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 483 * vma->vm_prev->vm_end values changed, without modifying the vma's position 484 * in the rbtree. 485 */ 486 static void vma_gap_update(struct vm_area_struct *vma) 487 { 488 /* 489 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 490 * function that does exacltly what we want. 491 */ 492 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 493 } 494 495 static inline void vma_rb_insert(struct vm_area_struct *vma, 496 struct rb_root *root) 497 { 498 /* All rb_subtree_gap values must be consistent prior to insertion */ 499 validate_mm_rb(root, NULL); 500 501 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 502 } 503 504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 505 { 506 /* 507 * All rb_subtree_gap values must be consistent prior to erase, 508 * with the possible exception of the vma being erased. 509 */ 510 validate_mm_rb(root, vma); 511 512 /* 513 * Note rb_erase_augmented is a fairly large inline function, 514 * so make sure we instantiate it only once with our desired 515 * augmented rbtree callbacks. 516 */ 517 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 518 } 519 520 /* 521 * vma has some anon_vma assigned, and is already inserted on that 522 * anon_vma's interval trees. 523 * 524 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 525 * vma must be removed from the anon_vma's interval trees using 526 * anon_vma_interval_tree_pre_update_vma(). 527 * 528 * After the update, the vma will be reinserted using 529 * anon_vma_interval_tree_post_update_vma(). 530 * 531 * The entire update must be protected by exclusive mmap_sem and by 532 * the root anon_vma's mutex. 533 */ 534 static inline void 535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 536 { 537 struct anon_vma_chain *avc; 538 539 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 540 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 541 } 542 543 static inline void 544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 545 { 546 struct anon_vma_chain *avc; 547 548 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 549 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 550 } 551 552 static int find_vma_links(struct mm_struct *mm, unsigned long addr, 553 unsigned long end, struct vm_area_struct **pprev, 554 struct rb_node ***rb_link, struct rb_node **rb_parent) 555 { 556 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 557 558 __rb_link = &mm->mm_rb.rb_node; 559 rb_prev = __rb_parent = NULL; 560 561 while (*__rb_link) { 562 struct vm_area_struct *vma_tmp; 563 564 __rb_parent = *__rb_link; 565 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 566 567 if (vma_tmp->vm_end > addr) { 568 /* Fail if an existing vma overlaps the area */ 569 if (vma_tmp->vm_start < end) 570 return -ENOMEM; 571 __rb_link = &__rb_parent->rb_left; 572 } else { 573 rb_prev = __rb_parent; 574 __rb_link = &__rb_parent->rb_right; 575 } 576 } 577 578 *pprev = NULL; 579 if (rb_prev) 580 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 581 *rb_link = __rb_link; 582 *rb_parent = __rb_parent; 583 return 0; 584 } 585 586 static unsigned long count_vma_pages_range(struct mm_struct *mm, 587 unsigned long addr, unsigned long end) 588 { 589 unsigned long nr_pages = 0; 590 struct vm_area_struct *vma; 591 592 /* Find first overlaping mapping */ 593 vma = find_vma_intersection(mm, addr, end); 594 if (!vma) 595 return 0; 596 597 nr_pages = (min(end, vma->vm_end) - 598 max(addr, vma->vm_start)) >> PAGE_SHIFT; 599 600 /* Iterate over the rest of the overlaps */ 601 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 602 unsigned long overlap_len; 603 604 if (vma->vm_start > end) 605 break; 606 607 overlap_len = min(end, vma->vm_end) - vma->vm_start; 608 nr_pages += overlap_len >> PAGE_SHIFT; 609 } 610 611 return nr_pages; 612 } 613 614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 615 struct rb_node **rb_link, struct rb_node *rb_parent) 616 { 617 /* Update tracking information for the gap following the new vma. */ 618 if (vma->vm_next) 619 vma_gap_update(vma->vm_next); 620 else 621 mm->highest_vm_end = vma->vm_end; 622 623 /* 624 * vma->vm_prev wasn't known when we followed the rbtree to find the 625 * correct insertion point for that vma. As a result, we could not 626 * update the vma vm_rb parents rb_subtree_gap values on the way down. 627 * So, we first insert the vma with a zero rb_subtree_gap value 628 * (to be consistent with what we did on the way down), and then 629 * immediately update the gap to the correct value. Finally we 630 * rebalance the rbtree after all augmented values have been set. 631 */ 632 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 633 vma->rb_subtree_gap = 0; 634 vma_gap_update(vma); 635 vma_rb_insert(vma, &mm->mm_rb); 636 } 637 638 static void __vma_link_file(struct vm_area_struct *vma) 639 { 640 struct file *file; 641 642 file = vma->vm_file; 643 if (file) { 644 struct address_space *mapping = file->f_mapping; 645 646 if (vma->vm_flags & VM_DENYWRITE) 647 atomic_dec(&file_inode(file)->i_writecount); 648 if (vma->vm_flags & VM_SHARED) 649 atomic_inc(&mapping->i_mmap_writable); 650 651 flush_dcache_mmap_lock(mapping); 652 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 653 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 654 else 655 vma_interval_tree_insert(vma, &mapping->i_mmap); 656 flush_dcache_mmap_unlock(mapping); 657 } 658 } 659 660 static void 661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 662 struct vm_area_struct *prev, struct rb_node **rb_link, 663 struct rb_node *rb_parent) 664 { 665 __vma_link_list(mm, vma, prev, rb_parent); 666 __vma_link_rb(mm, vma, rb_link, rb_parent); 667 } 668 669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 670 struct vm_area_struct *prev, struct rb_node **rb_link, 671 struct rb_node *rb_parent) 672 { 673 struct address_space *mapping = NULL; 674 675 if (vma->vm_file) { 676 mapping = vma->vm_file->f_mapping; 677 i_mmap_lock_write(mapping); 678 } 679 680 __vma_link(mm, vma, prev, rb_link, rb_parent); 681 __vma_link_file(vma); 682 683 if (mapping) 684 i_mmap_unlock_write(mapping); 685 686 mm->map_count++; 687 validate_mm(mm); 688 } 689 690 /* 691 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 692 * mm's list and rbtree. It has already been inserted into the interval tree. 693 */ 694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 695 { 696 struct vm_area_struct *prev; 697 struct rb_node **rb_link, *rb_parent; 698 699 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 700 &prev, &rb_link, &rb_parent)) 701 BUG(); 702 __vma_link(mm, vma, prev, rb_link, rb_parent); 703 mm->map_count++; 704 } 705 706 static inline void 707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 708 struct vm_area_struct *prev) 709 { 710 struct vm_area_struct *next; 711 712 vma_rb_erase(vma, &mm->mm_rb); 713 prev->vm_next = next = vma->vm_next; 714 if (next) 715 next->vm_prev = prev; 716 717 /* Kill the cache */ 718 vmacache_invalidate(mm); 719 } 720 721 /* 722 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 723 * is already present in an i_mmap tree without adjusting the tree. 724 * The following helper function should be used when such adjustments 725 * are necessary. The "insert" vma (if any) is to be inserted 726 * before we drop the necessary locks. 727 */ 728 int vma_adjust(struct vm_area_struct *vma, unsigned long start, 729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 730 { 731 struct mm_struct *mm = vma->vm_mm; 732 struct vm_area_struct *next = vma->vm_next; 733 struct vm_area_struct *importer = NULL; 734 struct address_space *mapping = NULL; 735 struct rb_root *root = NULL; 736 struct anon_vma *anon_vma = NULL; 737 struct file *file = vma->vm_file; 738 bool start_changed = false, end_changed = false; 739 long adjust_next = 0; 740 int remove_next = 0; 741 742 if (next && !insert) { 743 struct vm_area_struct *exporter = NULL; 744 745 if (end >= next->vm_end) { 746 /* 747 * vma expands, overlapping all the next, and 748 * perhaps the one after too (mprotect case 6). 749 */ 750 again: remove_next = 1 + (end > next->vm_end); 751 end = next->vm_end; 752 exporter = next; 753 importer = vma; 754 } else if (end > next->vm_start) { 755 /* 756 * vma expands, overlapping part of the next: 757 * mprotect case 5 shifting the boundary up. 758 */ 759 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 760 exporter = next; 761 importer = vma; 762 } else if (end < vma->vm_end) { 763 /* 764 * vma shrinks, and !insert tells it's not 765 * split_vma inserting another: so it must be 766 * mprotect case 4 shifting the boundary down. 767 */ 768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 769 exporter = vma; 770 importer = next; 771 } 772 773 /* 774 * Easily overlooked: when mprotect shifts the boundary, 775 * make sure the expanding vma has anon_vma set if the 776 * shrinking vma had, to cover any anon pages imported. 777 */ 778 if (exporter && exporter->anon_vma && !importer->anon_vma) { 779 int error; 780 781 error = anon_vma_clone(importer, exporter); 782 if (error) 783 return error; 784 importer->anon_vma = exporter->anon_vma; 785 } 786 } 787 788 if (file) { 789 mapping = file->f_mapping; 790 if (!(vma->vm_flags & VM_NONLINEAR)) { 791 root = &mapping->i_mmap; 792 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 793 794 if (adjust_next) 795 uprobe_munmap(next, next->vm_start, 796 next->vm_end); 797 } 798 799 i_mmap_lock_write(mapping); 800 if (insert) { 801 /* 802 * Put into interval tree now, so instantiated pages 803 * are visible to arm/parisc __flush_dcache_page 804 * throughout; but we cannot insert into address 805 * space until vma start or end is updated. 806 */ 807 __vma_link_file(insert); 808 } 809 } 810 811 vma_adjust_trans_huge(vma, start, end, adjust_next); 812 813 anon_vma = vma->anon_vma; 814 if (!anon_vma && adjust_next) 815 anon_vma = next->anon_vma; 816 if (anon_vma) { 817 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 818 anon_vma != next->anon_vma, next); 819 anon_vma_lock_write(anon_vma); 820 anon_vma_interval_tree_pre_update_vma(vma); 821 if (adjust_next) 822 anon_vma_interval_tree_pre_update_vma(next); 823 } 824 825 if (root) { 826 flush_dcache_mmap_lock(mapping); 827 vma_interval_tree_remove(vma, root); 828 if (adjust_next) 829 vma_interval_tree_remove(next, root); 830 } 831 832 if (start != vma->vm_start) { 833 vma->vm_start = start; 834 start_changed = true; 835 } 836 if (end != vma->vm_end) { 837 vma->vm_end = end; 838 end_changed = true; 839 } 840 vma->vm_pgoff = pgoff; 841 if (adjust_next) { 842 next->vm_start += adjust_next << PAGE_SHIFT; 843 next->vm_pgoff += adjust_next; 844 } 845 846 if (root) { 847 if (adjust_next) 848 vma_interval_tree_insert(next, root); 849 vma_interval_tree_insert(vma, root); 850 flush_dcache_mmap_unlock(mapping); 851 } 852 853 if (remove_next) { 854 /* 855 * vma_merge has merged next into vma, and needs 856 * us to remove next before dropping the locks. 857 */ 858 __vma_unlink(mm, next, vma); 859 if (file) 860 __remove_shared_vm_struct(next, file, mapping); 861 } else if (insert) { 862 /* 863 * split_vma has split insert from vma, and needs 864 * us to insert it before dropping the locks 865 * (it may either follow vma or precede it). 866 */ 867 __insert_vm_struct(mm, insert); 868 } else { 869 if (start_changed) 870 vma_gap_update(vma); 871 if (end_changed) { 872 if (!next) 873 mm->highest_vm_end = end; 874 else if (!adjust_next) 875 vma_gap_update(next); 876 } 877 } 878 879 if (anon_vma) { 880 anon_vma_interval_tree_post_update_vma(vma); 881 if (adjust_next) 882 anon_vma_interval_tree_post_update_vma(next); 883 anon_vma_unlock_write(anon_vma); 884 } 885 if (mapping) 886 i_mmap_unlock_write(mapping); 887 888 if (root) { 889 uprobe_mmap(vma); 890 891 if (adjust_next) 892 uprobe_mmap(next); 893 } 894 895 if (remove_next) { 896 if (file) { 897 uprobe_munmap(next, next->vm_start, next->vm_end); 898 fput(file); 899 } 900 if (next->anon_vma) 901 anon_vma_merge(vma, next); 902 mm->map_count--; 903 mpol_put(vma_policy(next)); 904 kmem_cache_free(vm_area_cachep, next); 905 /* 906 * In mprotect's case 6 (see comments on vma_merge), 907 * we must remove another next too. It would clutter 908 * up the code too much to do both in one go. 909 */ 910 next = vma->vm_next; 911 if (remove_next == 2) 912 goto again; 913 else if (next) 914 vma_gap_update(next); 915 else 916 mm->highest_vm_end = end; 917 } 918 if (insert && file) 919 uprobe_mmap(insert); 920 921 validate_mm(mm); 922 923 return 0; 924 } 925 926 /* 927 * If the vma has a ->close operation then the driver probably needs to release 928 * per-vma resources, so we don't attempt to merge those. 929 */ 930 static inline int is_mergeable_vma(struct vm_area_struct *vma, 931 struct file *file, unsigned long vm_flags) 932 { 933 /* 934 * VM_SOFTDIRTY should not prevent from VMA merging, if we 935 * match the flags but dirty bit -- the caller should mark 936 * merged VMA as dirty. If dirty bit won't be excluded from 937 * comparison, we increase pressue on the memory system forcing 938 * the kernel to generate new VMAs when old one could be 939 * extended instead. 940 */ 941 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 942 return 0; 943 if (vma->vm_file != file) 944 return 0; 945 if (vma->vm_ops && vma->vm_ops->close) 946 return 0; 947 return 1; 948 } 949 950 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 951 struct anon_vma *anon_vma2, 952 struct vm_area_struct *vma) 953 { 954 /* 955 * The list_is_singular() test is to avoid merging VMA cloned from 956 * parents. This can improve scalability caused by anon_vma lock. 957 */ 958 if ((!anon_vma1 || !anon_vma2) && (!vma || 959 list_is_singular(&vma->anon_vma_chain))) 960 return 1; 961 return anon_vma1 == anon_vma2; 962 } 963 964 /* 965 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 966 * in front of (at a lower virtual address and file offset than) the vma. 967 * 968 * We cannot merge two vmas if they have differently assigned (non-NULL) 969 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 970 * 971 * We don't check here for the merged mmap wrapping around the end of pagecache 972 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 973 * wrap, nor mmaps which cover the final page at index -1UL. 974 */ 975 static int 976 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 977 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 978 { 979 if (is_mergeable_vma(vma, file, vm_flags) && 980 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 981 if (vma->vm_pgoff == vm_pgoff) 982 return 1; 983 } 984 return 0; 985 } 986 987 /* 988 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 989 * beyond (at a higher virtual address and file offset than) the vma. 990 * 991 * We cannot merge two vmas if they have differently assigned (non-NULL) 992 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 993 */ 994 static int 995 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 996 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 997 { 998 if (is_mergeable_vma(vma, file, vm_flags) && 999 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 1000 pgoff_t vm_pglen; 1001 vm_pglen = vma_pages(vma); 1002 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 1003 return 1; 1004 } 1005 return 0; 1006 } 1007 1008 /* 1009 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1010 * whether that can be merged with its predecessor or its successor. 1011 * Or both (it neatly fills a hole). 1012 * 1013 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1014 * certain not to be mapped by the time vma_merge is called; but when 1015 * called for mprotect, it is certain to be already mapped (either at 1016 * an offset within prev, or at the start of next), and the flags of 1017 * this area are about to be changed to vm_flags - and the no-change 1018 * case has already been eliminated. 1019 * 1020 * The following mprotect cases have to be considered, where AAAA is 1021 * the area passed down from mprotect_fixup, never extending beyond one 1022 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1023 * 1024 * AAAA AAAA AAAA AAAA 1025 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1026 * cannot merge might become might become might become 1027 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1028 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1029 * mremap move: PPPPNNNNNNNN 8 1030 * AAAA 1031 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1032 * might become case 1 below case 2 below case 3 below 1033 * 1034 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1035 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1036 */ 1037 struct vm_area_struct *vma_merge(struct mm_struct *mm, 1038 struct vm_area_struct *prev, unsigned long addr, 1039 unsigned long end, unsigned long vm_flags, 1040 struct anon_vma *anon_vma, struct file *file, 1041 pgoff_t pgoff, struct mempolicy *policy) 1042 { 1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1044 struct vm_area_struct *area, *next; 1045 int err; 1046 1047 /* 1048 * We later require that vma->vm_flags == vm_flags, 1049 * so this tests vma->vm_flags & VM_SPECIAL, too. 1050 */ 1051 if (vm_flags & VM_SPECIAL) 1052 return NULL; 1053 1054 if (prev) 1055 next = prev->vm_next; 1056 else 1057 next = mm->mmap; 1058 area = next; 1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1060 next = next->vm_next; 1061 1062 /* 1063 * Can it merge with the predecessor? 1064 */ 1065 if (prev && prev->vm_end == addr && 1066 mpol_equal(vma_policy(prev), policy) && 1067 can_vma_merge_after(prev, vm_flags, 1068 anon_vma, file, pgoff)) { 1069 /* 1070 * OK, it can. Can we now merge in the successor as well? 1071 */ 1072 if (next && end == next->vm_start && 1073 mpol_equal(policy, vma_policy(next)) && 1074 can_vma_merge_before(next, vm_flags, 1075 anon_vma, file, pgoff+pglen) && 1076 is_mergeable_anon_vma(prev->anon_vma, 1077 next->anon_vma, NULL)) { 1078 /* cases 1, 6 */ 1079 err = vma_adjust(prev, prev->vm_start, 1080 next->vm_end, prev->vm_pgoff, NULL); 1081 } else /* cases 2, 5, 7 */ 1082 err = vma_adjust(prev, prev->vm_start, 1083 end, prev->vm_pgoff, NULL); 1084 if (err) 1085 return NULL; 1086 khugepaged_enter_vma_merge(prev, vm_flags); 1087 return prev; 1088 } 1089 1090 /* 1091 * Can this new request be merged in front of next? 1092 */ 1093 if (next && end == next->vm_start && 1094 mpol_equal(policy, vma_policy(next)) && 1095 can_vma_merge_before(next, vm_flags, 1096 anon_vma, file, pgoff+pglen)) { 1097 if (prev && addr < prev->vm_end) /* case 4 */ 1098 err = vma_adjust(prev, prev->vm_start, 1099 addr, prev->vm_pgoff, NULL); 1100 else /* cases 3, 8 */ 1101 err = vma_adjust(area, addr, next->vm_end, 1102 next->vm_pgoff - pglen, NULL); 1103 if (err) 1104 return NULL; 1105 khugepaged_enter_vma_merge(area, vm_flags); 1106 return area; 1107 } 1108 1109 return NULL; 1110 } 1111 1112 /* 1113 * Rough compatbility check to quickly see if it's even worth looking 1114 * at sharing an anon_vma. 1115 * 1116 * They need to have the same vm_file, and the flags can only differ 1117 * in things that mprotect may change. 1118 * 1119 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1120 * we can merge the two vma's. For example, we refuse to merge a vma if 1121 * there is a vm_ops->close() function, because that indicates that the 1122 * driver is doing some kind of reference counting. But that doesn't 1123 * really matter for the anon_vma sharing case. 1124 */ 1125 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1126 { 1127 return a->vm_end == b->vm_start && 1128 mpol_equal(vma_policy(a), vma_policy(b)) && 1129 a->vm_file == b->vm_file && 1130 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1131 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1132 } 1133 1134 /* 1135 * Do some basic sanity checking to see if we can re-use the anon_vma 1136 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1137 * the same as 'old', the other will be the new one that is trying 1138 * to share the anon_vma. 1139 * 1140 * NOTE! This runs with mm_sem held for reading, so it is possible that 1141 * the anon_vma of 'old' is concurrently in the process of being set up 1142 * by another page fault trying to merge _that_. But that's ok: if it 1143 * is being set up, that automatically means that it will be a singleton 1144 * acceptable for merging, so we can do all of this optimistically. But 1145 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. 1146 * 1147 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1148 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1149 * is to return an anon_vma that is "complex" due to having gone through 1150 * a fork). 1151 * 1152 * We also make sure that the two vma's are compatible (adjacent, 1153 * and with the same memory policies). That's all stable, even with just 1154 * a read lock on the mm_sem. 1155 */ 1156 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1157 { 1158 if (anon_vma_compatible(a, b)) { 1159 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); 1160 1161 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1162 return anon_vma; 1163 } 1164 return NULL; 1165 } 1166 1167 /* 1168 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1169 * neighbouring vmas for a suitable anon_vma, before it goes off 1170 * to allocate a new anon_vma. It checks because a repetitive 1171 * sequence of mprotects and faults may otherwise lead to distinct 1172 * anon_vmas being allocated, preventing vma merge in subsequent 1173 * mprotect. 1174 */ 1175 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1176 { 1177 struct anon_vma *anon_vma; 1178 struct vm_area_struct *near; 1179 1180 near = vma->vm_next; 1181 if (!near) 1182 goto try_prev; 1183 1184 anon_vma = reusable_anon_vma(near, vma, near); 1185 if (anon_vma) 1186 return anon_vma; 1187 try_prev: 1188 near = vma->vm_prev; 1189 if (!near) 1190 goto none; 1191 1192 anon_vma = reusable_anon_vma(near, near, vma); 1193 if (anon_vma) 1194 return anon_vma; 1195 none: 1196 /* 1197 * There's no absolute need to look only at touching neighbours: 1198 * we could search further afield for "compatible" anon_vmas. 1199 * But it would probably just be a waste of time searching, 1200 * or lead to too many vmas hanging off the same anon_vma. 1201 * We're trying to allow mprotect remerging later on, 1202 * not trying to minimize memory used for anon_vmas. 1203 */ 1204 return NULL; 1205 } 1206 1207 #ifdef CONFIG_PROC_FS 1208 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1209 struct file *file, long pages) 1210 { 1211 const unsigned long stack_flags 1212 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1213 1214 mm->total_vm += pages; 1215 1216 if (file) { 1217 mm->shared_vm += pages; 1218 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1219 mm->exec_vm += pages; 1220 } else if (flags & stack_flags) 1221 mm->stack_vm += pages; 1222 } 1223 #endif /* CONFIG_PROC_FS */ 1224 1225 /* 1226 * If a hint addr is less than mmap_min_addr change hint to be as 1227 * low as possible but still greater than mmap_min_addr 1228 */ 1229 static inline unsigned long round_hint_to_min(unsigned long hint) 1230 { 1231 hint &= PAGE_MASK; 1232 if (((void *)hint != NULL) && 1233 (hint < mmap_min_addr)) 1234 return PAGE_ALIGN(mmap_min_addr); 1235 return hint; 1236 } 1237 1238 static inline int mlock_future_check(struct mm_struct *mm, 1239 unsigned long flags, 1240 unsigned long len) 1241 { 1242 unsigned long locked, lock_limit; 1243 1244 /* mlock MCL_FUTURE? */ 1245 if (flags & VM_LOCKED) { 1246 locked = len >> PAGE_SHIFT; 1247 locked += mm->locked_vm; 1248 lock_limit = rlimit(RLIMIT_MEMLOCK); 1249 lock_limit >>= PAGE_SHIFT; 1250 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1251 return -EAGAIN; 1252 } 1253 return 0; 1254 } 1255 1256 /* 1257 * The caller must hold down_write(¤t->mm->mmap_sem). 1258 */ 1259 1260 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1261 unsigned long len, unsigned long prot, 1262 unsigned long flags, unsigned long pgoff, 1263 unsigned long *populate) 1264 { 1265 struct mm_struct *mm = current->mm; 1266 vm_flags_t vm_flags; 1267 1268 *populate = 0; 1269 1270 /* 1271 * Does the application expect PROT_READ to imply PROT_EXEC? 1272 * 1273 * (the exception is when the underlying filesystem is noexec 1274 * mounted, in which case we dont add PROT_EXEC.) 1275 */ 1276 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1277 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1278 prot |= PROT_EXEC; 1279 1280 if (!len) 1281 return -EINVAL; 1282 1283 if (!(flags & MAP_FIXED)) 1284 addr = round_hint_to_min(addr); 1285 1286 /* Careful about overflows.. */ 1287 len = PAGE_ALIGN(len); 1288 if (!len) 1289 return -ENOMEM; 1290 1291 /* offset overflow? */ 1292 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1293 return -EOVERFLOW; 1294 1295 /* Too many mappings? */ 1296 if (mm->map_count > sysctl_max_map_count) 1297 return -ENOMEM; 1298 1299 /* Obtain the address to map to. we verify (or select) it and ensure 1300 * that it represents a valid section of the address space. 1301 */ 1302 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1303 if (addr & ~PAGE_MASK) 1304 return addr; 1305 1306 /* Do simple checking here so the lower-level routines won't have 1307 * to. we assume access permissions have been handled by the open 1308 * of the memory object, so we don't do any here. 1309 */ 1310 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1311 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1312 1313 if (flags & MAP_LOCKED) 1314 if (!can_do_mlock()) 1315 return -EPERM; 1316 1317 if (mlock_future_check(mm, vm_flags, len)) 1318 return -EAGAIN; 1319 1320 if (file) { 1321 struct inode *inode = file_inode(file); 1322 1323 switch (flags & MAP_TYPE) { 1324 case MAP_SHARED: 1325 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1326 return -EACCES; 1327 1328 /* 1329 * Make sure we don't allow writing to an append-only 1330 * file.. 1331 */ 1332 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1333 return -EACCES; 1334 1335 /* 1336 * Make sure there are no mandatory locks on the file. 1337 */ 1338 if (locks_verify_locked(file)) 1339 return -EAGAIN; 1340 1341 vm_flags |= VM_SHARED | VM_MAYSHARE; 1342 if (!(file->f_mode & FMODE_WRITE)) 1343 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1344 1345 /* fall through */ 1346 case MAP_PRIVATE: 1347 if (!(file->f_mode & FMODE_READ)) 1348 return -EACCES; 1349 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1350 if (vm_flags & VM_EXEC) 1351 return -EPERM; 1352 vm_flags &= ~VM_MAYEXEC; 1353 } 1354 1355 if (!file->f_op->mmap) 1356 return -ENODEV; 1357 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1358 return -EINVAL; 1359 break; 1360 1361 default: 1362 return -EINVAL; 1363 } 1364 } else { 1365 switch (flags & MAP_TYPE) { 1366 case MAP_SHARED: 1367 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1368 return -EINVAL; 1369 /* 1370 * Ignore pgoff. 1371 */ 1372 pgoff = 0; 1373 vm_flags |= VM_SHARED | VM_MAYSHARE; 1374 break; 1375 case MAP_PRIVATE: 1376 /* 1377 * Set pgoff according to addr for anon_vma. 1378 */ 1379 pgoff = addr >> PAGE_SHIFT; 1380 break; 1381 default: 1382 return -EINVAL; 1383 } 1384 } 1385 1386 /* 1387 * Set 'VM_NORESERVE' if we should not account for the 1388 * memory use of this mapping. 1389 */ 1390 if (flags & MAP_NORESERVE) { 1391 /* We honor MAP_NORESERVE if allowed to overcommit */ 1392 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1393 vm_flags |= VM_NORESERVE; 1394 1395 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1396 if (file && is_file_hugepages(file)) 1397 vm_flags |= VM_NORESERVE; 1398 } 1399 1400 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1401 if (!IS_ERR_VALUE(addr) && 1402 ((vm_flags & VM_LOCKED) || 1403 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1404 *populate = len; 1405 return addr; 1406 } 1407 1408 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1409 unsigned long, prot, unsigned long, flags, 1410 unsigned long, fd, unsigned long, pgoff) 1411 { 1412 struct file *file = NULL; 1413 unsigned long retval = -EBADF; 1414 1415 if (!(flags & MAP_ANONYMOUS)) { 1416 audit_mmap_fd(fd, flags); 1417 file = fget(fd); 1418 if (!file) 1419 goto out; 1420 if (is_file_hugepages(file)) 1421 len = ALIGN(len, huge_page_size(hstate_file(file))); 1422 retval = -EINVAL; 1423 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1424 goto out_fput; 1425 } else if (flags & MAP_HUGETLB) { 1426 struct user_struct *user = NULL; 1427 struct hstate *hs; 1428 1429 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1430 if (!hs) 1431 return -EINVAL; 1432 1433 len = ALIGN(len, huge_page_size(hs)); 1434 /* 1435 * VM_NORESERVE is used because the reservations will be 1436 * taken when vm_ops->mmap() is called 1437 * A dummy user value is used because we are not locking 1438 * memory so no accounting is necessary 1439 */ 1440 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1441 VM_NORESERVE, 1442 &user, HUGETLB_ANONHUGE_INODE, 1443 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1444 if (IS_ERR(file)) 1445 return PTR_ERR(file); 1446 } 1447 1448 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1449 1450 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1451 out_fput: 1452 if (file) 1453 fput(file); 1454 out: 1455 return retval; 1456 } 1457 1458 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1459 struct mmap_arg_struct { 1460 unsigned long addr; 1461 unsigned long len; 1462 unsigned long prot; 1463 unsigned long flags; 1464 unsigned long fd; 1465 unsigned long offset; 1466 }; 1467 1468 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1469 { 1470 struct mmap_arg_struct a; 1471 1472 if (copy_from_user(&a, arg, sizeof(a))) 1473 return -EFAULT; 1474 if (a.offset & ~PAGE_MASK) 1475 return -EINVAL; 1476 1477 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1478 a.offset >> PAGE_SHIFT); 1479 } 1480 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1481 1482 /* 1483 * Some shared mappigns will want the pages marked read-only 1484 * to track write events. If so, we'll downgrade vm_page_prot 1485 * to the private version (using protection_map[] without the 1486 * VM_SHARED bit). 1487 */ 1488 int vma_wants_writenotify(struct vm_area_struct *vma) 1489 { 1490 vm_flags_t vm_flags = vma->vm_flags; 1491 1492 /* If it was private or non-writable, the write bit is already clear */ 1493 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1494 return 0; 1495 1496 /* The backer wishes to know when pages are first written to? */ 1497 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1498 return 1; 1499 1500 /* The open routine did something to the protections that pgprot_modify 1501 * won't preserve? */ 1502 if (pgprot_val(vma->vm_page_prot) != 1503 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1504 return 0; 1505 1506 /* Do we need to track softdirty? */ 1507 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1508 return 1; 1509 1510 /* Specialty mapping? */ 1511 if (vm_flags & VM_PFNMAP) 1512 return 0; 1513 1514 /* Can the mapping track the dirty pages? */ 1515 return vma->vm_file && vma->vm_file->f_mapping && 1516 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1517 } 1518 1519 /* 1520 * We account for memory if it's a private writeable mapping, 1521 * not hugepages and VM_NORESERVE wasn't set. 1522 */ 1523 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1524 { 1525 /* 1526 * hugetlb has its own accounting separate from the core VM 1527 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1528 */ 1529 if (file && is_file_hugepages(file)) 1530 return 0; 1531 1532 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1533 } 1534 1535 unsigned long mmap_region(struct file *file, unsigned long addr, 1536 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1537 { 1538 struct mm_struct *mm = current->mm; 1539 struct vm_area_struct *vma, *prev; 1540 int error; 1541 struct rb_node **rb_link, *rb_parent; 1542 unsigned long charged = 0; 1543 1544 /* Check against address space limit. */ 1545 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1546 unsigned long nr_pages; 1547 1548 /* 1549 * MAP_FIXED may remove pages of mappings that intersects with 1550 * requested mapping. Account for the pages it would unmap. 1551 */ 1552 if (!(vm_flags & MAP_FIXED)) 1553 return -ENOMEM; 1554 1555 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1556 1557 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1558 return -ENOMEM; 1559 } 1560 1561 /* Clear old maps */ 1562 error = -ENOMEM; 1563 munmap_back: 1564 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 1565 if (do_munmap(mm, addr, len)) 1566 return -ENOMEM; 1567 goto munmap_back; 1568 } 1569 1570 /* 1571 * Private writable mapping: check memory availability 1572 */ 1573 if (accountable_mapping(file, vm_flags)) { 1574 charged = len >> PAGE_SHIFT; 1575 if (security_vm_enough_memory_mm(mm, charged)) 1576 return -ENOMEM; 1577 vm_flags |= VM_ACCOUNT; 1578 } 1579 1580 /* 1581 * Can we just expand an old mapping? 1582 */ 1583 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1584 if (vma) 1585 goto out; 1586 1587 /* 1588 * Determine the object being mapped and call the appropriate 1589 * specific mapper. the address has already been validated, but 1590 * not unmapped, but the maps are removed from the list. 1591 */ 1592 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1593 if (!vma) { 1594 error = -ENOMEM; 1595 goto unacct_error; 1596 } 1597 1598 vma->vm_mm = mm; 1599 vma->vm_start = addr; 1600 vma->vm_end = addr + len; 1601 vma->vm_flags = vm_flags; 1602 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1603 vma->vm_pgoff = pgoff; 1604 INIT_LIST_HEAD(&vma->anon_vma_chain); 1605 1606 if (file) { 1607 if (vm_flags & VM_DENYWRITE) { 1608 error = deny_write_access(file); 1609 if (error) 1610 goto free_vma; 1611 } 1612 if (vm_flags & VM_SHARED) { 1613 error = mapping_map_writable(file->f_mapping); 1614 if (error) 1615 goto allow_write_and_free_vma; 1616 } 1617 1618 /* ->mmap() can change vma->vm_file, but must guarantee that 1619 * vma_link() below can deny write-access if VM_DENYWRITE is set 1620 * and map writably if VM_SHARED is set. This usually means the 1621 * new file must not have been exposed to user-space, yet. 1622 */ 1623 vma->vm_file = get_file(file); 1624 error = file->f_op->mmap(file, vma); 1625 if (error) 1626 goto unmap_and_free_vma; 1627 1628 /* Can addr have changed?? 1629 * 1630 * Answer: Yes, several device drivers can do it in their 1631 * f_op->mmap method. -DaveM 1632 * Bug: If addr is changed, prev, rb_link, rb_parent should 1633 * be updated for vma_link() 1634 */ 1635 WARN_ON_ONCE(addr != vma->vm_start); 1636 1637 addr = vma->vm_start; 1638 vm_flags = vma->vm_flags; 1639 } else if (vm_flags & VM_SHARED) { 1640 error = shmem_zero_setup(vma); 1641 if (error) 1642 goto free_vma; 1643 } 1644 1645 vma_link(mm, vma, prev, rb_link, rb_parent); 1646 /* Once vma denies write, undo our temporary denial count */ 1647 if (file) { 1648 if (vm_flags & VM_SHARED) 1649 mapping_unmap_writable(file->f_mapping); 1650 if (vm_flags & VM_DENYWRITE) 1651 allow_write_access(file); 1652 } 1653 file = vma->vm_file; 1654 out: 1655 perf_event_mmap(vma); 1656 1657 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1658 if (vm_flags & VM_LOCKED) { 1659 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1660 vma == get_gate_vma(current->mm))) 1661 mm->locked_vm += (len >> PAGE_SHIFT); 1662 else 1663 vma->vm_flags &= ~VM_LOCKED; 1664 } 1665 1666 if (file) 1667 uprobe_mmap(vma); 1668 1669 /* 1670 * New (or expanded) vma always get soft dirty status. 1671 * Otherwise user-space soft-dirty page tracker won't 1672 * be able to distinguish situation when vma area unmapped, 1673 * then new mapped in-place (which must be aimed as 1674 * a completely new data area). 1675 */ 1676 vma->vm_flags |= VM_SOFTDIRTY; 1677 1678 vma_set_page_prot(vma); 1679 1680 return addr; 1681 1682 unmap_and_free_vma: 1683 vma->vm_file = NULL; 1684 fput(file); 1685 1686 /* Undo any partial mapping done by a device driver. */ 1687 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1688 charged = 0; 1689 if (vm_flags & VM_SHARED) 1690 mapping_unmap_writable(file->f_mapping); 1691 allow_write_and_free_vma: 1692 if (vm_flags & VM_DENYWRITE) 1693 allow_write_access(file); 1694 free_vma: 1695 kmem_cache_free(vm_area_cachep, vma); 1696 unacct_error: 1697 if (charged) 1698 vm_unacct_memory(charged); 1699 return error; 1700 } 1701 1702 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1703 { 1704 /* 1705 * We implement the search by looking for an rbtree node that 1706 * immediately follows a suitable gap. That is, 1707 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1708 * - gap_end = vma->vm_start >= info->low_limit + length; 1709 * - gap_end - gap_start >= length 1710 */ 1711 1712 struct mm_struct *mm = current->mm; 1713 struct vm_area_struct *vma; 1714 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1715 1716 /* Adjust search length to account for worst case alignment overhead */ 1717 length = info->length + info->align_mask; 1718 if (length < info->length) 1719 return -ENOMEM; 1720 1721 /* Adjust search limits by the desired length */ 1722 if (info->high_limit < length) 1723 return -ENOMEM; 1724 high_limit = info->high_limit - length; 1725 1726 if (info->low_limit > high_limit) 1727 return -ENOMEM; 1728 low_limit = info->low_limit + length; 1729 1730 /* Check if rbtree root looks promising */ 1731 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1732 goto check_highest; 1733 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1734 if (vma->rb_subtree_gap < length) 1735 goto check_highest; 1736 1737 while (true) { 1738 /* Visit left subtree if it looks promising */ 1739 gap_end = vma->vm_start; 1740 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1741 struct vm_area_struct *left = 1742 rb_entry(vma->vm_rb.rb_left, 1743 struct vm_area_struct, vm_rb); 1744 if (left->rb_subtree_gap >= length) { 1745 vma = left; 1746 continue; 1747 } 1748 } 1749 1750 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1751 check_current: 1752 /* Check if current node has a suitable gap */ 1753 if (gap_start > high_limit) 1754 return -ENOMEM; 1755 if (gap_end >= low_limit && gap_end - gap_start >= length) 1756 goto found; 1757 1758 /* Visit right subtree if it looks promising */ 1759 if (vma->vm_rb.rb_right) { 1760 struct vm_area_struct *right = 1761 rb_entry(vma->vm_rb.rb_right, 1762 struct vm_area_struct, vm_rb); 1763 if (right->rb_subtree_gap >= length) { 1764 vma = right; 1765 continue; 1766 } 1767 } 1768 1769 /* Go back up the rbtree to find next candidate node */ 1770 while (true) { 1771 struct rb_node *prev = &vma->vm_rb; 1772 if (!rb_parent(prev)) 1773 goto check_highest; 1774 vma = rb_entry(rb_parent(prev), 1775 struct vm_area_struct, vm_rb); 1776 if (prev == vma->vm_rb.rb_left) { 1777 gap_start = vma->vm_prev->vm_end; 1778 gap_end = vma->vm_start; 1779 goto check_current; 1780 } 1781 } 1782 } 1783 1784 check_highest: 1785 /* Check highest gap, which does not precede any rbtree node */ 1786 gap_start = mm->highest_vm_end; 1787 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1788 if (gap_start > high_limit) 1789 return -ENOMEM; 1790 1791 found: 1792 /* We found a suitable gap. Clip it with the original low_limit. */ 1793 if (gap_start < info->low_limit) 1794 gap_start = info->low_limit; 1795 1796 /* Adjust gap address to the desired alignment */ 1797 gap_start += (info->align_offset - gap_start) & info->align_mask; 1798 1799 VM_BUG_ON(gap_start + info->length > info->high_limit); 1800 VM_BUG_ON(gap_start + info->length > gap_end); 1801 return gap_start; 1802 } 1803 1804 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1805 { 1806 struct mm_struct *mm = current->mm; 1807 struct vm_area_struct *vma; 1808 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1809 1810 /* Adjust search length to account for worst case alignment overhead */ 1811 length = info->length + info->align_mask; 1812 if (length < info->length) 1813 return -ENOMEM; 1814 1815 /* 1816 * Adjust search limits by the desired length. 1817 * See implementation comment at top of unmapped_area(). 1818 */ 1819 gap_end = info->high_limit; 1820 if (gap_end < length) 1821 return -ENOMEM; 1822 high_limit = gap_end - length; 1823 1824 if (info->low_limit > high_limit) 1825 return -ENOMEM; 1826 low_limit = info->low_limit + length; 1827 1828 /* Check highest gap, which does not precede any rbtree node */ 1829 gap_start = mm->highest_vm_end; 1830 if (gap_start <= high_limit) 1831 goto found_highest; 1832 1833 /* Check if rbtree root looks promising */ 1834 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1835 return -ENOMEM; 1836 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1837 if (vma->rb_subtree_gap < length) 1838 return -ENOMEM; 1839 1840 while (true) { 1841 /* Visit right subtree if it looks promising */ 1842 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1843 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1844 struct vm_area_struct *right = 1845 rb_entry(vma->vm_rb.rb_right, 1846 struct vm_area_struct, vm_rb); 1847 if (right->rb_subtree_gap >= length) { 1848 vma = right; 1849 continue; 1850 } 1851 } 1852 1853 check_current: 1854 /* Check if current node has a suitable gap */ 1855 gap_end = vma->vm_start; 1856 if (gap_end < low_limit) 1857 return -ENOMEM; 1858 if (gap_start <= high_limit && gap_end - gap_start >= length) 1859 goto found; 1860 1861 /* Visit left subtree if it looks promising */ 1862 if (vma->vm_rb.rb_left) { 1863 struct vm_area_struct *left = 1864 rb_entry(vma->vm_rb.rb_left, 1865 struct vm_area_struct, vm_rb); 1866 if (left->rb_subtree_gap >= length) { 1867 vma = left; 1868 continue; 1869 } 1870 } 1871 1872 /* Go back up the rbtree to find next candidate node */ 1873 while (true) { 1874 struct rb_node *prev = &vma->vm_rb; 1875 if (!rb_parent(prev)) 1876 return -ENOMEM; 1877 vma = rb_entry(rb_parent(prev), 1878 struct vm_area_struct, vm_rb); 1879 if (prev == vma->vm_rb.rb_right) { 1880 gap_start = vma->vm_prev ? 1881 vma->vm_prev->vm_end : 0; 1882 goto check_current; 1883 } 1884 } 1885 } 1886 1887 found: 1888 /* We found a suitable gap. Clip it with the original high_limit. */ 1889 if (gap_end > info->high_limit) 1890 gap_end = info->high_limit; 1891 1892 found_highest: 1893 /* Compute highest gap address at the desired alignment */ 1894 gap_end -= info->length; 1895 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1896 1897 VM_BUG_ON(gap_end < info->low_limit); 1898 VM_BUG_ON(gap_end < gap_start); 1899 return gap_end; 1900 } 1901 1902 /* Get an address range which is currently unmapped. 1903 * For shmat() with addr=0. 1904 * 1905 * Ugly calling convention alert: 1906 * Return value with the low bits set means error value, 1907 * ie 1908 * if (ret & ~PAGE_MASK) 1909 * error = ret; 1910 * 1911 * This function "knows" that -ENOMEM has the bits set. 1912 */ 1913 #ifndef HAVE_ARCH_UNMAPPED_AREA 1914 unsigned long 1915 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1916 unsigned long len, unsigned long pgoff, unsigned long flags) 1917 { 1918 struct mm_struct *mm = current->mm; 1919 struct vm_area_struct *vma; 1920 struct vm_unmapped_area_info info; 1921 1922 if (len > TASK_SIZE - mmap_min_addr) 1923 return -ENOMEM; 1924 1925 if (flags & MAP_FIXED) 1926 return addr; 1927 1928 if (addr) { 1929 addr = PAGE_ALIGN(addr); 1930 vma = find_vma(mm, addr); 1931 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1932 (!vma || addr + len <= vma->vm_start)) 1933 return addr; 1934 } 1935 1936 info.flags = 0; 1937 info.length = len; 1938 info.low_limit = mm->mmap_base; 1939 info.high_limit = TASK_SIZE; 1940 info.align_mask = 0; 1941 return vm_unmapped_area(&info); 1942 } 1943 #endif 1944 1945 /* 1946 * This mmap-allocator allocates new areas top-down from below the 1947 * stack's low limit (the base): 1948 */ 1949 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1950 unsigned long 1951 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1952 const unsigned long len, const unsigned long pgoff, 1953 const unsigned long flags) 1954 { 1955 struct vm_area_struct *vma; 1956 struct mm_struct *mm = current->mm; 1957 unsigned long addr = addr0; 1958 struct vm_unmapped_area_info info; 1959 1960 /* requested length too big for entire address space */ 1961 if (len > TASK_SIZE - mmap_min_addr) 1962 return -ENOMEM; 1963 1964 if (flags & MAP_FIXED) 1965 return addr; 1966 1967 /* requesting a specific address */ 1968 if (addr) { 1969 addr = PAGE_ALIGN(addr); 1970 vma = find_vma(mm, addr); 1971 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1972 (!vma || addr + len <= vma->vm_start)) 1973 return addr; 1974 } 1975 1976 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1977 info.length = len; 1978 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1979 info.high_limit = mm->mmap_base; 1980 info.align_mask = 0; 1981 addr = vm_unmapped_area(&info); 1982 1983 /* 1984 * A failed mmap() very likely causes application failure, 1985 * so fall back to the bottom-up function here. This scenario 1986 * can happen with large stack limits and large mmap() 1987 * allocations. 1988 */ 1989 if (addr & ~PAGE_MASK) { 1990 VM_BUG_ON(addr != -ENOMEM); 1991 info.flags = 0; 1992 info.low_limit = TASK_UNMAPPED_BASE; 1993 info.high_limit = TASK_SIZE; 1994 addr = vm_unmapped_area(&info); 1995 } 1996 1997 return addr; 1998 } 1999 #endif 2000 2001 unsigned long 2002 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 2003 unsigned long pgoff, unsigned long flags) 2004 { 2005 unsigned long (*get_area)(struct file *, unsigned long, 2006 unsigned long, unsigned long, unsigned long); 2007 2008 unsigned long error = arch_mmap_check(addr, len, flags); 2009 if (error) 2010 return error; 2011 2012 /* Careful about overflows.. */ 2013 if (len > TASK_SIZE) 2014 return -ENOMEM; 2015 2016 get_area = current->mm->get_unmapped_area; 2017 if (file && file->f_op->get_unmapped_area) 2018 get_area = file->f_op->get_unmapped_area; 2019 addr = get_area(file, addr, len, pgoff, flags); 2020 if (IS_ERR_VALUE(addr)) 2021 return addr; 2022 2023 if (addr > TASK_SIZE - len) 2024 return -ENOMEM; 2025 if (addr & ~PAGE_MASK) 2026 return -EINVAL; 2027 2028 addr = arch_rebalance_pgtables(addr, len); 2029 error = security_mmap_addr(addr); 2030 return error ? error : addr; 2031 } 2032 2033 EXPORT_SYMBOL(get_unmapped_area); 2034 2035 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2036 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2037 { 2038 struct rb_node *rb_node; 2039 struct vm_area_struct *vma; 2040 2041 /* Check the cache first. */ 2042 vma = vmacache_find(mm, addr); 2043 if (likely(vma)) 2044 return vma; 2045 2046 rb_node = mm->mm_rb.rb_node; 2047 vma = NULL; 2048 2049 while (rb_node) { 2050 struct vm_area_struct *tmp; 2051 2052 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2053 2054 if (tmp->vm_end > addr) { 2055 vma = tmp; 2056 if (tmp->vm_start <= addr) 2057 break; 2058 rb_node = rb_node->rb_left; 2059 } else 2060 rb_node = rb_node->rb_right; 2061 } 2062 2063 if (vma) 2064 vmacache_update(addr, vma); 2065 return vma; 2066 } 2067 2068 EXPORT_SYMBOL(find_vma); 2069 2070 /* 2071 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2072 */ 2073 struct vm_area_struct * 2074 find_vma_prev(struct mm_struct *mm, unsigned long addr, 2075 struct vm_area_struct **pprev) 2076 { 2077 struct vm_area_struct *vma; 2078 2079 vma = find_vma(mm, addr); 2080 if (vma) { 2081 *pprev = vma->vm_prev; 2082 } else { 2083 struct rb_node *rb_node = mm->mm_rb.rb_node; 2084 *pprev = NULL; 2085 while (rb_node) { 2086 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2087 rb_node = rb_node->rb_right; 2088 } 2089 } 2090 return vma; 2091 } 2092 2093 /* 2094 * Verify that the stack growth is acceptable and 2095 * update accounting. This is shared with both the 2096 * grow-up and grow-down cases. 2097 */ 2098 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2099 { 2100 struct mm_struct *mm = vma->vm_mm; 2101 struct rlimit *rlim = current->signal->rlim; 2102 unsigned long new_start; 2103 2104 /* address space limit tests */ 2105 if (!may_expand_vm(mm, grow)) 2106 return -ENOMEM; 2107 2108 /* Stack limit test */ 2109 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2110 return -ENOMEM; 2111 2112 /* mlock limit tests */ 2113 if (vma->vm_flags & VM_LOCKED) { 2114 unsigned long locked; 2115 unsigned long limit; 2116 locked = mm->locked_vm + grow; 2117 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2118 limit >>= PAGE_SHIFT; 2119 if (locked > limit && !capable(CAP_IPC_LOCK)) 2120 return -ENOMEM; 2121 } 2122 2123 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2124 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2125 vma->vm_end - size; 2126 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2127 return -EFAULT; 2128 2129 /* 2130 * Overcommit.. This must be the final test, as it will 2131 * update security statistics. 2132 */ 2133 if (security_vm_enough_memory_mm(mm, grow)) 2134 return -ENOMEM; 2135 2136 /* Ok, everything looks good - let it rip */ 2137 if (vma->vm_flags & VM_LOCKED) 2138 mm->locked_vm += grow; 2139 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2140 return 0; 2141 } 2142 2143 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2144 /* 2145 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2146 * vma is the last one with address > vma->vm_end. Have to extend vma. 2147 */ 2148 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2149 { 2150 int error; 2151 2152 if (!(vma->vm_flags & VM_GROWSUP)) 2153 return -EFAULT; 2154 2155 /* 2156 * We must make sure the anon_vma is allocated 2157 * so that the anon_vma locking is not a noop. 2158 */ 2159 if (unlikely(anon_vma_prepare(vma))) 2160 return -ENOMEM; 2161 vma_lock_anon_vma(vma); 2162 2163 /* 2164 * vma->vm_start/vm_end cannot change under us because the caller 2165 * is required to hold the mmap_sem in read mode. We need the 2166 * anon_vma lock to serialize against concurrent expand_stacks. 2167 * Also guard against wrapping around to address 0. 2168 */ 2169 if (address < PAGE_ALIGN(address+4)) 2170 address = PAGE_ALIGN(address+4); 2171 else { 2172 vma_unlock_anon_vma(vma); 2173 return -ENOMEM; 2174 } 2175 error = 0; 2176 2177 /* Somebody else might have raced and expanded it already */ 2178 if (address > vma->vm_end) { 2179 unsigned long size, grow; 2180 2181 size = address - vma->vm_start; 2182 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2183 2184 error = -ENOMEM; 2185 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2186 error = acct_stack_growth(vma, size, grow); 2187 if (!error) { 2188 /* 2189 * vma_gap_update() doesn't support concurrent 2190 * updates, but we only hold a shared mmap_sem 2191 * lock here, so we need to protect against 2192 * concurrent vma expansions. 2193 * vma_lock_anon_vma() doesn't help here, as 2194 * we don't guarantee that all growable vmas 2195 * in a mm share the same root anon vma. 2196 * So, we reuse mm->page_table_lock to guard 2197 * against concurrent vma expansions. 2198 */ 2199 spin_lock(&vma->vm_mm->page_table_lock); 2200 anon_vma_interval_tree_pre_update_vma(vma); 2201 vma->vm_end = address; 2202 anon_vma_interval_tree_post_update_vma(vma); 2203 if (vma->vm_next) 2204 vma_gap_update(vma->vm_next); 2205 else 2206 vma->vm_mm->highest_vm_end = address; 2207 spin_unlock(&vma->vm_mm->page_table_lock); 2208 2209 perf_event_mmap(vma); 2210 } 2211 } 2212 } 2213 vma_unlock_anon_vma(vma); 2214 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2215 validate_mm(vma->vm_mm); 2216 return error; 2217 } 2218 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2219 2220 /* 2221 * vma is the first one with address < vma->vm_start. Have to extend vma. 2222 */ 2223 int expand_downwards(struct vm_area_struct *vma, 2224 unsigned long address) 2225 { 2226 int error; 2227 2228 /* 2229 * We must make sure the anon_vma is allocated 2230 * so that the anon_vma locking is not a noop. 2231 */ 2232 if (unlikely(anon_vma_prepare(vma))) 2233 return -ENOMEM; 2234 2235 address &= PAGE_MASK; 2236 error = security_mmap_addr(address); 2237 if (error) 2238 return error; 2239 2240 vma_lock_anon_vma(vma); 2241 2242 /* 2243 * vma->vm_start/vm_end cannot change under us because the caller 2244 * is required to hold the mmap_sem in read mode. We need the 2245 * anon_vma lock to serialize against concurrent expand_stacks. 2246 */ 2247 2248 /* Somebody else might have raced and expanded it already */ 2249 if (address < vma->vm_start) { 2250 unsigned long size, grow; 2251 2252 size = vma->vm_end - address; 2253 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2254 2255 error = -ENOMEM; 2256 if (grow <= vma->vm_pgoff) { 2257 error = acct_stack_growth(vma, size, grow); 2258 if (!error) { 2259 /* 2260 * vma_gap_update() doesn't support concurrent 2261 * updates, but we only hold a shared mmap_sem 2262 * lock here, so we need to protect against 2263 * concurrent vma expansions. 2264 * vma_lock_anon_vma() doesn't help here, as 2265 * we don't guarantee that all growable vmas 2266 * in a mm share the same root anon vma. 2267 * So, we reuse mm->page_table_lock to guard 2268 * against concurrent vma expansions. 2269 */ 2270 spin_lock(&vma->vm_mm->page_table_lock); 2271 anon_vma_interval_tree_pre_update_vma(vma); 2272 vma->vm_start = address; 2273 vma->vm_pgoff -= grow; 2274 anon_vma_interval_tree_post_update_vma(vma); 2275 vma_gap_update(vma); 2276 spin_unlock(&vma->vm_mm->page_table_lock); 2277 2278 perf_event_mmap(vma); 2279 } 2280 } 2281 } 2282 vma_unlock_anon_vma(vma); 2283 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2284 validate_mm(vma->vm_mm); 2285 return error; 2286 } 2287 2288 /* 2289 * Note how expand_stack() refuses to expand the stack all the way to 2290 * abut the next virtual mapping, *unless* that mapping itself is also 2291 * a stack mapping. We want to leave room for a guard page, after all 2292 * (the guard page itself is not added here, that is done by the 2293 * actual page faulting logic) 2294 * 2295 * This matches the behavior of the guard page logic (see mm/memory.c: 2296 * check_stack_guard_page()), which only allows the guard page to be 2297 * removed under these circumstances. 2298 */ 2299 #ifdef CONFIG_STACK_GROWSUP 2300 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2301 { 2302 struct vm_area_struct *next; 2303 2304 address &= PAGE_MASK; 2305 next = vma->vm_next; 2306 if (next && next->vm_start == address + PAGE_SIZE) { 2307 if (!(next->vm_flags & VM_GROWSUP)) 2308 return -ENOMEM; 2309 } 2310 return expand_upwards(vma, address); 2311 } 2312 2313 struct vm_area_struct * 2314 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2315 { 2316 struct vm_area_struct *vma, *prev; 2317 2318 addr &= PAGE_MASK; 2319 vma = find_vma_prev(mm, addr, &prev); 2320 if (vma && (vma->vm_start <= addr)) 2321 return vma; 2322 if (!prev || expand_stack(prev, addr)) 2323 return NULL; 2324 if (prev->vm_flags & VM_LOCKED) 2325 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL); 2326 return prev; 2327 } 2328 #else 2329 int expand_stack(struct vm_area_struct *vma, unsigned long address) 2330 { 2331 struct vm_area_struct *prev; 2332 2333 address &= PAGE_MASK; 2334 prev = vma->vm_prev; 2335 if (prev && prev->vm_end == address) { 2336 if (!(prev->vm_flags & VM_GROWSDOWN)) 2337 return -ENOMEM; 2338 } 2339 return expand_downwards(vma, address); 2340 } 2341 2342 struct vm_area_struct * 2343 find_extend_vma(struct mm_struct *mm, unsigned long addr) 2344 { 2345 struct vm_area_struct *vma; 2346 unsigned long start; 2347 2348 addr &= PAGE_MASK; 2349 vma = find_vma(mm, addr); 2350 if (!vma) 2351 return NULL; 2352 if (vma->vm_start <= addr) 2353 return vma; 2354 if (!(vma->vm_flags & VM_GROWSDOWN)) 2355 return NULL; 2356 start = vma->vm_start; 2357 if (expand_stack(vma, addr)) 2358 return NULL; 2359 if (vma->vm_flags & VM_LOCKED) 2360 __mlock_vma_pages_range(vma, addr, start, NULL); 2361 return vma; 2362 } 2363 #endif 2364 2365 EXPORT_SYMBOL_GPL(find_extend_vma); 2366 2367 /* 2368 * Ok - we have the memory areas we should free on the vma list, 2369 * so release them, and do the vma updates. 2370 * 2371 * Called with the mm semaphore held. 2372 */ 2373 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2374 { 2375 unsigned long nr_accounted = 0; 2376 2377 /* Update high watermark before we lower total_vm */ 2378 update_hiwater_vm(mm); 2379 do { 2380 long nrpages = vma_pages(vma); 2381 2382 if (vma->vm_flags & VM_ACCOUNT) 2383 nr_accounted += nrpages; 2384 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2385 vma = remove_vma(vma); 2386 } while (vma); 2387 vm_unacct_memory(nr_accounted); 2388 validate_mm(mm); 2389 } 2390 2391 /* 2392 * Get rid of page table information in the indicated region. 2393 * 2394 * Called with the mm semaphore held. 2395 */ 2396 static void unmap_region(struct mm_struct *mm, 2397 struct vm_area_struct *vma, struct vm_area_struct *prev, 2398 unsigned long start, unsigned long end) 2399 { 2400 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2401 struct mmu_gather tlb; 2402 2403 lru_add_drain(); 2404 tlb_gather_mmu(&tlb, mm, start, end); 2405 update_hiwater_rss(mm); 2406 unmap_vmas(&tlb, vma, start, end); 2407 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2408 next ? next->vm_start : USER_PGTABLES_CEILING); 2409 tlb_finish_mmu(&tlb, start, end); 2410 } 2411 2412 /* 2413 * Create a list of vma's touched by the unmap, removing them from the mm's 2414 * vma list as we go.. 2415 */ 2416 static void 2417 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2418 struct vm_area_struct *prev, unsigned long end) 2419 { 2420 struct vm_area_struct **insertion_point; 2421 struct vm_area_struct *tail_vma = NULL; 2422 2423 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2424 vma->vm_prev = NULL; 2425 do { 2426 vma_rb_erase(vma, &mm->mm_rb); 2427 mm->map_count--; 2428 tail_vma = vma; 2429 vma = vma->vm_next; 2430 } while (vma && vma->vm_start < end); 2431 *insertion_point = vma; 2432 if (vma) { 2433 vma->vm_prev = prev; 2434 vma_gap_update(vma); 2435 } else 2436 mm->highest_vm_end = prev ? prev->vm_end : 0; 2437 tail_vma->vm_next = NULL; 2438 2439 /* Kill the cache */ 2440 vmacache_invalidate(mm); 2441 } 2442 2443 /* 2444 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2445 * munmap path where it doesn't make sense to fail. 2446 */ 2447 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2448 unsigned long addr, int new_below) 2449 { 2450 struct vm_area_struct *new; 2451 int err = -ENOMEM; 2452 2453 if (is_vm_hugetlb_page(vma) && (addr & 2454 ~(huge_page_mask(hstate_vma(vma))))) 2455 return -EINVAL; 2456 2457 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2458 if (!new) 2459 goto out_err; 2460 2461 /* most fields are the same, copy all, and then fixup */ 2462 *new = *vma; 2463 2464 INIT_LIST_HEAD(&new->anon_vma_chain); 2465 2466 if (new_below) 2467 new->vm_end = addr; 2468 else { 2469 new->vm_start = addr; 2470 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2471 } 2472 2473 err = vma_dup_policy(vma, new); 2474 if (err) 2475 goto out_free_vma; 2476 2477 err = anon_vma_clone(new, vma); 2478 if (err) 2479 goto out_free_mpol; 2480 2481 if (new->vm_file) 2482 get_file(new->vm_file); 2483 2484 if (new->vm_ops && new->vm_ops->open) 2485 new->vm_ops->open(new); 2486 2487 if (new_below) 2488 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2489 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2490 else 2491 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2492 2493 /* Success. */ 2494 if (!err) 2495 return 0; 2496 2497 /* Clean everything up if vma_adjust failed. */ 2498 if (new->vm_ops && new->vm_ops->close) 2499 new->vm_ops->close(new); 2500 if (new->vm_file) 2501 fput(new->vm_file); 2502 unlink_anon_vmas(new); 2503 out_free_mpol: 2504 mpol_put(vma_policy(new)); 2505 out_free_vma: 2506 kmem_cache_free(vm_area_cachep, new); 2507 out_err: 2508 return err; 2509 } 2510 2511 /* 2512 * Split a vma into two pieces at address 'addr', a new vma is allocated 2513 * either for the first part or the tail. 2514 */ 2515 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2516 unsigned long addr, int new_below) 2517 { 2518 if (mm->map_count >= sysctl_max_map_count) 2519 return -ENOMEM; 2520 2521 return __split_vma(mm, vma, addr, new_below); 2522 } 2523 2524 /* Munmap is split into 2 main parts -- this part which finds 2525 * what needs doing, and the areas themselves, which do the 2526 * work. This now handles partial unmappings. 2527 * Jeremy Fitzhardinge <jeremy@goop.org> 2528 */ 2529 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2530 { 2531 unsigned long end; 2532 struct vm_area_struct *vma, *prev, *last; 2533 2534 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2535 return -EINVAL; 2536 2537 len = PAGE_ALIGN(len); 2538 if (len == 0) 2539 return -EINVAL; 2540 2541 /* Find the first overlapping VMA */ 2542 vma = find_vma(mm, start); 2543 if (!vma) 2544 return 0; 2545 prev = vma->vm_prev; 2546 /* we have start < vma->vm_end */ 2547 2548 /* if it doesn't overlap, we have nothing.. */ 2549 end = start + len; 2550 if (vma->vm_start >= end) 2551 return 0; 2552 2553 /* 2554 * If we need to split any vma, do it now to save pain later. 2555 * 2556 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2557 * unmapped vm_area_struct will remain in use: so lower split_vma 2558 * places tmp vma above, and higher split_vma places tmp vma below. 2559 */ 2560 if (start > vma->vm_start) { 2561 int error; 2562 2563 /* 2564 * Make sure that map_count on return from munmap() will 2565 * not exceed its limit; but let map_count go just above 2566 * its limit temporarily, to help free resources as expected. 2567 */ 2568 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2569 return -ENOMEM; 2570 2571 error = __split_vma(mm, vma, start, 0); 2572 if (error) 2573 return error; 2574 prev = vma; 2575 } 2576 2577 /* Does it split the last one? */ 2578 last = find_vma(mm, end); 2579 if (last && end > last->vm_start) { 2580 int error = __split_vma(mm, last, end, 1); 2581 if (error) 2582 return error; 2583 } 2584 vma = prev ? prev->vm_next : mm->mmap; 2585 2586 /* 2587 * unlock any mlock()ed ranges before detaching vmas 2588 */ 2589 if (mm->locked_vm) { 2590 struct vm_area_struct *tmp = vma; 2591 while (tmp && tmp->vm_start < end) { 2592 if (tmp->vm_flags & VM_LOCKED) { 2593 mm->locked_vm -= vma_pages(tmp); 2594 munlock_vma_pages_all(tmp); 2595 } 2596 tmp = tmp->vm_next; 2597 } 2598 } 2599 2600 /* 2601 * Remove the vma's, and unmap the actual pages 2602 */ 2603 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2604 unmap_region(mm, vma, prev, start, end); 2605 2606 arch_unmap(mm, vma, start, end); 2607 2608 /* Fix up all other VM information */ 2609 remove_vma_list(mm, vma); 2610 2611 return 0; 2612 } 2613 2614 int vm_munmap(unsigned long start, size_t len) 2615 { 2616 int ret; 2617 struct mm_struct *mm = current->mm; 2618 2619 down_write(&mm->mmap_sem); 2620 ret = do_munmap(mm, start, len); 2621 up_write(&mm->mmap_sem); 2622 return ret; 2623 } 2624 EXPORT_SYMBOL(vm_munmap); 2625 2626 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2627 { 2628 profile_munmap(addr); 2629 return vm_munmap(addr, len); 2630 } 2631 2632 static inline void verify_mm_writelocked(struct mm_struct *mm) 2633 { 2634 #ifdef CONFIG_DEBUG_VM 2635 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2636 WARN_ON(1); 2637 up_read(&mm->mmap_sem); 2638 } 2639 #endif 2640 } 2641 2642 /* 2643 * this is really a simplified "do_mmap". it only handles 2644 * anonymous maps. eventually we may be able to do some 2645 * brk-specific accounting here. 2646 */ 2647 static unsigned long do_brk(unsigned long addr, unsigned long len) 2648 { 2649 struct mm_struct *mm = current->mm; 2650 struct vm_area_struct *vma, *prev; 2651 unsigned long flags; 2652 struct rb_node **rb_link, *rb_parent; 2653 pgoff_t pgoff = addr >> PAGE_SHIFT; 2654 int error; 2655 2656 len = PAGE_ALIGN(len); 2657 if (!len) 2658 return addr; 2659 2660 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2661 2662 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2663 if (error & ~PAGE_MASK) 2664 return error; 2665 2666 error = mlock_future_check(mm, mm->def_flags, len); 2667 if (error) 2668 return error; 2669 2670 /* 2671 * mm->mmap_sem is required to protect against another thread 2672 * changing the mappings in case we sleep. 2673 */ 2674 verify_mm_writelocked(mm); 2675 2676 /* 2677 * Clear old maps. this also does some error checking for us 2678 */ 2679 munmap_back: 2680 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) { 2681 if (do_munmap(mm, addr, len)) 2682 return -ENOMEM; 2683 goto munmap_back; 2684 } 2685 2686 /* Check against address space limits *after* clearing old maps... */ 2687 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2688 return -ENOMEM; 2689 2690 if (mm->map_count > sysctl_max_map_count) 2691 return -ENOMEM; 2692 2693 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2694 return -ENOMEM; 2695 2696 /* Can we just expand an old private anonymous mapping? */ 2697 vma = vma_merge(mm, prev, addr, addr + len, flags, 2698 NULL, NULL, pgoff, NULL); 2699 if (vma) 2700 goto out; 2701 2702 /* 2703 * create a vma struct for an anonymous mapping 2704 */ 2705 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2706 if (!vma) { 2707 vm_unacct_memory(len >> PAGE_SHIFT); 2708 return -ENOMEM; 2709 } 2710 2711 INIT_LIST_HEAD(&vma->anon_vma_chain); 2712 vma->vm_mm = mm; 2713 vma->vm_start = addr; 2714 vma->vm_end = addr + len; 2715 vma->vm_pgoff = pgoff; 2716 vma->vm_flags = flags; 2717 vma->vm_page_prot = vm_get_page_prot(flags); 2718 vma_link(mm, vma, prev, rb_link, rb_parent); 2719 out: 2720 perf_event_mmap(vma); 2721 mm->total_vm += len >> PAGE_SHIFT; 2722 if (flags & VM_LOCKED) 2723 mm->locked_vm += (len >> PAGE_SHIFT); 2724 vma->vm_flags |= VM_SOFTDIRTY; 2725 return addr; 2726 } 2727 2728 unsigned long vm_brk(unsigned long addr, unsigned long len) 2729 { 2730 struct mm_struct *mm = current->mm; 2731 unsigned long ret; 2732 bool populate; 2733 2734 down_write(&mm->mmap_sem); 2735 ret = do_brk(addr, len); 2736 populate = ((mm->def_flags & VM_LOCKED) != 0); 2737 up_write(&mm->mmap_sem); 2738 if (populate) 2739 mm_populate(addr, len); 2740 return ret; 2741 } 2742 EXPORT_SYMBOL(vm_brk); 2743 2744 /* Release all mmaps. */ 2745 void exit_mmap(struct mm_struct *mm) 2746 { 2747 struct mmu_gather tlb; 2748 struct vm_area_struct *vma; 2749 unsigned long nr_accounted = 0; 2750 2751 /* mm's last user has gone, and its about to be pulled down */ 2752 mmu_notifier_release(mm); 2753 2754 if (mm->locked_vm) { 2755 vma = mm->mmap; 2756 while (vma) { 2757 if (vma->vm_flags & VM_LOCKED) 2758 munlock_vma_pages_all(vma); 2759 vma = vma->vm_next; 2760 } 2761 } 2762 2763 arch_exit_mmap(mm); 2764 2765 vma = mm->mmap; 2766 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2767 return; 2768 2769 lru_add_drain(); 2770 flush_cache_mm(mm); 2771 tlb_gather_mmu(&tlb, mm, 0, -1); 2772 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2773 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2774 unmap_vmas(&tlb, vma, 0, -1); 2775 2776 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2777 tlb_finish_mmu(&tlb, 0, -1); 2778 2779 /* 2780 * Walk the list again, actually closing and freeing it, 2781 * with preemption enabled, without holding any MM locks. 2782 */ 2783 while (vma) { 2784 if (vma->vm_flags & VM_ACCOUNT) 2785 nr_accounted += vma_pages(vma); 2786 vma = remove_vma(vma); 2787 } 2788 vm_unacct_memory(nr_accounted); 2789 2790 WARN_ON(atomic_long_read(&mm->nr_ptes) > 2791 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2792 } 2793 2794 /* Insert vm structure into process list sorted by address 2795 * and into the inode's i_mmap tree. If vm_file is non-NULL 2796 * then i_mmap_rwsem is taken here. 2797 */ 2798 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2799 { 2800 struct vm_area_struct *prev; 2801 struct rb_node **rb_link, *rb_parent; 2802 2803 /* 2804 * The vm_pgoff of a purely anonymous vma should be irrelevant 2805 * until its first write fault, when page's anon_vma and index 2806 * are set. But now set the vm_pgoff it will almost certainly 2807 * end up with (unless mremap moves it elsewhere before that 2808 * first wfault), so /proc/pid/maps tells a consistent story. 2809 * 2810 * By setting it to reflect the virtual start address of the 2811 * vma, merges and splits can happen in a seamless way, just 2812 * using the existing file pgoff checks and manipulations. 2813 * Similarly in do_mmap_pgoff and in do_brk. 2814 */ 2815 if (!vma->vm_file) { 2816 BUG_ON(vma->anon_vma); 2817 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2818 } 2819 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2820 &prev, &rb_link, &rb_parent)) 2821 return -ENOMEM; 2822 if ((vma->vm_flags & VM_ACCOUNT) && 2823 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2824 return -ENOMEM; 2825 2826 vma_link(mm, vma, prev, rb_link, rb_parent); 2827 return 0; 2828 } 2829 2830 /* 2831 * Copy the vma structure to a new location in the same mm, 2832 * prior to moving page table entries, to effect an mremap move. 2833 */ 2834 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2835 unsigned long addr, unsigned long len, pgoff_t pgoff, 2836 bool *need_rmap_locks) 2837 { 2838 struct vm_area_struct *vma = *vmap; 2839 unsigned long vma_start = vma->vm_start; 2840 struct mm_struct *mm = vma->vm_mm; 2841 struct vm_area_struct *new_vma, *prev; 2842 struct rb_node **rb_link, *rb_parent; 2843 bool faulted_in_anon_vma = true; 2844 2845 /* 2846 * If anonymous vma has not yet been faulted, update new pgoff 2847 * to match new location, to increase its chance of merging. 2848 */ 2849 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2850 pgoff = addr >> PAGE_SHIFT; 2851 faulted_in_anon_vma = false; 2852 } 2853 2854 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2855 return NULL; /* should never get here */ 2856 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2857 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2858 if (new_vma) { 2859 /* 2860 * Source vma may have been merged into new_vma 2861 */ 2862 if (unlikely(vma_start >= new_vma->vm_start && 2863 vma_start < new_vma->vm_end)) { 2864 /* 2865 * The only way we can get a vma_merge with 2866 * self during an mremap is if the vma hasn't 2867 * been faulted in yet and we were allowed to 2868 * reset the dst vma->vm_pgoff to the 2869 * destination address of the mremap to allow 2870 * the merge to happen. mremap must change the 2871 * vm_pgoff linearity between src and dst vmas 2872 * (in turn preventing a vma_merge) to be 2873 * safe. It is only safe to keep the vm_pgoff 2874 * linear if there are no pages mapped yet. 2875 */ 2876 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2877 *vmap = vma = new_vma; 2878 } 2879 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2880 } else { 2881 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2882 if (new_vma) { 2883 *new_vma = *vma; 2884 new_vma->vm_start = addr; 2885 new_vma->vm_end = addr + len; 2886 new_vma->vm_pgoff = pgoff; 2887 if (vma_dup_policy(vma, new_vma)) 2888 goto out_free_vma; 2889 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2890 if (anon_vma_clone(new_vma, vma)) 2891 goto out_free_mempol; 2892 if (new_vma->vm_file) 2893 get_file(new_vma->vm_file); 2894 if (new_vma->vm_ops && new_vma->vm_ops->open) 2895 new_vma->vm_ops->open(new_vma); 2896 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2897 *need_rmap_locks = false; 2898 } 2899 } 2900 return new_vma; 2901 2902 out_free_mempol: 2903 mpol_put(vma_policy(new_vma)); 2904 out_free_vma: 2905 kmem_cache_free(vm_area_cachep, new_vma); 2906 return NULL; 2907 } 2908 2909 /* 2910 * Return true if the calling process may expand its vm space by the passed 2911 * number of pages 2912 */ 2913 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2914 { 2915 unsigned long cur = mm->total_vm; /* pages */ 2916 unsigned long lim; 2917 2918 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2919 2920 if (cur + npages > lim) 2921 return 0; 2922 return 1; 2923 } 2924 2925 static int special_mapping_fault(struct vm_area_struct *vma, 2926 struct vm_fault *vmf); 2927 2928 /* 2929 * Having a close hook prevents vma merging regardless of flags. 2930 */ 2931 static void special_mapping_close(struct vm_area_struct *vma) 2932 { 2933 } 2934 2935 static const char *special_mapping_name(struct vm_area_struct *vma) 2936 { 2937 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 2938 } 2939 2940 static const struct vm_operations_struct special_mapping_vmops = { 2941 .close = special_mapping_close, 2942 .fault = special_mapping_fault, 2943 .name = special_mapping_name, 2944 }; 2945 2946 static const struct vm_operations_struct legacy_special_mapping_vmops = { 2947 .close = special_mapping_close, 2948 .fault = special_mapping_fault, 2949 }; 2950 2951 static int special_mapping_fault(struct vm_area_struct *vma, 2952 struct vm_fault *vmf) 2953 { 2954 pgoff_t pgoff; 2955 struct page **pages; 2956 2957 /* 2958 * special mappings have no vm_file, and in that case, the mm 2959 * uses vm_pgoff internally. So we have to subtract it from here. 2960 * We are allowed to do this because we are the mm; do not copy 2961 * this code into drivers! 2962 */ 2963 pgoff = vmf->pgoff - vma->vm_pgoff; 2964 2965 if (vma->vm_ops == &legacy_special_mapping_vmops) 2966 pages = vma->vm_private_data; 2967 else 2968 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 2969 pages; 2970 2971 for (; pgoff && *pages; ++pages) 2972 pgoff--; 2973 2974 if (*pages) { 2975 struct page *page = *pages; 2976 get_page(page); 2977 vmf->page = page; 2978 return 0; 2979 } 2980 2981 return VM_FAULT_SIGBUS; 2982 } 2983 2984 static struct vm_area_struct *__install_special_mapping( 2985 struct mm_struct *mm, 2986 unsigned long addr, unsigned long len, 2987 unsigned long vm_flags, const struct vm_operations_struct *ops, 2988 void *priv) 2989 { 2990 int ret; 2991 struct vm_area_struct *vma; 2992 2993 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2994 if (unlikely(vma == NULL)) 2995 return ERR_PTR(-ENOMEM); 2996 2997 INIT_LIST_HEAD(&vma->anon_vma_chain); 2998 vma->vm_mm = mm; 2999 vma->vm_start = addr; 3000 vma->vm_end = addr + len; 3001 3002 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3003 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3004 3005 vma->vm_ops = ops; 3006 vma->vm_private_data = priv; 3007 3008 ret = insert_vm_struct(mm, vma); 3009 if (ret) 3010 goto out; 3011 3012 mm->total_vm += len >> PAGE_SHIFT; 3013 3014 perf_event_mmap(vma); 3015 3016 return vma; 3017 3018 out: 3019 kmem_cache_free(vm_area_cachep, vma); 3020 return ERR_PTR(ret); 3021 } 3022 3023 /* 3024 * Called with mm->mmap_sem held for writing. 3025 * Insert a new vma covering the given region, with the given flags. 3026 * Its pages are supplied by the given array of struct page *. 3027 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3028 * The region past the last page supplied will always produce SIGBUS. 3029 * The array pointer and the pages it points to are assumed to stay alive 3030 * for as long as this mapping might exist. 3031 */ 3032 struct vm_area_struct *_install_special_mapping( 3033 struct mm_struct *mm, 3034 unsigned long addr, unsigned long len, 3035 unsigned long vm_flags, const struct vm_special_mapping *spec) 3036 { 3037 return __install_special_mapping(mm, addr, len, vm_flags, 3038 &special_mapping_vmops, (void *)spec); 3039 } 3040 3041 int install_special_mapping(struct mm_struct *mm, 3042 unsigned long addr, unsigned long len, 3043 unsigned long vm_flags, struct page **pages) 3044 { 3045 struct vm_area_struct *vma = __install_special_mapping( 3046 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3047 (void *)pages); 3048 3049 return PTR_ERR_OR_ZERO(vma); 3050 } 3051 3052 static DEFINE_MUTEX(mm_all_locks_mutex); 3053 3054 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3055 { 3056 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3057 /* 3058 * The LSB of head.next can't change from under us 3059 * because we hold the mm_all_locks_mutex. 3060 */ 3061 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3062 /* 3063 * We can safely modify head.next after taking the 3064 * anon_vma->root->rwsem. If some other vma in this mm shares 3065 * the same anon_vma we won't take it again. 3066 * 3067 * No need of atomic instructions here, head.next 3068 * can't change from under us thanks to the 3069 * anon_vma->root->rwsem. 3070 */ 3071 if (__test_and_set_bit(0, (unsigned long *) 3072 &anon_vma->root->rb_root.rb_node)) 3073 BUG(); 3074 } 3075 } 3076 3077 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3078 { 3079 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3080 /* 3081 * AS_MM_ALL_LOCKS can't change from under us because 3082 * we hold the mm_all_locks_mutex. 3083 * 3084 * Operations on ->flags have to be atomic because 3085 * even if AS_MM_ALL_LOCKS is stable thanks to the 3086 * mm_all_locks_mutex, there may be other cpus 3087 * changing other bitflags in parallel to us. 3088 */ 3089 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3090 BUG(); 3091 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3092 } 3093 } 3094 3095 /* 3096 * This operation locks against the VM for all pte/vma/mm related 3097 * operations that could ever happen on a certain mm. This includes 3098 * vmtruncate, try_to_unmap, and all page faults. 3099 * 3100 * The caller must take the mmap_sem in write mode before calling 3101 * mm_take_all_locks(). The caller isn't allowed to release the 3102 * mmap_sem until mm_drop_all_locks() returns. 3103 * 3104 * mmap_sem in write mode is required in order to block all operations 3105 * that could modify pagetables and free pages without need of 3106 * altering the vma layout (for example populate_range() with 3107 * nonlinear vmas). It's also needed in write mode to avoid new 3108 * anon_vmas to be associated with existing vmas. 3109 * 3110 * A single task can't take more than one mm_take_all_locks() in a row 3111 * or it would deadlock. 3112 * 3113 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3114 * mapping->flags avoid to take the same lock twice, if more than one 3115 * vma in this mm is backed by the same anon_vma or address_space. 3116 * 3117 * We can take all the locks in random order because the VM code 3118 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never 3119 * takes more than one of them in a row. Secondly we're protected 3120 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3121 * 3122 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3123 * that may have to take thousand of locks. 3124 * 3125 * mm_take_all_locks() can fail if it's interrupted by signals. 3126 */ 3127 int mm_take_all_locks(struct mm_struct *mm) 3128 { 3129 struct vm_area_struct *vma; 3130 struct anon_vma_chain *avc; 3131 3132 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3133 3134 mutex_lock(&mm_all_locks_mutex); 3135 3136 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3137 if (signal_pending(current)) 3138 goto out_unlock; 3139 if (vma->vm_file && vma->vm_file->f_mapping) 3140 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3141 } 3142 3143 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3144 if (signal_pending(current)) 3145 goto out_unlock; 3146 if (vma->anon_vma) 3147 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3148 vm_lock_anon_vma(mm, avc->anon_vma); 3149 } 3150 3151 return 0; 3152 3153 out_unlock: 3154 mm_drop_all_locks(mm); 3155 return -EINTR; 3156 } 3157 3158 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3159 { 3160 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3161 /* 3162 * The LSB of head.next can't change to 0 from under 3163 * us because we hold the mm_all_locks_mutex. 3164 * 3165 * We must however clear the bitflag before unlocking 3166 * the vma so the users using the anon_vma->rb_root will 3167 * never see our bitflag. 3168 * 3169 * No need of atomic instructions here, head.next 3170 * can't change from under us until we release the 3171 * anon_vma->root->rwsem. 3172 */ 3173 if (!__test_and_clear_bit(0, (unsigned long *) 3174 &anon_vma->root->rb_root.rb_node)) 3175 BUG(); 3176 anon_vma_unlock_write(anon_vma); 3177 } 3178 } 3179 3180 static void vm_unlock_mapping(struct address_space *mapping) 3181 { 3182 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3183 /* 3184 * AS_MM_ALL_LOCKS can't change to 0 from under us 3185 * because we hold the mm_all_locks_mutex. 3186 */ 3187 i_mmap_unlock_write(mapping); 3188 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3189 &mapping->flags)) 3190 BUG(); 3191 } 3192 } 3193 3194 /* 3195 * The mmap_sem cannot be released by the caller until 3196 * mm_drop_all_locks() returns. 3197 */ 3198 void mm_drop_all_locks(struct mm_struct *mm) 3199 { 3200 struct vm_area_struct *vma; 3201 struct anon_vma_chain *avc; 3202 3203 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3204 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3205 3206 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3207 if (vma->anon_vma) 3208 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3209 vm_unlock_anon_vma(avc->anon_vma); 3210 if (vma->vm_file && vma->vm_file->f_mapping) 3211 vm_unlock_mapping(vma->vm_file->f_mapping); 3212 } 3213 3214 mutex_unlock(&mm_all_locks_mutex); 3215 } 3216 3217 /* 3218 * initialise the VMA slab 3219 */ 3220 void __init mmap_init(void) 3221 { 3222 int ret; 3223 3224 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3225 VM_BUG_ON(ret); 3226 } 3227 3228 /* 3229 * Initialise sysctl_user_reserve_kbytes. 3230 * 3231 * This is intended to prevent a user from starting a single memory hogging 3232 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3233 * mode. 3234 * 3235 * The default value is min(3% of free memory, 128MB) 3236 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3237 */ 3238 static int init_user_reserve(void) 3239 { 3240 unsigned long free_kbytes; 3241 3242 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3243 3244 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3245 return 0; 3246 } 3247 subsys_initcall(init_user_reserve); 3248 3249 /* 3250 * Initialise sysctl_admin_reserve_kbytes. 3251 * 3252 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3253 * to log in and kill a memory hogging process. 3254 * 3255 * Systems with more than 256MB will reserve 8MB, enough to recover 3256 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3257 * only reserve 3% of free pages by default. 3258 */ 3259 static int init_admin_reserve(void) 3260 { 3261 unsigned long free_kbytes; 3262 3263 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3264 3265 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3266 return 0; 3267 } 3268 subsys_initcall(init_admin_reserve); 3269 3270 /* 3271 * Reinititalise user and admin reserves if memory is added or removed. 3272 * 3273 * The default user reserve max is 128MB, and the default max for the 3274 * admin reserve is 8MB. These are usually, but not always, enough to 3275 * enable recovery from a memory hogging process using login/sshd, a shell, 3276 * and tools like top. It may make sense to increase or even disable the 3277 * reserve depending on the existence of swap or variations in the recovery 3278 * tools. So, the admin may have changed them. 3279 * 3280 * If memory is added and the reserves have been eliminated or increased above 3281 * the default max, then we'll trust the admin. 3282 * 3283 * If memory is removed and there isn't enough free memory, then we 3284 * need to reset the reserves. 3285 * 3286 * Otherwise keep the reserve set by the admin. 3287 */ 3288 static int reserve_mem_notifier(struct notifier_block *nb, 3289 unsigned long action, void *data) 3290 { 3291 unsigned long tmp, free_kbytes; 3292 3293 switch (action) { 3294 case MEM_ONLINE: 3295 /* Default max is 128MB. Leave alone if modified by operator. */ 3296 tmp = sysctl_user_reserve_kbytes; 3297 if (0 < tmp && tmp < (1UL << 17)) 3298 init_user_reserve(); 3299 3300 /* Default max is 8MB. Leave alone if modified by operator. */ 3301 tmp = sysctl_admin_reserve_kbytes; 3302 if (0 < tmp && tmp < (1UL << 13)) 3303 init_admin_reserve(); 3304 3305 break; 3306 case MEM_OFFLINE: 3307 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3308 3309 if (sysctl_user_reserve_kbytes > free_kbytes) { 3310 init_user_reserve(); 3311 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3312 sysctl_user_reserve_kbytes); 3313 } 3314 3315 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3316 init_admin_reserve(); 3317 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3318 sysctl_admin_reserve_kbytes); 3319 } 3320 break; 3321 default: 3322 break; 3323 } 3324 return NOTIFY_OK; 3325 } 3326 3327 static struct notifier_block reserve_mem_nb = { 3328 .notifier_call = reserve_mem_notifier, 3329 }; 3330 3331 static int __meminit init_reserve_notifier(void) 3332 { 3333 if (register_hotmemory_notifier(&reserve_mem_nb)) 3334 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3335 3336 return 0; 3337 } 3338 subsys_initcall(init_reserve_notifier); 3339